1
|
Schmitz LM, Kreitli N, Obermaier L, Weber N, Rychlik M, Angenent LT. Power-to-vitamins: producing folate (vitamin B 9) from renewable electric power and CO 2 with a microbial protein system. Trends Biotechnol 2024; 42:1691-1714. [PMID: 39271416 DOI: 10.1016/j.tibtech.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 09/15/2024]
Abstract
We recently proposed a two-stage Power-to-Protein technology to produce microbial protein from renewable electric power and CO2. Two stages were operated in series: Clostridium ljungdahlii in Stage A to reduce CO2 with H2 into acetate, and Saccharomyces cerevisiae in Stage B to utilize O2 and produce microbial protein from acetate. Renewable energy can be used to power water electrolysis to produce H2 and O2. A drawback of Stage A was the need for continuous vitamin supplementation. In this study, by using the more robust thermophilic acetogen Thermoanaerobacter kivui instead of C. ljungdahlii, vitamin supplementation was no longer needed. Additionally, S. cerevisiae produced folate when grown with acetate as a sole carbon source, achieving a total folate concentration of 6.7 mg per 100 g biomass with an average biomass concentration of 3 g l-1. The developed Power-to-Vitamin system enables folate production from renewable power and CO2 with zero or negative net-carbon emissions.
Collapse
Affiliation(s)
- Lisa Marie Schmitz
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Nicolai Kreitli
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Lisa Obermaier
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Nadine Weber
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Michael Rychlik
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany; AG Angenent, Max Planck Institute for Biology, Max Planck Ring 5, D-72076 Tübingen, Germany; Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000Aarhus C, Denmark; The Novo Nordisk Foundation CO(2) Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, C, Denmark; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72074 Tübingen, Germany.
| |
Collapse
|
2
|
Owuocha LF, Mitchum MG, Beamer LJ. Structural insights into binding of polyglutamylated tetrahydrofolate by serine hydroxymethyltransferase 8 from soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1451839. [PMID: 39224855 PMCID: PMC11366715 DOI: 10.3389/fpls.2024.1451839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tetrahydrofolate and its derivatives participate in one-carbon transfer reactions in all organisms. The cellular form of tetrahydrofolate (THF) is modified by multiple glutamate residues and polyglutamylation plays a key role in organellar and cellular folate homeostasis. In addition, polyglutamylation of THF is known to increase the binding affinity to enzymes in the folate cycle, many of which can utilize polyglutamylated THF as a substrate. Here, we use X-ray crystallography to provide a high-resolution view of interactions between the enzyme serine hydroxymethyltransferase (SHMT), which provides one carbon precursors for the folate cycle, and a polyglutamylated form of THF. Our 1.7 Å crystal structure of soybean SHMT8 in complex with diglutamylated 5-formyl-THF reveals, for the first time, a structural rearrangement of a loop at the entrance to the folate binding site accompanied by the formation of novel specific interactions between the enzyme and the diglutamyl tail of the ligand. Biochemical assays show that additional glutamate moieties on the folate ligand increase both enzyme stability and binding affinity. Together these studies provide new information on SHMT structure and function and inform the design of anti-folate agents.
Collapse
Affiliation(s)
- Luckio F. Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Lesa J. Beamer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Mühlenhoff U, Weiler BD, Nadler F, Millar R, Kothe I, Freibert SA, Altegoer F, Bange G, Lill R. The iron-sulfur cluster assembly (ISC) protein Iba57 executes a tetrahydrofolate-independent function in mitochondrial [4Fe-4S] protein maturation. J Biol Chem 2022; 298:102465. [PMID: 36075292 PMCID: PMC9551070 DOI: 10.1016/j.jbc.2022.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/25/2022] Open
Abstract
Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes (MMDS), severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in S. cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side chain contacts to THF as defined in GcvT, and the THF binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany.
| | - Benjamin Dennis Weiler
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Franziska Nadler
- Present address: University Medical Center Göttingen, Department of Cellular Biochemistry Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert Millar
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Present address: Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Isabell Kothe
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Sven-Andreas Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Florian Altegoer
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Fachbereich Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Present address: Heinrich-Heine Universität Du¨sseldorf, Institut für Mikrobiologie, Universitätsstraße 1, 40225 Du¨sseldorf, Germany
| | - Gert Bange
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Fachbereich Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany.
