1
|
Wang X, Liu K, Meng Y, Chen J, Zhong Z. The degradation of TYR variants derived from Chinese OCA families is mediated by the ERAD and ERLAD pathway. Gene 2025; 932:148907. [PMID: 39218412 DOI: 10.1016/j.gene.2024.148907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Oculocutaneous albinism (OCA) is a genetically heterogeneous group of autosomal recessive disorders, which presents with decreased or absent pigmentation in the hair, skin, and eyes. OCA1, as a subtype of OCA, is caused by mutations in the tyrosinase gene (TYR). In this study, we performed in vitro functional analysis of eight TYR variants (one frameshift variant: c.929dupC (p.Arg311Lysfs*7); seven missense variants: c.896G>A (p.Arg299His), c.1234C>A (p.Pro412Thr), c.1169A>G (p.His390Arg), c.937C>A (p.Pro313Thr), c.636A>T (p.Arg212Ser), c.623 T>G (p.Leu208Arg), c.1325C>A (p.Ser442Tyr)) identified in Chinese OCA families. TYR plasmids were transfected into HEK 293 T cells to explore the effects of TYR variants on their processing, protein expression, activity, and degradation. The results showed that all eight variants caused TYR to be retained in the endoplasmic reticulum (ER), processing was blocked, and TYR activity almost disappeared; the frameshift variant caused the size of the TYR protein to be reduced by about 30KD, and the protein expression of the remaining seven missense variants was reduced; the ER-associated degradation (ERAD) pathway mediates the degradation of TYR variants that occur on the Tyrosinase copper-binding domain, while the degradation of TYR variants that are not located on that domain may be mediated by a new degradation pathway--ER-to-lysosome-associated degradation (ERLAD). In summary, TYR variants affected their protein processing and activity, and may also induce ER stress and trigger degradation through the ERLAD pathway in addition to the ERAD degradation pathway, providing new insights into the potential pathogenic mechanism for OCA1 caused by TYR variants.
Collapse
Affiliation(s)
- Xinyao Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangyu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunlong Meng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Goff PS, Patel S, Carter T, Marks MS, Sviderskaya EV. Enhanced MC1R-signalling and pH modulation facilitate melanogenesis within late endosomes of BLOC-1-deficient melanocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602505. [PMID: 39026869 PMCID: PMC11257453 DOI: 10.1101/2024.07.08.602505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoprotective melanins in the skin are synthesised by epidermal melanocytes within specialised lysosome-related organelles called melanosomes. Melanosomes coexist with lysosomes; thus, melanocytes employ specific trafficking machineries to ensure correct cargo delivery to either the endolysosomal system or maturing melanosomes. Mutations in some of the protein complexes required for melanogenic cargo delivery, such as biogenesis of lysosome-related organelles complex 1 (BLOC-1), result in hypopigmentation due to mistrafficking of cargo to endolysosomes. We show that hypopigmented BLOC-1-deficient melanocytes retain melanogenic capacity that can be enhanced by treatment with cAMP elevating agents despite the mislocalisation of melanogenic proteins. The melanin formed in BLOC-1-deficient melanocytes is not generated in melanosomes but rather within late endosomes/lysosomes to which some cargoes mislocalise. Although these organelles generally are acidic, a cohort of late endosomes/lysosomes have a sufficiently neutral pH to facilitate melanogenesis, perhaps due to mislocalised melanosomal transporters and melanogenic enzymes. Modulation of the pH of late endosomes/lysosomes by genetic manipulation or via treatment with lysosomotropic agents significantly enhances the melanin content of BLOC-1-deficient melanocytes. Our data suggest that upregulation of mistargeted cargoes can facilitate reprogramming of a subset of endolysosomes to generate some functions of lysosome-related organelles.
Collapse
|
3
|
Bi H, Tranell J, Harper DC, Lin W, Li J, Hellström AR, Larsson M, Rubin CJ, Wang C, Sayyab S, Kerje S, Bed’hom B, Gourichon D, Ito S, Wakamatsu K, Tixier-Boichard M, Marks MS, Globisch D, Andersson L. A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken. PLoS Genet 2023; 19:e1010724. [PMID: 37068079 PMCID: PMC10138217 DOI: 10.1371/journal.pgen.1010724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
Collapse
Affiliation(s)
- Huijuan Bi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Tranell
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Weifeng Lin
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Anders R. Hellström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Susanne Kerje
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bertrand Bed’hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350 Jouy-en-Josas, France
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Michael S. Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Globisch
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, United States of America
| |
Collapse
|
4
|
Li C, Chen Q, Wu J, Ren J, Zhang M, Wang H, Li J, Tang Y. Identification and characterization of two novel noncoding tyrosinase (TYR) gene variants leading to oculocutaneous albinism type 1. J Biol Chem 2022; 298:101922. [PMID: 35413289 PMCID: PMC9108984 DOI: 10.1016/j.jbc.2022.101922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous albinism type 1 (OCA1), resulting from pathogenic variants in the tyrosinase (TYR) gene, refers to a group of phenotypically heterogeneous autosomal recessive disorders characterized by a partial or a complete absence of pigment in the skin/hair and is also associated with common developmental eye defects. In this study, we identified two novel compound heterozygous TYR variants from a Chinese hypopigmentary patient by whole-exome sequencing. Specifically, the two variants were c.-89T>G, located at the core of the initiator E-box (Inr E-box) of the TYR promoter, and p.S16Y (c.47C>A), located within the signal sequence. We performed both in silico analysis and experimental validation and verified these mutations as OCA1 variants that caused either impaired or complete loss of function of TYR. Mechanistically, the Inr E-box variant dampened TYR binding to microphthalmia-associated transcription factor, a master transcriptional regulator of the melanocyte development, whereas the S16Y variant contributed to endoplasmic reticulum retention, a common and principal cause of impaired TYR activity. Interestingly, we found that the Inr E-box variant creates novel protospacer adjacent motif sites, recognized by nucleases SpCas9 and SaCas9-KKH, respectively, without compromising the functional TYR coding sequence. We further used allele-specific genomic editing by CRISPR activation to specifically target the variant promoter and successfully activated its downstream gene expression, which could lead to potential therapeutic benefits. In conclusion, this study expands the spectrum of TYR variants, especially those within the promoter and noncoding regions, which can facilitate genetic counseling and clinical diagnosis of OCA1.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; The Biobank of Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Lin S, Sanchez-Bretaño A, Leslie JS, Williams KB, Lee H, Thomas NS, Callaway J, Deline J, Ratnayaka JA, Baralle D, Schmitt MA, Norman CS, Hammond S, Harlalka GV, Ennis S, Cross HE, Wenger O, Crosby AH, Baple EL, Self JE. Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom Med 2022; 7:2. [PMID: 35027574 PMCID: PMC8758782 DOI: 10.1038/s41525-021-00275-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
Collapse
Affiliation(s)
- Siying Lin
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Aida Sanchez-Bretaño
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Katie B Williams
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Jonathan Callaway
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James Deline
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Melanie A Schmitt
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, USA
| | - Chelsea S Norman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The Rosalind Franklin Institute, Rutherford Appleton Laboratories, Harwell Science and Innovation Campus, Didcot, UK
| | - Sheri Hammond
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
- Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Olivia Wenger
- New Leaf Clinic, PO Box 336, 16014 East Chestnut Street, Mount Eaton, OH, 44691, USA
- Department of Pediatrics, Akron Children's Hospital, 214 West Bowery Street, Akron, OH, 44308, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, UK.