| |
Collapse
|
4
|
Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Sci Rep 2021; 11:12795. [PMID: 34140538 PMCID: PMC8211816 DOI: 10.1038/s41598-021-91359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
The collection of known posttranslational modifications (PTMs) has expanded rapidly with the identification of various non-acetyl histone lysine acylations, such as crotonylation, succinylation and butyrylation, yet their regulation is still not fully understood. Through an unbiased chromatin immunoprecipitation (ChIP)-based approach called Epigenetics-IDentifier (Epi-ID), we aimed to identify regulators of crotonylation, succinylation and butyrylation in thousands of yeast mutants simultaneously. However, highly correlative results led us to further investigate the specificity of the pan-K-acyl antibodies used in our Epi-ID studies. This revealed cross-reactivity and lack of specificity of pan-K-acyl antibodies in various assays. Our findings suggest that the antibodies might recognize histone acetylation in vivo, in addition to histone acylation, due to the vast overabundance of acetylation compared to other acylation modifications in cells. Consequently, our Epi-ID screen mostly identified factors affecting histone acetylation, including known (e.g. GCN5, HDA1, and HDA2) and unanticipated (MET7, MTF1, CLB3, and RAD26) factors, expanding the repertoire of acetylation regulators. Antibody-independent follow-up experiments on the Gcn5-Ada2-Ada3 (ADA) complex revealed that, in addition to acetylation and crotonylation, ADA has the ability to butyrylate histones. Thus, our Epi-ID screens revealed limits of using pan-K-acyl antibodies in epigenetics research, expanded the repertoire of regulators of histone acetylation, and attributed butyrylation activity to the ADA complex.
Collapse
|
5
|
Dörnte B, Peng C, Fang Z, Kamran A, Yulvizar C, Kües U. Selection markers for transformation of the sequenced reference monokaryon Okayama 7/#130 and homokaryon AmutBmut of Coprinopsis cinerea. Fungal Biol Biotechnol 2020; 7:15. [PMID: 33062286 PMCID: PMC7552465 DOI: 10.1186/s40694-020-00105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two reference strains have been sequenced from the mushroom Coprinopsis cinerea, monokaryon Okayama 7/#130 (OK130) and the self-compatible homokaryon AmutBmut. An adenine-auxotrophy in OK130 (ade8-1) and a para-aminobenzoic acid (PABA)-auxotrophy in AmutBmut (pab1-1) offer selection markers for transformations. Of these two strains, homokaryon AmutBmut had been transformed before to PABA-prototrophy and with the bacterial hygromycin resistance marker hph, respectively. RESULTS Gene ade8 encodes a bifunctional enzyme with an N-terminal glycinamide ribonucleotide synthase (GARS) and a C-terminal aminoimidazole ribonucleotide synthase (AIRS) domain required for steps 2 and 5 in the de novo biosynthesis of purines, respectively. In OK130, a missense mutation in ade8-1 rendered residue N231 for ribose recognition by the A loop of the GARS domain into D231. The new ade8 + vector pCcAde8 complements the auxotrophy of OK130 in transformations. Transformation rates with pCcAde8 in single-vector and co-transformations with ade8 +-selection were similarly high, unlike for trp1 + plasmids which exhibit suicidal feedback-effects in single-vector transformations with complementation of tryptophan synthase defects. As various other plasmids, unselected pCcAde8 helped in co-transformations of trp1 strains with a trp1 +-selection vector to overcome suicidal effects by transferred trp1 +. Co-transformation rates of pCcAde8 in OK130 under adenine selection with nuclear integration of unselected DNA were as high as 80% of clones. Co-transformation rates of expressed genes reached 26-42% for various laccase genes and up to 67% with lcc9 silencing vectors. The bacterial gene hph can also be used as another, albeit less efficient, selection marker for OK130 transformants, but with similarly high co-transformation rates. We further show that the pab1-1 defect in AmutBmut is due to a missense mutation which changed the conserved PIKGT motif for chorismate binding in the C-terminal PabB domain to PIEGT in the mutated 4-amino-4-deoxychorismate synthase. CONCLUSIONS ade8-1 and pab1-1 auxotrophic defects in C. cinerea reference strains OK130 and AmutBmut for complementation in transformation are described. pCcAde8 is a new transformation vector useful for selection in single and co-transformations of the sequenced monokaryon OK130 which was transformed for the first time. The bacterial gene hph can also be used as an additional selection marker in OK130, making in combination with ade8 + successive rounds of transformation possible.