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
6
|
Lavinda O, Manga P, Orlow SJ, Cardozo T. Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex. Front Pharmacol 2021; 12:602206. [PMID: 33995009 PMCID: PMC8114058 DOI: 10.3389/fphar.2021.602206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Tyrosinase (TYR) is a copper-containing monooxygenase central to the function of melanocytes. Alterations in its expression or activity contribute to variations in skin, hair and eye color, and underlie a variety of pathogenic pigmentary phenotypes, including several forms of oculocutaneous albinism (OCA). Many of these phenotypes are linked to individual missense mutations causing single nucleotide variants and polymorphisms (SNVs) in TYR. We previously showed that two TYR homologues, TYRP1 and TYRP2, modulate TYR activity and stabilize the TYR protein. Accordingly, to investigate whether TYR, TYRP1, and TYRP2 are biophysically compatible with various heterocomplexes, we computationally docked a high-quality 3D model of TYR to the crystal structure of TYRP1 and to a high-quality 3D model of TYRP2. Remarkably, the resulting TYR-TYRP1 heterodimer was complementary in structure and energy with the TYR-TYRP2 heterodimer, with TYRP1 and TYRP2 docking to different adjacent surfaces on TYR that apposed a third realistic protein interface between TYRP1-TYRP2. Hence, the 3D models are compatible with a heterotrimeric TYR-TYRP1-TYRP2 complex. In addition, this heterotrimeric TYR-TYRP1-TYRP2 positioned the C-terminus of each folded enzymatic domain in an ideal position to allow their C-terminal transmembrane helices to form a putative membrane embedded three-helix bundle. Finally, pathogenic TYR mutations causing OCA1A, which also destabilize TYR biochemically, cluster on an unoccupied protein interface at the periphery of the heterotrimeric complex, suggesting that this may be a docking site for OCA2, an anion channel. Pathogenic OCA2 mutations result in similar phenotypes to those produced by OCA1A TYR mutations. While this complex may be difficult to detect in vitro, due to the complex environment of the vertebrate cellular membranous system, our results support the existence of a heterotrimeric complex in melanogenesis.
Collapse
Affiliation(s)
- Olga Lavinda
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Seth J Orlow
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Bowman SL, Le L, Zhu Y, Harper DC, Sitaram A, Theos AC, Sviderskaya EV, Bennett DC, Raposo-Benedetti G, Owen DJ, Dennis MK, Marks MS. A BLOC-1-AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. J Cell Biol 2021; 220:212016. [PMID: 33886957 PMCID: PMC8077166 DOI: 10.1083/jcb.202005173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.
Collapse
Affiliation(s)
- Shanna L. Bowman
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Linfield University, McMinnville, OR
| | - Linh Le
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Yueyao Zhu
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anand Sitaram
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | | - Elena V. Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Dorothy C. Bennett
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Graça Raposo-Benedetti
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, Compartiments de Structure et de Membrane, Paris, France
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge, UK
| | - Megan K. Dennis
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Department of Biology, Marist College, Poughkeepsie, NY
| | - Michael S. Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA,Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA,Department of Physiology, University of Pennsylvania, Philadelphia, PA,Correspondence to Michael S. Marks:
| |
Collapse
|
8
|
Utzeri VJ, Ribani A, Schiavo G, Fontanesi L. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1877574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Valerio Joe Utzeri
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Current and emerging treatments for albinism. Surv Ophthalmol 2020; 66:362-377. [PMID: 33129801 DOI: 10.1016/j.survophthal.2020.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Albinism is a group of rare inherited disorders arising from impairment of melanin biosynthesis. The reduction of melanin synthesis leads to hypopigmentation of the skin and eyes. A wide range of ophthalmic manifestations arise from albinism, including reduction of visual acuity, nystagmus, strabismus, iris translucency, foveal hypoplasia, fundus hypopigmentation, and abnormal decussation of retinal ganglion cell axons at the optic chiasm. Currently, albinism is incurable, and treatment aims either surgically or pharmacologically to optimize vision and protect the skin; however, novel therapies that aim to directly address the molecular errors of albinism, such as l-dihydroxyphenylalanine and nitisinone, are being developed and have entered human trials though with limited success. Experimental gene-based strategies for editing the genetic errors in albinism have also met early success in animal models. The emergence of these new therapeutic modalities represents a new era in the management of albinism. We focus on the known genetic subtypes, clinical assessment, and existing and emerging therapeutic options for the nonsyndromic forms of albinism.
Collapse
|
10
|
Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, TYRP1, and SLC24A4. PLoS One 2020; 15:e0239131. [PMID: 32915910 PMCID: PMC7485777 DOI: 10.1371/journal.pone.0239131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
The genotype of a single SNP, rs12913832, is the primary predictor of blue and brown eye colours. The genotypes rs12913832:AA and rs12913832:GA are most often observed in individuals with brown eye colours, whereas rs12913832:GG is most often observed in individuals with blue eye colours. However, approximately 3% of Europeans with the rs12913832:GG genotype have brown eye colours. The purpose of the study presented here was to identify variants that explain brown eye colour formation in individuals with the rs12913832:GG genotype. Genes and regulatory regions surrounding SLC24A4, TYRP1, SLC24A5, IRF4, TYR, and SLC45A2, as well as the upstream region of OCA2 within the HERC2 gene were sequenced in a study comprising 40 individuals with the rs12913832:GG genotype. Of these, 24 individuals were considered to have blue eye colours and 16 individuals were considered to have brown eye colours. We identified 211 variants within the SLC24A4, TYRP1, IRF4, and TYR target regions associated with eye colour. Based on in silico analyses of predicted variant effects we recognized four variants, TYRP1 rs35866166:C, TYRP1 rs62538956:C, SLC24A4 rs1289469:C, and TYR rs1126809:G, to be the most promising candidates for explanation of brown eye colour in individuals with the rs12913832:GG genotype. Of the 16 individuals with brown eye colours, 14 individuals had four alleles, whereas the alleles were rare in the blue eyed individuals. rs35866166, rs62538956, and rs1289469 were for the first time found to be associated with pigmentary traits, whilst rs1126809 was previously found to be associated with pigmentary variation. To improve prediction of eye colours we suggest that future eye colour prediction models should include rs35866166, rs62538956, rs1289469, and rs1126809.
Collapse
|
11
|
Schidlowski L, Liebert F, Iankilevich PG, Rebellato PRO, Rocha RA, Almeida NAP, Jain A, Wu Y, Itan Y, Rosati R, Prando C. Non-syndromic Oculocutaneous Albinism: Novel Genetic Variants and Clinical Follow Up of a Brazilian Pediatric Cohort. Front Genet 2020; 11:397. [PMID: 32411182 PMCID: PMC7198815 DOI: 10.3389/fgene.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Oculocutaneous albinism (OCA) is a genetic disorder characterized by skin, hair, and eye hypopigmentation due to a reduction or absence of melanin. Clinical manifestations include vision problems and a high susceptibility to skin cancer. In its non-syndromic form, OCA is associated with six genes and one chromosomal region. Because OCA subtypes are not always clinically distinguishable, molecular analysis has become an important tool for classifying types of OCA, which facilitates genetic counseling and can guide the development of new therapies. We studied eight Brazilian individuals aged 1.5–18 years old with clinical diagnosis of OCA. Assessment of ophthalmologic characteristics showed results consistent with albinism, including reduced visual acuity, nystagmus, and loss of stereoscopic vision. We also observed the appearance of the strabismus and changes in static refraction over a 2-year period. Dermatologic evaluation showed that no participants had preneoplastic skin lesions, despite half of the participants reporting insufficient knowledge about skin care in albinism. Whole-exome and Sanger sequencing revealed eight different mutations: six in the TYR gene and two in the SLC45A2 gene, of which one was novel and two were described in a population study but were not previously associated with the OCA phenotype. We performed two ophthalmological evaluations, 2 years apart; and one dermatological evaluation. To the best of our knowledge, this is the first study to perform clinical follow-up and genetic analysis of a Brazilian cohort with albinism. Here, we report three new OCA causing mutations.
Collapse
Affiliation(s)
- Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Fernando Liebert
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | | | - Aayushee Jain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Hospital Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
12
|
A small gene sequencing panel realises a high diagnostic rate in patients with congenital nystagmus following basic phenotyping. Sci Rep 2019; 9:13229. [PMID: 31519934 PMCID: PMC6744446 DOI: 10.1038/s41598-019-49368-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022] Open
Abstract
Nystagmus is a disorder of uncontrolled eye movement and can occur as an isolated trait (idiopathic INS, IINS) or as part of multisystem disorders such as albinism, significant visual disorders or neurological disease. Eighty-one unrelated patients with nystagmus underwent routine ocular phenotyping using commonly available phenotyping methods and were grouped into four sub-cohorts according to the level of phenotyping information gained and their findings. DNA was extracted and sequenced using a broad utility next generation sequencing (NGS) gene panel. A clinical subpanel of genes for nystagmus/albinism was utilised and likely causal variants were prioritised according to methods currently employed by clinical diagnostic laboratories. We determine the likely underlying genetic cause for 43.2% of participants with similar yields regardless of prior phenotyping. This study demonstrates that a diagnostic workflow combining basic ocular phenotyping and a clinically available targeted NGS panel, can provide a high diagnostic yield for patients with infantile nystagmus, enabling access to disease specific management at a young age and reducing the need for multiple costly, often invasive tests. By describing diagnostic yield for groups of patients with incomplete phenotyping data, it also permits the subsequent design of ‘real-world’ diagnostic workflows and illustrates the changing role of genetic testing in modern diagnostic workflows for heterogeneous ophthalmic disorders.
Collapse
|
13
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
14
|
Comprehensive Review of the Genetics of Albinism. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2018. [DOI: 10.1177/0145482x1811200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction It is important to understand albinism, since it is a disorder associated with visual impairment, predisposition to malignant melanomas, and social stigma. The main objective of this article is to review the genetics and biologic mechanisms of the non-syndromic albinism subtypes and to describe associated clinical manifestations. We also discuss research on its treatments. Methods A review of the published literature on albinism subtypes was performed, spanning basic laboratory research, published case reports, and experiences of people with albinism. Results Clear progress has been made in comprehending the causes of albinism; research has shed light on the complexity of the disorder and has led to the molecular classification of subtypes. Discussion Despite the increase in knowledge with regards to albinism, gaps still exist. It is important to continue the pursuit of unraveling the mechanism of the disorder and to monitor the frequency of the subtypes worldwide in order to aid in the development of treatments. Furthermore, disseminating knowledge of albinism is crucial for future progress. Implications for practitioners Albinism is a disorder characterized by hypopigmentation of the hair, skin, and eyes, with accompanying ocular abnormalities that remain relatively stable throughout life. The disorder is defined by a spectrum of pigmentation where albinism is more evident among individuals of dark complexion than their lighter-pigmented peers. Patients with albinism require protection against sun exposure and special resources to address visual impairments. When albinism patients are diagnosed and properly accommodated, they generally report a positive quality of life.
Collapse
|
15
|
Solano F. On the Metal Cofactor in the Tyrosinase Family. Int J Mol Sci 2018; 19:ijms19020633. [PMID: 29473882 PMCID: PMC5855855 DOI: 10.3390/ijms19020633] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
The production of pigment in mammalian melanocytes requires the contribution of at least three melanogenic enzymes, tyrosinase and two other accessory enzymes called the tyrosinase-related proteins (Trp1 and Trp2), which regulate the type and amount of melanin. The last two proteins are paralogues to tyrosinase, and they appeared late in evolution by triplication of the tyrosinase gene. Tyrosinase is a copper-enzyme, and Trp2 is a zinc-enzyme. Trp1 has been more elusive, and the direct identification of its metal cofactor has never been achieved. However, due to its enzymatic activity and similarities with tyrosinase, it has been assumed as a copper-enzyme. Recently, recombinant human tyrosinase and Trp1 have been expressed in enough amounts to achieve for the first time their crystallization. Unexpectedly, it has been found that Trp1 contains a couple of Zn(II) at the active site. This review discusses data about the metal cofactor of tyrosinase and Trps. It points out differences in the studied models, and it proposes some possible points accounting for the apparent discrepancies currently appearing. Moreover, some proposals about the possible flexibility of the tyrosinase family to uptake copper or zinc are discussed.