Collapse
Affiliation(s)
- Bastian Dörnte
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Can Peng
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Aysha Kamran
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Present Address: Institute for Microbiology and Genetics, University of Goettingen, 37077 Goettingen, Germany
| | - Cut Yulvizar
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
6
|
Dihydrofolate Reductase Is a Valid Target for Antifungal Development in the Human Pathogen Candida albicans. mSphere 2020; 5:5/3/e00374-20. [PMID: 32581079 PMCID: PMC7316490 DOI: 10.1128/msphere.00374-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The folate biosynthetic pathway is a promising and understudied source for novel antifungals. Even dihydrofolate reductase (DHFR), a well-characterized and historically important drug target, has not been conclusively validated as an antifungal target. Here, we demonstrate that repression of DHFR inhibits growth of Candida albicans, a major human fungal pathogen. Methotrexate, an antifolate, also inhibits growth but through pH-dependent activity. In addition, we show that C. albicans has a limited ability to take up or utilize exogenous folates as only the addition of high concentrations of folinic acid restored growth in the presence of methotrexate. Finally, we show that repression of DHFR in a mouse model of infection was sufficient to eliminate host mortality. Our work conclusively establishes DHFR as a valid antifungal target in C. albicans. While the folate biosynthetic pathway has provided a rich source of antibacterial, antiprotozoal, and anticancer therapies, it has not yet been exploited to develop uniquely antifungal agents. Although there have been attempts to develop fungal-specific inhibitors of dihydrofolate reductase (DHFR), the protein itself has not been unequivocally validated as essential for fungal growth or virulence. The purpose of this study was to establish dihydrofolate reductase as a valid antifungal target. Using a strain with doxycycline-repressible transcription of DFR1 (PTETO-DFR1 strain), we were able to demonstrate that Dfr1p is essential for growth in vitro. Furthermore, nutritional supplements of most forms of folate are not sufficient to restore growth when Dfr1p expression is suppressed or when its activity is directly inhibited by methotrexate, indicating that Candida albicans has a limited capacity to acquire or utilize exogenous sources of folate. Finally, the PTETO-DFR1 strain was rendered avirulent in a mouse model of disseminated candidiasis upon doxycycline treatment. Collectively, these results confirm the validity of targeting dihydrofolate reductase and, by inference, other enzymes in the folate biosynthetic pathway as a strategy to devise new and efficacious therapies to combat life-threatening invasive fungal infections. IMPORTANCE The folate biosynthetic pathway is a promising and understudied source for novel antifungals. Even dihydrofolate reductase (DHFR), a well-characterized and historically important drug target, has not been conclusively validated as an antifungal target. Here, we demonstrate that repression of DHFR inhibits growth of Candida albicans, a major human fungal pathogen. Methotrexate, an antifolate, also inhibits growth but through pH-dependent activity. In addition, we show that C. albicans has a limited ability to take up or utilize exogenous folates as only the addition of high concentrations of folinic acid restored growth in the presence of methotrexate. Finally, we show that repression of DHFR in a mouse model of infection was sufficient to eliminate host mortality. Our work conclusively establishes DHFR as a valid antifungal target in C. albicans.
Collapse
|
7
|
Schmidt TT, Sharma S, Reyes GX, Kolodziejczak A, Wagner T, Luke B, Hofer A, Chabes A, Hombauer H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res 2020; 48:264-277. [PMID: 31647103 PMCID: PMC7145683 DOI: 10.1093/nar/gkz1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Anna Kolodziejczak
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Tina Wagner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany.,Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
8
|
Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R, Jiménez A. Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Appl Microbiol Biotechnol 2018; 102:8613-8620. [PMID: 30073396 PMCID: PMC6153639 DOI: 10.1007/s00253-018-9266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023]
Abstract
Folates (vitamin B9) are essential micronutrients which function as cofactors in one-carbon transfer reactions involved in the synthesis of nucleotides and amino acids. Folate deficiency is associated with important diseases such as cancer, anemia, cardiovascular diseases, or neural tube defects. Epidemiological data show that folate deficiency is still highly prevalent in many populations. Hence, food fortification with synthetic folic acid (i.e., folic acid supplementation) has become mandatory in many developed countries. However, folate biofortification of staple crops and dairy products as well as folate bioproduction using metabolically engineered microorganisms are promising alternatives to folic acid supplementation. Here, we review the current strategies aimed at overproducing folates in microorganisms, in view to implement an economic feasible process for the biotechnological production of the vitamin.
Collapse
Affiliation(s)
- José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain.
| | - Cristina Serrano-Amatriain
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, London, UK
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007, Salamanca, Spain
| |
Collapse
|
9
|
Salcedo-Sora JE, Mc Auley MT. A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development. MOLECULAR BIOSYSTEMS 2016; 12:923-33. [PMID: 26794619 DOI: 10.1039/c5mb00801h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole.
Collapse
|
10
|
Can folic acid have a role in mitochondrial disorders? Drug Discov Today 2015; 20:1349-54. [PMID: 26183769 DOI: 10.1016/j.drudis.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022]
Abstract
Cellular folate metabolism is highly compartmentalized, with mitochondria folate transport and metabolism being distinct from the well-known cytosolic folate metabolism. There is evidence supporting the association between low folate status and mitochondrial DNA (mtDNA) instability, and cerebral folate deficiency is relatively frequent in mitochondrial disorders. Furthermore, folinic acid supplementation has been reported to be beneficial not only in some patients with mitochondrial disease, but also in patients with relatively common diseases where folate deficiency might be an important pathophysiological factor. In this review, we focus on the evidence that supports the potential involvement of impaired folate metabolism in the pathophysiology of mitochondrial disorders.
Collapse
|
11
|
Zambuzzi-Carvalho PF, Fernandes AG, Valadares MC, Tavares PDM, Nosanchuk JD, de Almeida Soares CM, Pereira M. Transcriptional profile of the human pathogenic fungus Paracoccidioides lutzii in response to sulfamethoxazole. Med Mycol 2015; 53:477-92. [DOI: 10.1093/mmy/myv011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
|
12
|
Functional characterization of the Pneumocystis jirovecii potential drug targets dhfs and abz2 involved in folate biosynthesis. Antimicrob Agents Chemother 2015; 59:2560-6. [PMID: 25691634 DOI: 10.1128/aac.05092-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 01/12/2023] Open
Abstract
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae.
Collapse
|
13
|
Srivastava AC, Chen F, Ray T, Pattathil S, Peña MJ, Avci U, Li H, Huhman DV, Backe J, Urbanowicz B, Miller JS, Bedair M, Wyman CE, Sumner LW, York WS, Hahn MG, Dixon RA, Blancaflor EB, Tang Y. Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:224. [PMID: 26697113 PMCID: PMC4687376 DOI: 10.1186/s13068-015-0403-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants. RESULTS Consistent with its role in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis. CONCLUSIONS Our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic defects in above ground biomass, selective down-regulation of individual components of C1 metabolism is an approach that should be explored further for the improvement of lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Avinash C. Srivastava
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Fang Chen
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Tui Ray
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Sivakumar Pattathil
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
| | - Maria J. Peña
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Utku Avci
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
| | - Hongjia Li
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507 USA
| | - David V. Huhman
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Jason Backe
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Breeanna Urbanowicz
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jeffrey S. Miller
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Mohamed Bedair
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Charles E. Wyman
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507 USA
| | - Lloyd W. Sumner
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - William S. York
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
| | - Michael G. Hahn
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
| | - Richard A. Dixon
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- />Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Elison B. Blancaflor
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Yuhong Tang
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
- />BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| |
Collapse
|
14
|
Rubinstein L, Ungar L, Harari Y, Babin V, Ben-Aroya S, Merenyi G, Marjavaara L, Chabes A, Kupiec M. Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups. Nucleic Acids Res 2014; 42:6314-25. [PMID: 24728996 PMCID: PMC4041441 DOI: 10.1093/nar/gku267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome-wide systematic screens in yeast have uncovered a large gene network (the telomere length maintenance network or TLM), encompassing more than 400 genes, which acts coordinatively to maintain telomere length. Identifying the genes was an important first stage; the next challenge is to decipher their mechanism of action and to organize then into functional groups or pathways. Here we present a new telomere-length measuring program, TelQuant, and a novel assay, telomere length kinetics assay, and use them to organize tlm mutants into functional classes. Our results show that a mutant defective for the relatively unknown MET7 gene has the same telomeric kinetics as mutants defective for the ribonucleotide reductase subunit Rnr1, in charge of the limiting step in dNTP synthesis, or for the Ku heterodimer, a well-established telomere complex. We confirm the epistatic relationship between the mutants and show that physical interactions exist between Rnr1 and Met7. We also show that Met7 and the Ku heterodimer affect dNTP formation, and play a role in non-homologous end joining. Thus, our telomere kinetics assay uncovers new functional groups, as well as complex genetic interactions between tlm mutants.