Collapse
Affiliation(s)
- Francisco Solano
- Department Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
16
|
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chemistry 2017; 24:47-55. [PMID: 29052256 DOI: 10.1002/chem.201704410] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has hampered their study, and resulted in many contradictory findings regarding their physiological functions. In this review, we summarize recent advances on the structure and function of TYR and TYRPs by virtue of the crystal structure of human TYRP1, which is the first available structure of a mammalian melanogenic enzyme. This structure, combined with tyrosinase structures from other lower eukaryotes and mutagenesis studies of key active site residues, sheds light on the mechanism of TYR and TYRPs. Furthermore, a TYRP1-based homology model of TYR provides a high-quality platform to map and analyze albinism-related mutations, as well as the design of specific antimelanogenic compounds. Finally, we provide perspectives for future structure/function studies of TYR and TYRPs.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
17
|
Dolinska MB, Kus NJ, Farney SK, Wingfield PT, Brooks BP, Sergeev YV. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity. Pigment Cell Melanoma Res 2017; 30:41-52. [PMID: 27775880 DOI: 10.1111/pcmr.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole J Kus
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Katie Farney
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- National Institute of Artritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Fábos B, Farkas K, Tóth L, Sulák A, Tripolszki K, Tihanyi M, Németh R, Vas K, Csoma Z, Kemény L, Széll M, Nagy N. Delineating the genetic heterogeneity of OCA in Hungarian patients. Eur J Med Res 2017. [PMID: 28629449 PMCID: PMC5477306 DOI: 10.1186/s40001-017-0262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities characterized by variable hair, skin, and ocular hypopigmentation. Six known genes and a locus on human chromosome 4q24 have been implicated in the etiology of isolated OCA forms (OCA 1-7). METHODS The most frequent OCA types among Caucasians are OCA1, OCA2, and OCA4. We aimed to investigate genes responsible for the development of these OCA forms in Hungarian OCA patients (n = 13). Mutation screening and polymorphism analysis were performed by direct sequencing on TYR, OCA2, SLC45A2 genes. RESULTS Although the clinical features of the investigated Hungarian OCA patients were identical, the molecular genetic data suggested OCA1 subtype in eight cases and OCA4 subtype in two cases. The molecular diagnosis was not clearly identifiable in three cases. In four patients, two different heterozygous known pathogenic or predicted to be pathogenic mutations were present. Seven patients had only one pathogenic mutation, which was associated with non-pathogenic variants in six cases. In two patients no pathogenic mutation was identified. CONCLUSIONS Our results suggest that the concomitant screening of the non-pathogenic variants-which alone do not cause the development of OCA, but might have clinical significance in association with a pathogenic variant-is important. Our results also show significant variation in the disease spectrum compared to other populations. These data also confirm that the concomitant analysis of OCA genes is critical, providing new insights to the phenotypic diversity of OCA and expanding the mutation spectrum of OCA genes in Hungarian patients.
Collapse
Affiliation(s)
- Beáta Fábos
- Mór Kaposi Teaching Hospital of the Somogy County, Kaposvár, Hungary
| | - Katalin Farkas
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Lola Tóth
- Department of Medical Genetics, University of Szeged, 4 Somogyi Bela Street, 6720, Szeged, Hungary
| | - Adrienn Sulák
- Department of Medical Genetics, University of Szeged, 4 Somogyi Bela Street, 6720, Szeged, Hungary
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4 Somogyi Bela Street, 6720, Szeged, Hungary
| | - Mariann Tihanyi
- Genetic Laboratory, Hospital of Zala County, Zalaegerszeg, Hungary
| | - Réka Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Krisztina Vas
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zsanett Csoma
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, 4 Somogyi Bela Street, 6720, Szeged, Hungary
| | - Nikoletta Nagy
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary. .,Department of Medical Genetics, University of Szeged, 4 Somogyi Bela Street, 6720, Szeged, Hungary. .,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
19
|
Yoshizaki N, Hashizume R, Masaki H. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes. J Dermatol Sci 2017. [PMID: 28629701 DOI: 10.1016/j.jdermsci.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skin color is determined by melanin contents and its distribution. Melanin is synthesized in melanosomes of melanocytes, catalyzed by tyrosinase, melanogenic enzymes. Regarding the process of melanin synthesis, melanosomal pH is considered to play an important role, because it has been reported to differ between Caucasian and Black melanocytes. OBJECTIVE Although polymethoxyflavone (PMF) has many beneficial effects, it has not been reported which PMF suppresses melanogenesis. In this study, we identified the mechanism underlying the effect of PMF on melanogenesis METHODS: We determined the effects of a PMF mixture extracted from orange peels on melanogenesis, on tyrosinase expression, on the localization of tyrosinase and on the acidification of organelles, including melanosomes, in HM3KO human melanoma cells. RESULTS TREATMENT: with the PMF mixture elicited the suppression of melanogenesis, the degradation of tyrosinase in lysosomes and the mislocalization of tyrosinase associated with the acidification of intracellular organelles, including melanosomes. The neutralization of cell organelle pH by ammonium chloride restored melanogenesis and the correct localization of tyrosinase to melanosomes, which had been suppressed by the PMF mixture. CONCLUSION These results suggest that the PMF mixture suppresses the localization of tyrosinase to melanosomes and consequently inhibits melanogenesis due to the acidification of cell organelles, including melanosomes.
Collapse
Affiliation(s)
- Norihiro Yoshizaki
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Ron Hashizume
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura-machi, Hachioji-shi, Tokyo 192-0982, Japan
| |
Collapse
|
20
|
Thomas MG, Maconachie GDE, Sheth V, McLean RJ, Gottlob I. Development and clinical utility of a novel diagnostic nystagmus gene panel using targeted next-generation sequencing. Eur J Hum Genet 2017; 25:725-734. [PMID: 28378818 PMCID: PMC5477371 DOI: 10.1038/ejhg.2017.44] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
Infantile nystagmus (IN) is a genetically heterogeneous disorder arising from variants of genes expressed within the developing retina and brain. IN presents a diagnostic challenge and patients often undergo numerous investigations. We aimed to develop and assess the utility of a next-generation sequencing (NGS) panel to enhance the diagnosis of IN. We identified 336 genes associated with IN from the literature and OMIM. NimbleGen Human custom array was used to enrich the target genes and sequencing was performed using HiSeq2000. Using reference genome material (NA12878), we show the sensitivity (98.5%) and specificity (99.9%) of the panel. Fifteen patients with familial IN were sequenced using the panel. Two authors were masked to the clinical diagnosis. We identified variants in 12/15 patients in the following genes: FRMD7 (n=3), CACNA1F (n=2), TYR (n=5), CRYBA1 (n=1) and TYRP1 (n=1). In 9/12 patients, the clinical diagnosis was consistent with the genetic diagnosis. In 3/12 patients, the results from the genetic diagnoses (TYR, CRYBA1 and TYRP1 variants) enabled revision of clinical diagnoses. In 3/15 patients, we were unable to determine a genetic diagnosis. In one patient, copy number variation analysis revealed a FRMD7 deletion. This is the first study establishing the clinical utility of a diagnostic NGS panel for IN. We show that the panel has high sensitivity and specificity. The genetic information from the panel will lead to personalised diagnosis and management of IN and enable accurate genetic counselling. This will allow development of a new clinical care pathway for IN.