Collapse
Affiliation(s)
- Linda Rubinstein
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Vera Babin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Gabor Merenyi
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
15
|
Hébert A, Casaregola S, Beckerich JM. Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 2011; 11:366-78. [PMID: 21348937 DOI: 10.1111/j.1567-1364.2011.00725.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The evolution of the metabolism of sulfur compounds among yeast species was investigated. Differences between species were observed in the cysteine biosynthesis pathway. Most yeast species possess two pathways leading to cysteine production, the transsulfuration pathway and the O-acetyl-serine (OAS) pathway, with the exception of Saccharomyces cerevisiae and Candida glabrata, which only display the transsulfuration pathway, and Schizosaccharomyces pombe, which only have the OAS pathway. An examination of the components of the regulatory network in the different species shows that it is conserved in all the species analyzed, as its central component Met4p was shown to keep its functional domains and its partners were present. The analysis of the presence of genes involved in the catabolic pathway shows that it is evolutionarily conserved in the sulfur metabolism and leads us to propose a role for two gene families which appeared to be highly conserved. This survey has provided ways to understand the diversity of sulfur metabolism products among yeast species through the reconstruction of these pathways. This diversity could account for the difference in metabolic potentialities of the species with a biotechnological interest.
Collapse
Affiliation(s)
- Agnès Hébert
- INRA, UMR1319, Institut MICALIS, AgroParisTech, Thiverval-Grignon, France
| | | | | |
Collapse
|
16
|
Srivastava AC, Ramos-Parra PA, Bedair M, Robledo-Hernández AL, Tang Y, Sumner LW, Díaz de la Garza RI, Blancaflor EB. The folylpolyglutamate synthetase plastidial isoform is required for postembryonic root development in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1237-51. [PMID: 21233333 PMCID: PMC3046582 DOI: 10.1104/pp.110.168278] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis.
Collapse
|
17
|
Mehrshahi P, Gonzalez-Jorge S, Akhtar TA, Ward JL, Santoyo-Castelazo A, Marcus SE, Lara-Núñez A, Ravanel S, Hawkins ND, Beale MH, Barrett DA, Knox JP, Gregory JF, Hanson AD, Bennett MJ, Dellapenna D. Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:267-79. [PMID: 21070407 DOI: 10.1111/j.1365-313x.2010.04336.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.
Collapse
Affiliation(s)
- Payam Mehrshahi
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Akhtar TA, Orsomando G, Mehrshahi P, Lara-Núñez A, Bennett MJ, Gregory JF, Hanson AD. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:256-66. [PMID: 21070406 DOI: 10.1111/j.1365-313x.2010.04330.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most cellular folates carry a short poly-γ-glutamate tail, and this tail is believed to affect their efficacy and stability. The tail can be removed by γ-glutamyl hydrolase (GGH; EC 3.4.19.9), a vacuolar enzyme whose role in folate homeostasis remains unclear. In order to probe the function of GGH, we modulated its level of expression and subcellular location in Arabidopsis plants and tomato fruit. Three-fold overexpression of GGH in vacuoles caused extensive deglutamylation of folate polyglutamates and lowered the total folate content by approximately 40% in Arabidopsis and tomato. No such effects were seen when GGH was overexpressed to a similar extent in the cytosol. Ablation of either of the major Arabidopsis GGH genes (AtGGH1 and AtGGH2) alone did not significantly affect folate status. However, a combination of ablation of one gene plus RNA interference (RNAi)-mediated suppression of the other (which lowered total GGH activity by 99%) increased total folate content by 34%. The excess folate accumulated as polyglutamate derivatives in the vacuole. Taken together, these results suggest a model in which: (i) folates continuously enter the vacuole as polyglutamates, accumulate there, are hydrolyzed by GGH, and exit as monoglutamates; and (ii) GGH consequently has an important influence on polyglutamyl tail length and hence on folate stability and cellular folate content.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang P, Wang Q, Yang Y, Coward JK, Nzila A, Sims PF, Hyde JE. Characterisation of the bifunctional dihydrofolate synthase-folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition. Mol Biochem Parasitol 2010; 172:41-51. [PMID: 20350571 PMCID: PMC2877875 DOI: 10.1016/j.molbiopara.2010.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022]
Abstract
Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS–FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50 μM and 1.25 μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis–Menten equation, yielded apparent Km values of 0.88 μM for DHP, 22.8 μM for ATP and 5.97 μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent Km of 0.96 μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The Ki value of an aryl phosphinate analogue against DHFS was 0.14 μM and for an alkyl phosphinate against FPGS 0.091 μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS–FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum.