Collapse
Affiliation(s)
- Mervyn G Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Gail DE Maconachie
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Viral Sheth
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Rebecca J McLean
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Irene Gottlob
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Mondal M, Sengupta M, Ray K. Functional assessment of tyrosinase variants identified in individuals with albinism is essential for unequivocal determination of genotype-to-phenotype correlation. Br J Dermatol 2016; 175:1232-1242. [PMID: 27537549 DOI: 10.1111/bjd.14977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oculocutaneous albinism type 1 (OCA1), caused by pathogenic variations in the tyrosinase gene (TYR), is the most frequent and severe form of hypopigmentary disorder worldwide. While OCA1A manifests as a complete loss of melanin pigment, patients with OCA1B show residual pigmentation of the skin, hair and eyes. Limited experimental evidence suggests retention of TYR in the endoplasmic reticulum (ER) causes OCA1 pathogenesis. However, a comprehensive functional analysis of TYR missense variations and correlation with genotype is lacking. OBJECTIVES Functional characterization of nonsynonymous tyrosinase variants in patients with OCA1 reported in the Albinism Database, dbSNP and the published literature, and an attempt to correlate them with reported and predicted phenotypes. METHODS Thirty-four reported missense variants of TYR were subcloned by site-directed mutagenesis, and the dual-enzyme activities of the variant proteins were compared with the wild-type. The degree of ER retention was also checked for each of the variants through endoglycosidase H (Endo H) digestion followed by immunoprecipitation and densitometric analysis. RESULTS Functional studies revealed one reported OCA1A variation with nearly 100% enzyme activity, 10 OCA1B variants lacking any enzyme activity, eight nonsynonymous single-nucleotide polymorphisms (SNPs) with ~30-70% of enzyme activity, and three SNPs that completely lacked activity altogether. The Endo H assay corroborated these results. CONCLUSIONS Loss of enzyme activity of TYR variants was completely in agreement with ER retention across all variants examined. The results of the assay clearly established that determination of the biological activity of identified variants in patients with OCA is essential to correlate the identified suspect genotype with the obvious phenotype of the disease.
Collapse
Affiliation(s)
- M Mondal
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - M Sengupta
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - K Ray
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
22
|
Lai X, Soler-Lopez M, Wichers HJ, Dijkstra BW. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies. PLoS One 2016; 11:e0161697. [PMID: 27551823 PMCID: PMC4994950 DOI: 10.1371/journal.pone.0161697] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical Chemistry, University of Groningen, Groningen, The Netherlands
- ESRF-The European Synchrotron, Grenoble, France
| | | | - Harry J. Wichers
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Dennis MK, Mantegazza AR, Snir OL, Tenza D, Acosta-Ruiz A, Delevoye C, Zorger R, Sitaram A, de Jesus-Rojas W, Ravichandran K, Rux J, Sviderskaya EV, Bennett DC, Raposo G, Marks MS, Setty SRG. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. ACTA ACUST UNITED AC 2015; 209:563-77. [PMID: 26008744 PMCID: PMC4442807 DOI: 10.1083/jcb.201410026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Quantitative analyses of melanosome cargo localization and trafficking and of endosomal membrane dynamics in immortalized melanocytes from mouse Hermansky–Pudlak syndrome models show that BLOC-2 functions to specify the delivery of recycling endosomal cargo transport intermediates to maturing melanosomes. Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.
Collapse
Affiliation(s)
- Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Olivia L Snir
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Danièle Tenza
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Amanda Acosta-Ruiz
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Cédric Delevoye
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Richard Zorger
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Anand Sitaram
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Wilfredo de Jesus-Rojas
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Keerthana Ravichandran
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - John Rux
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 In Silico Molecular, LLC, Blue Bell, PA 19422
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Graça Raposo
- Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France Institut Curie, Centre de Recherche; Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 144; and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR144, Paris F-75248, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104
| | - Subba Rao Gangi Setty
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Penn Vision Research Center, University of Pennsylvania, Philadelphia, PA 19104 Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
24
|
GUAN CUIPING, XU WEN, HONG WEISONG, ZHOU MIAONI, LIN FUQUAN, FU LIFANG, LIU DONGYIN, XU AIE. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol Med Rep 2015; 11:4285-90. [DOI: 10.3892/mmr.2015.3242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
|
25
|
Urtatiz O, Sanabria D, Lattig MC. Oculocutaneous albinism (OCA) in Colombia: First molecular screening of the TYR and OCA2 genes in South America. J Dermatol Sci 2014; 76:260-2. [DOI: 10.1016/j.jdermsci.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
|
26
|
Ghodsinejad Kalahroudi V, Kamalidehghan B, Arasteh Kani A, Aryani O, Tondar M, Ahmadipour F, Chung LY, Houshmand M. Two novel tyrosinase (TYR) gene mutations with pathogenic impact on oculocutaneous albinism type 1 (OCA1). PLoS One 2014; 9:e106656. [PMID: 25216246 PMCID: PMC4162572 DOI: 10.1371/journal.pone.0106656] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR) gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.
Collapse
Affiliation(s)
- Vadieh Ghodsinejad Kalahroudi
- Department of Biology, Kharazmi University, Tehran, Iran
- Department of Medical Genetics, Special Medical Center, Tehran, Iran
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Omid Aryani
- Department of Medical Genetics, Special Medical Center, Tehran, Iran
| | - Mahdi Tondar
- Department of Medical Genetics, Special Medical Center, Tehran, Iran
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Fatemeh Ahmadipour
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Massoud Houshmand
- Department of Medical Genetics, Special Medical Center, Tehran, Iran
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| |
Collapse
|
27
|
Jagirdar K, Smit DJ, Ainger SA, Lee KJ, Brown DL, Chapman B, Zhen Zhao Z, Montgomery GW, Martin NG, Stow JL, Duffy DL, Sturm RA. Molecular analysis of common polymorphisms within the human Tyrosinase locus and genetic association with pigmentation traits. Pigment Cell Melanoma Res 2014; 27:552-64. [PMID: 24739399 DOI: 10.1111/pcmr.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/13/2023]
Abstract
We have compared the melanogenic activities of cultured melanocytes carrying two common TYR alleles as homozygous 192S-402R wild-type, heterozygous and homozygous variant. This includes assays of TYR protein, DOPAoxidase activity, glycosylation and temperature sensitivity of protein and DOPAoxidase levels. Homozygous wild-type strains on average had higher levels of TYR protein and enzyme activity than other genotypes. Homozygous 402Q/Q melanocytes produced significantly less TYR protein, displayed altered trafficking and glycosylation, with reduced DOPAoxidase. However, near wild-type TYR activity levels could be recovered at lower growth temperature. In a sample population from Southeast Queensland, these two polymorphisms were present on four TYR haplotypes, designated as WT 192S-402R, 192Y-402R and 192S-402Q with a double-variant 192Y-402Q of low frequency at 1.9%. Based on cell culture findings and haplotype associations, we have used an additive model to assess the penetrance of the ten possible TYR genotypes derived from the combination of these haplotypes.
Collapse
Affiliation(s)
- Kasturee Jagirdar
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rooryck C, Morice F, Lacombe D, Taieb A, Arveiler B. Genetic basis of oculocutaneous albinism. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Sutherland JE, Day MA. Advantages and disadvantages of molecular testing in ophthalmology. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Dolinska MB, Kovaleva E, Backlund P, Wingfield PT, Brooks BP, Sergeev YV. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One 2014; 9:e84494. [PMID: 24392141 PMCID: PMC3879332 DOI: 10.1371/journal.pone.0084494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.