Collapse
Affiliation(s)
- Ping Wang
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Qi Wang
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yonghong Yang
- Department of Medicinal Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - James K. Coward
- Department of Medicinal Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Alexis Nzila
- KEMRI, Wellcome Trust Collaborative Research Programme, Kilifi 80108, Kenya
| | - Paul F.G. Sims
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - John E. Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Corresponding author at: University of Manchester, Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, 131 Princess St, Manchester M1 7DN, UK. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
20
|
Koren A, Soifer I, Barkai N. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res 2010; 20:781-90. [PMID: 20219942 DOI: 10.1101/gr.102764.109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe the DNA replication timing programs of 14 yeast mutants with an extended S phase identified by a novel genome-wide screen. These mutants are associated with the DNA replication machinery, cell-cycle control, and dNTP synthesis and affect different parts of S phase. In 13 of the mutants, origin activation time scales with the duration of S phase. A limited number of origins become inactive in these strains, with inactive origins characterized by small replicons and distributed throughout S phase. In sharp contrast, cells deleted of MRC1, a gene implicated in replication fork stabilization and in the replication checkpoint pathway, maintained wild-type firing times despite over twofold lengthening of S phase. Numerous dormant origins were activated in this mutant. Our data suggest that most perturbations that lengthen S phase affect the entire program of replication timing, rather than a specific subset of origins, maintaining the relative order of origin firing time and delaying firing with relative proportions. Mrc1 emerges as a regulator of this robustness of the replication program.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
21
|
Abstract
Studies of rare, inborn metabolic diseases establish that the phenotypes of some mutations in vitamin-dependent enzymes can be suppressed by supplementation of the cognate vitamin, which restores function of the defective enzyme. To determine whether polymorphisms exist that more subtly affect enzymes yet are augmentable in the same way, we sequenced the coding region of a prototypical vitamin-dependent enzyme, methylenetetrahydrofolate reductase (MTHFR), from 564 individuals of diverse ethnicities. All nonsynonymous changes were evaluated in functional in vivo assays in Saccharomyces cerevisiae to identify enzymatic defects and folate remediability of impaired alleles. We identified 14 nonsynonymous changes: 11 alleles with minor allele frequencies <1% and 3 common alleles (A222V, E429A, and R594Q). Four of 11 low-frequency alleles affected enzyme function, as did A222V. Of the five impaired alleles, four could be restored to normal functionality by elevating intracellular folate levels. All five impaired alleles mapped to the N-terminal catalytic domain of the enzyme, whereas changes in the C-terminal regulatory domain had little effect on activity. Impaired activity correlated with the phosphorylation state of MTHFR, with more severe mutations resulting in lower abundance of the phosphorylated protein. Significantly, diploid yeast heterozygous for mutant alleles were impaired for growth, particularly with lower folate supplementation. These results suggested that multiple less-frequent alleles, in aggregate, might significantly contribute to metabolic dysfunction. Furthermore, vitamin remediation of mutant enzymes may be a common phenomenon in certain domains of proteins.
Collapse
|
22
|
Sheng Y, Khanam N, Tsaksis Y, Shi XM, Lu QS, Bognar AL. Mutagenesis of folylpolyglutamate synthetase indicates that dihydropteroate and tetrahydrofolate bind to the same site. Biochemistry 2008; 47:2388-96. [PMID: 18232714 DOI: 10.1021/bi701670y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
23
|
Daniel J. Direct in vivo access to potential gene targets of the RPD3 histone deactylase using fitness-based interferential genetics. Yeast 2007; 24:575-87. [PMID: 17533620 DOI: 10.1002/yea.1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the fitness-based interferential genetics (FIG) approach in yeast, potential in vivo gene targets of the Rpd3 histone deacetylase were selected. In agreement with previous studies using different methods, three genes were found to be involved in the translational machinery (MRPL27, FHL1 and RDN1). Moreover, other selected genes are linked to cell-cycle control (CSE4, AMN1, VAC17 and GRR1). In addition to playing a crucial role in cell cycle progression to the S phase and participating in the G(2)-M transition, GRR1 has important functions related to nutrient import to the cell via the the derepression of hexose transporters and the induction of amino acid permeases. Consistent with this, FIG selection also retrieved: the PMA1 gene, encoding the plasma H(+)-membrane ATPase; FOL2 and FOL3, involved in folic acid biosynthesis; and UBR2, which indirectly downregulates the proteasome genes. Finally, the other selected genes, ISU1, involved in the biosynthesis of the iron-sulphur cluster in mitochondria, and the less well functionally defined BSC5 and YBR270c, may participate in the cell's antioxidant and stress defence. The genes emerging from this FIG selection thus appear to be part of the downstream molecular mechanisms of the TOR signalling pathway, accounting for its effects on cell proliferation and longevity. From our results on gene expression under conditions of RPD3 overexpression, and by comparison with the available pharmacogenomics studies, it is proposed that FIG could be an invaluable approach for contributing to our understanding of complex cell regulatory systems.