Collapse
Affiliation(s)
- Monika B. Dolinska
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Elena Kovaleva
- Chesapeake PERL, Savage, Maryland, United States of America
| | - Peter Backlund
- Eunice Kennedy Shriver National Institute Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Paul T. Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States of America
| | - Brian P. Brooks
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| | - Yuri V. Sergeev
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| |
Collapse
|
31
|
Reduced glutathione disrupts the intracellular trafficking of tyrosinase and tyrosinase-related protein-1 but not dopachrome tautomerase and Pmel17 to melanosomes, which results in the attenuation of melanization. Arch Dermatol Res 2013; 306:37-49. [PMID: 23764898 DOI: 10.1007/s00403-013-1376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023]
Abstract
We previously reported that treatment of B16 melanotic melanoma cells with reduced glutathione (GSH) converts them to amelanotic cells without any significant down-regulation of tyrosinase activity. To characterize the cellular mechanism(s) involved, we determined the intracellular distribution of melanocyte-specific proteins, especially in melanin synthesis-specific organelles, termed melanosomes by subcellular fractionation followed by Western blotting and confocal laser microscopy (CFLM). In the melanosome-rich large granule fraction and in highly purified melanosome fractions, while GSH-induced amelanotic B16 cells have significantly diminished levels of protein/activity of tyrosinase and tyrosinase-related protein-1 compared with control melanized B16 cells, there was substantially no difference in the distribution and levels of dopachrome tautomerase and the processed isoform of Pmel17 (HMB45) between control melanized and GSH-induced amelanotic B16 cells. Analysis of merged images obtained by CFLM revealed that whereas tyrosinase, Pmel17 and dopachrome tautomerase colocalize with each other in the control melanized B16 cells, tyrosinase does not colocalize with Pmel17 or its processed isoform and with dopachrome tautomerase in GSH-induced amelanotic B16 cells. The sum of these findings suggests that reduced glutathione selectively disrupts the intracellular trafficking of tyrosinase and tyrosinase-related protein-1 but not dopachrome tautomerase and Pmel17 to melanosomes, which results in the attenuation of melanization, probably serving as a putative model for oculocutaneous albinism type 4.
Collapse
|
32
|
Simeonov DR, Wang X, Wang C, Sergeev Y, Dolinska M, Bower M, Fischer R, Winer D, Dubrovsky G, Balog JZ, Huizing M, Hart R, Zein WM, Gahl WA, Brooks BP, Adams DR. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat 2013; 34:827-35. [PMID: 23504663 DOI: 10.1002/humu.22315] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
Oculocutaneous albinism (OCA) is a rare genetic disorder of melanin synthesis that results in hypopigmented hair, skin, and eyes. There are four types of OCA caused by mutations in TYR (OCA-1), OCA2 (OCA-2), TYRP1 (OCA-3), or SLC45A2 (OCA-4). Here we report 22 novel mutations in the OCA genes; 14 from a cohort of 61 patients seen as part of the NIH OCA Natural History Study and eight from a prior study at the University of Minnesota. We also include a comprehensive list of almost 600 previously reported OCA mutations along with ethnicity information, carrier frequencies, and in silico pathogenicity predictions as a supplement. In addition to discussing the clinical and molecular features of OCA, we address the cases of apparent missing heritability. In our cohort, 26% of patients did not have two mutations in a single OCA gene. We demonstrate the utility of multiple detection methods to reveal mutations missed by Sanger sequencing. Finally, we review the TYR p.R402Q temperature-sensitive variant and confirm its association with cases of albinism with only one identifiable TYR mutation.
Collapse
Affiliation(s)
- Dimitre R Simeonov
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 2013; 26:470-86. [PMID: 23452376 DOI: 10.1111/pcmr.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Abstract
Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.
Collapse
Affiliation(s)
- Alexander C Theos
- Department of Pathology & Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ward KA, Lazovich D, Hordinsky MK. Germline melanoma susceptibility and prognostic genes: A review of the literature. J Am Acad Dermatol 2012; 67:1055-67. [PMID: 22583682 DOI: 10.1016/j.jaad.2012.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 02/26/2012] [Accepted: 02/29/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Katherine A Ward
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
35
|
Jaworek TJ, Kausar T, Bell SM, Tariq N, Maqsood MI, Sohail A, Ali M, Iqbal F, Rasool S, Riazuddin S, Shaikh RS, Ahmed ZM. Molecular genetic studies and delineation of the oculocutaneous albinism phenotype in the Pakistani population. Orphanet J Rare Dis 2012; 7:44. [PMID: 22734612 PMCID: PMC3537634 DOI: 10.1186/1750-1172-7-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/30/2012] [Indexed: 02/01/2023] Open
Abstract
Background Oculocutaneous albinism (OCA) is caused by a group of genetically heterogeneous inherited defects that result in the loss of pigmentation in the eyes, skin and hair. Mutations in the TYR, OCA2, TYRP1 and SLC45A2 genes have been shown to cause isolated OCA. No comprehensive analysis has been conducted to study the spectrum of OCA alleles prevailing in Pakistani albino populations. Methods We enrolled 40 large Pakistani families and screened them for OCA genes and a candidate gene, SLC24A5. Protein function effects were evaluated using in silico prediction algorithms and ex vivo studies in human melanocytes. The effects of splice-site mutations were determined using an exon-trapping assay. Results Screening of the TYR gene revealed four known (p.Arg299His, p.Pro406Leu, p.Gly419Arg, p.Arg278*) and three novel mutations (p.Pro21Leu, p.Cys35Arg, p.Tyr411His) in ten families. Ex vivo studies revealed the retention of an EGFP-tagged mutant (p.Pro21Leu, p.Cys35Arg or p.Tyr411His) tyrosinase in the endoplasmic reticulum (ER) at 37°C, but a significant fraction of p.Cys35Arg and p.Tyr411His left the ER in cells grown at a permissive temperature (31°C). Three novel (p.Asp486Tyr, p.Leu527Arg, c.1045-15 T > G) and two known mutations (p.Pro743Leu, p.Ala787Thr) of OCA2 were found in fourteen families. Exon-trapping assays with a construct containing a novel c.1045-15 T > G mutation revealed an error in splicing. No mutation in TYRP1, SLC45A2, and SLC24A5 was found in the remaining 16 families. Clinical evaluation of the families segregating either TYR or OCA2 mutations showed nystagmus, photophobia, and loss of pigmentation in the skin or hair follicles. Most of the affected individuals had grayish-blue colored eyes. Conclusions Our results show that ten and fourteen families harbored mutations in the TYR and OCA2 genes, respectively. Our findings, along with the results of previous studies, indicate that the p.Cys35Arg, p.Arg278* and p.Gly419Arg alleles of TYR and the p.Asp486Tyr and c.1045-15 T > G alleles of OCA2 are the most common causes of OCA in Pakistani families. To the best of our knowledge, this study represents the first documentation of OCA2 alleles in the Pakistani population. A significant proportion of our cohort did not have mutations in known OCA genes. Overall, our study contributes to the development of genetic testing protocols and genetic counseling for OCA in Pakistani families.
Collapse
Affiliation(s)
- Thomas J Jaworek
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models. Blood 2012; 120:404-14. [PMID: 22611153 DOI: 10.1182/blood-2011-11-389551] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.
Collapse
|
37
|
Watt B, Tenza D, Lemmon MA, Kerje S, Raposo G, Andersson L, Marks MS. Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic. PLoS Genet 2011; 7:e1002286. [PMID: 21949659 PMCID: PMC3174235 DOI: 10.1371/journal.pgen.1002286] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core--are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW-associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi-like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danièle Tenza
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR-144, Paris, France
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susanne Kerje
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR-144, Paris, France
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. EXPERT REVIEW OF DERMATOLOGY 2011; 6:97-108. [PMID: 21572549 PMCID: PMC3093193 DOI: 10.1586/edm.10.70] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanogenesis is the unique process of producing pigmented biopolymers that are sequestered within melanosomes, which provides color to the skin, hair and eyes of animals and, in the case of human skin, also protects the underlying tissues from UV damage. We review the current understanding of melanogenesis, focusing on factors important to the biochemistry of pigment synthesis, the biogenesis of melanosomes, signaling pathways and factors that regulate melanogenesis, intramelanosomal pH, transport and transfer of melanosomes, and pigmentary disorders related to the dysfunction of melanosome-related proteins. Although it has been known for some time that many of the factors that affect melanogenesis are derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves, a number of new factors that are involved in that regulation have recently been reported, such as factors that regulate melanosome pH and ion transport.
Collapse
Affiliation(s)
- Taisuke Kondo
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent J Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Lee WC, Kang D, Causevic E, Herdt AR, Eckman EA, Eckman CB. Molecular characterization of mutations that cause globoid cell leukodystrophy and pharmacological rescue using small molecule chemical chaperones. J Neurosci 2010; 30:5489-97. [PMID: 20410102 PMCID: PMC3278277 DOI: 10.1523/jneurosci.6383-09.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/16/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022] Open
Abstract
Globoid cell leukodystrophy (GLD) (Krabbe disease) is an autosomal recessive, degenerative, lysosomal storage disease caused by a severe loss of galactocerebrosidase (GALC) enzymatic activity. Of the >70 disease-causing mutations in the GALC gene, most are located outside of the catalytic domain of the enzyme. To determine how GALC mutations impair enzymatic activity, we investigated the impact of multiple disease-causing mutations on GALC processing, localization, and enzymatic activity. Studies in mammalian cells revealed dramatic decreases in GALC activity and a lack of appropriate protein processing into an N-terminal GALC fragment for each of the mutants examined. Consistent with this, we observed significantly less GALC localized to the lysosome and impairment in either the secretion or reuptake of mutant GALC. Notably, the D528N mutation was found to induce hyperglycosylation and protein misfolding. Reversal of these conditions resulted in an increase in proper processing and GALC activity, suggesting that glycosylation may play a critical role in the disease process in patients with this mutation. Recent studies have shown that enzyme inhibitors can sometimes "chaperone" misfolded polypeptides to their appropriate target organelle, bypassing the normal cellular quality control machinery and resulting in enhanced activity. To determine whether this may also work for GLD, we examined the effect of alpha-lobeline, an inhibitor of GALC, on D528N mutant cells. After treatment, GALC activity was significantly increased. This study suggests that mutations in GALC can cause GLD by impairing protein processing and/or folding and that pharmacological chaperones may be potential therapeutic agents for patients carrying certain mutations.
Collapse
Affiliation(s)
- Wing C. Lee
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and
| | - Dongcheul Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and
| | - Ena Causevic
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and
| | - Aimee R. Herdt
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and
| | | | - Christopher B. Eckman
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and
- Atlantic Neonatal Research Institute, MidAtlantic Neonatology Associates and Atlantic Health, Morristown, New Jersey 07962
| |
Collapse
|
40
|
Biesemeier A, Kreppel F, Kochanek S, Schraermeyer U. The classical pathway of melanogenesis is not essential for melanin synthesis in the adult retinal pigment epithelium. Cell Tissue Res 2010; 339:551-60. [PMID: 20140456 DOI: 10.1007/s00441-009-0920-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
Premelanosomes are presumed to be essential for melanogenesis in melanocytes and pre-natal retinal pigment epithelium (RPE) cells. We analysed melanin synthesis in adenoviral-transduced tyrosinase-gene-expressing amelanotic RPE (ARPE) 19 cells to determine whether premelanosome formation is needed for post-natal melanogenesis. The synthesis of melanogenic proteins and melanin granules was investigated by immunocytochemistry and light and electron microscopy. The occurrence of tyrosinase was analysed ultrastructurally by dihydroxyphenylalanine histochemistry. The viability of transduced cell cultures was examined via MTT assay. We found active tyrosinase in small granule-like vesicles throughout the cytoplasm and in the endoplasmic reticulum and nuclear membrane. Tyrosinase was also associated with multi-vesicular and multi-lamellar organelles. Typical premelanosomes, structural protein PMEL17, tyrosinase-related protein 1 and classic melanosomal stages I-IV were not detected. Instead, melanogenesis took place inside multi-vesicular and multi-lamellar bodies of unknown origin. Viability was not affected up to 10 days after transduction. We thus demonstrate a pathway of melanin formation lacking typical hallmarks of melanogenesis.
Collapse
Affiliation(s)
- Antje Biesemeier
- Department for Experimental Vitreoretinal Surgery, University Eye Hospital Tübingen, Germany.
| | | | | | | |
Collapse
|
41
|
Role of the ubiquitin proteasome system in regulating skin pigmentation. Int J Mol Sci 2009; 10:4428-4434. [PMID: 20057953 PMCID: PMC2790116 DOI: 10.3390/ijms10104428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 11/16/2022] Open
Abstract
Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS). Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER) is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.
Collapse
|
42
|
Truschel ST, Simoes S, Setty SRG, Harper DC, Tenza D, Thomas PC, Herman KE, Sackett SD, Cowan DC, Theos AC, Raposo G, Marks MS. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane. Traffic 2009; 10:1318-36. [PMID: 19624486 PMCID: PMC2747296 DOI: 10.1111/j.1600-0854.2009.00955.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.
Collapse
Affiliation(s)
- Steven T. Truschel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Sabrina Simoes
- Institut Curie, Centre de Recherche, Paris, F-75248, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris F-75248, France
| | - Subba Rao Gangi Setty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Dawn C. Harper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Danièle Tenza
- Institut Curie, Centre de Recherche, Paris, F-75248, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris F-75248, France
| | - Penelope C. Thomas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kathryn E. Herman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Sara D. Sackett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - David C. Cowan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Alexander C. Theos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, 20057
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris F-75248, France
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
43
|
Transglutaminase-1 and Bathing Suit Ichthyosis: Molecular Analysis of Gene/Environment Interactions. J Invest Dermatol 2009; 129:2068-71. [DOI: 10.1038/jid.2009.18] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Abstract
The genetic basis of melanoma is complex and has both inherited and acquired components. Different genomic approaches have been used to identify a number of inherited risk factors, which can be stratified by penetrance and prevalence. Rare high-penetrance factors are expressed in familial clustering of melanoma and include mutations in CDKN2A (encoding p16(INK4a) and p14(ARF)) and CDK4. These genes are involved in cell-cycle arrest and melanocyte senescence and are nearly invariably targeted by somatic mutations during melanoma progression. Low-penetrance factors are common in the general population and include single-nucleotide polymorphisms in or near MC1R, ASIP, TYR and TYRP1. These genes are major determinants of hair and skin pigmentation, but their role in melanoma development remains unclear. This review describes the efforts that have led to the current understanding of melanoma susceptibility as the result of complex gene-gene and gene-environment interactions. Despite the significant advances, the majority of familial cases remain unaccounted for.
Collapse
|
45
|
Sitaram A, Piccirillo R, Palmisano I, Harper DC, Dell'Angelica EC, Schiaffino MV, Marks MS. Localization to mature melanosomes by virtue of cytoplasmic dileucine motifs is required for human OCA2 function. Mol Biol Cell 2009; 20:1464-77. [PMID: 19116314 PMCID: PMC2649270 DOI: 10.1091/mbc.e08-07-0710] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/08/2008] [Accepted: 12/19/2008] [Indexed: 12/18/2022] Open
Abstract
Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.
Collapse
Affiliation(s)
- Anand Sitaram
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ilaria Palmisano
- DIBIT, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| | - Dawn C. Harper
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Esteban C. Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Michael S. Marks
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
Oetting WS, Pietsch J, Brott MJ, Savage S, Fryer JP, Summers CG, King RA. The R402Q tyrosinase variant does not cause autosomal recessive ocular albinism. Am J Med Genet A 2009; 149A:466-9. [DOI: 10.1002/ajmg.a.32654] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Molecular diagnosis of oculocutaneous albinism: new mutations in the OCA1-4 genes and practical aspects. Pigment Cell Melanoma Res 2008; 21:583-7. [DOI: 10.1111/j.1755-148x.2008.00496.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Ni-Komatsu L, Orlow SJ. Chemical genetic screening identifies tricyclic compounds that decrease cellular melanin content. J Invest Dermatol 2008; 128:1236-47. [PMID: 18007583 DOI: 10.1038/sj.jid.5701163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A screen of a library of 2,000 drugs and natural products in murine melanocytes identified 10 tricyclic antidepressants (TCAs) as compounds that potently decreased intracellular melanin content. The rank order of potency of these compounds for decreasing melanin content was different than their relative potencies as antidepressants. These compounds had no effect on either the level or the enzymatic activity of cellular tyrosinase (Tyr). Increased presence of both Tyr and melanin in the culture media was observed in treated melanocytes. Immunofluorescence localization revealed that these compounds decreased intracellular melanin content by disrupting the intracellular trafficking of Tyr gene family proteins. In treated melanocytes, Tyr, Tyr-related protein 1, and dopachrome tautomerase accumulated in enlarged granules distributed throughout the cytoplasm. Colocalization of Tyr with lysosome-associated membrane protein 1 was observed within many of these granules. Partial colocalization of Tyr with the Hermansky-Pudlak syndrome 1 gene product observed in control melanocytes was abolished by TCA treatment. Our results show that these compounds decreased intracellular melanin content by altering the trafficking of Tyr gene family proteins and inducing abnormal secretion of Tyr. Results from our screening have implications for the design of products for skin lightening and treatment of hyperpigmentation.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
49
|
Harper DC, Theos AC, Herman KE, Tenza D, Raposo G, Marks MS. Premelanosome amyloid-like fibrils are composed of only golgi-processed forms of Pmel17 that have been proteolytically processed in endosomes. J Biol Chem 2008; 283:2307-22. [PMID: 17991747 PMCID: PMC2430631 DOI: 10.1074/jbc.m708007200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin pigments are synthesized within specialized organelles called melanosomes and polymerize on intraluminal fibrils that form within melanosome precursors. The fibrils consist of proteolytic fragments derived from Pmel17, a pigment cell-specific integral membrane protein. The intracellular pathways by which Pmel17 accesses melanosome precursors and the identity of the Pmel17 derivatives within fibrillar melanosomes have been a matter of debate. We show here that antibodies that detect Pmel17 within fibrillar melanosomes recognize only the luminal products of proprotein convertase cleavage and not the remaining products linked to the transmembrane domain. Moreover, antibodies to the N and C termini detect only Pmel17 isoforms present in early biosynthetic compartments, which constitute a large fraction of detectable steady state Pmel17 in cell lysates because of slow early biosynthetic transport and rapid consumption by fibril formation. Using an antibody to a luminal epitope that is destroyed upon modification by O-linked oligosaccharides, we show that all post-endoplasmic reticulum Pmel17 isoforms are modified by Golgi-associated oligosaccharide transferases, and that only processed forms contribute to melanosome biogenesis. These data indicate that Pmel17 follows a single biosynthetic route from the endoplasmic reticulum through the Golgi complex and endosomes to melanosomes, and that only fragments encompassing previously described functional luminal determinants are present within the fibrils. These data have important implications for the site and mechanism of fibril formation.
Collapse
Affiliation(s)
- Dawn C. Harper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | - Alexander C. Theos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
- Department of Human Science, School of Nursing and Health Studies,Georgetown University, Washington, DC 20057, USA and
| | - Kathryn E. Herman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | - Danièle Tenza
- Section de Recherche, UMR-144 CNRS, Institut Curie, Paris cedex 75248, France Running head: Glycosylation and epitope mapping of Pmel17
| | - Graça Raposo
- Section de Recherche, UMR-144 CNRS, Institut Curie, Paris cedex 75248, France Running head: Glycosylation and epitope mapping of Pmel17
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| |
Collapse
|
50
|
Sánchez-Sánchez F, Martínez-Redondo F, Aroca-Aguilar JD, Coca-Prados M, Escribano J. Characterization of the Intracellular Proteolytic Cleavage of Myocilin and Identification of Calpain II as a Myocilin-processing Protease. J Biol Chem 2007; 282:27810-24. [PMID: 17650508 DOI: 10.1074/jbc.m609608200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.
Collapse
Affiliation(s)
- Francisco Sánchez-Sánchez
- Area de Genética, Facultad de Medicina/Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. de Almansa, no. 14, 02006 Albacete, Spain
| | | | | | | | | |
Collapse
|