Collapse
Affiliation(s)
- Jacques Daniel
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DCJ, Cornell MJ, Petty J, Hakes L, Wardleworth L, Rash B, Brown M, Dunn WB, Broadhurst D, O'Donoghue K, Hester SS, Dunkley TPJ, Hart SR, Swainston N, Li P, Gaskell SJ, Paton NW, Lilley KS, Kell DB, Oliver SG. Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 2007; 6:4. [PMID: 17439666 PMCID: PMC2373899 DOI: 10.1186/jbiol54] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/20/2006] [Accepted: 02/07/2007] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. RESULTS Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. CONCLUSION This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.
Collapse
Affiliation(s)
- Juan I Castrillo
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leo A Zeef
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David C Hoyle
- Northwest Institute for Bio-Health Informatics (NIBHI), School of Medicine, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nianshu Zhang
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Andrew Hayes
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David CJ Gardner
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael J Cornell
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- School of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - June Petty
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Luke Hakes
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leanne Wardleworth
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Bharat Rash
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marie Brown
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - David Broadhurst
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Kerry O'Donoghue
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Svenja S Hester
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Tom PJ Dunkley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Sarah R Hart
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Neil Swainston
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Peter Li
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Simon J Gaskell
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Norman W Paton
- School of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Douglas B Kell
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Stephen G Oliver
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
25
|
Hauser PM, Macreadie IG. Isolation of the Pneumocystis carinii dihydrofolate synthase gene and functional complementation in Saccharomyces cerevisiae. FEMS Microbiol Lett 2006; 256:244-50. [PMID: 16499613 DOI: 10.1111/j.1574-6968.2006.00118.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Pneumocystis carinii gene encoding the enzyme dihydrofolate synthase (DHFS), which is involved in the essential biosynthesis of folates, was isolated from clones of the Pneumocystis genome project, and sequenced. The deduced P. carinii DHFS protein shares 38% and 35% identity with DHFS of Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. P. carinii DHFS expressed from a plasmid functionally complemented a S. cerevisiae mutant with no DHFS. Comparison of available DHFSs with highly similar folylpolyglutamate synthases allowed the identification of potential signatures responsible for the specificities of these two classes of enzymes. The results open the way to experimentally analyse the structure and function of P. carinii mono-functional enzyme DHFS, to investigate a possible role of DHFS in the resistance to antifolates of P. jirovecii, the species infecting specifically humans, and to develop a new class of antifolates.
Collapse
Affiliation(s)
- Philippe M Hauser
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
26
|
Salcedo E, Sims PFG, Hyde JE. A glycine-cleavage complex as part of the folate one-carbon metabolism of Plasmodium falciparum. Trends Parasitol 2005; 21:406-11. [PMID: 16039160 PMCID: PMC2719866 DOI: 10.1016/j.pt.2005.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 06/08/2005] [Accepted: 07/06/2005] [Indexed: 11/22/2022]
Abstract
The glycine-cleavage complex (GCV) and serine hydroxymethyltransferase represent the two systems of one-carbon transfer that are employed in the biosynthesis of active folate cofactors in eukaryotes. Although the understanding of this area of metabolism in Plasmodium falciparum is still at an early stage, we discuss evidence that genes and transcription products of the GCV are present and expressed in this parasite. The potential role of the GCV and its relevance to the life cycle and pathogenesis of the malaria erythrocytic stages are also considered. According to its expression profile, the GCV seems to be particularly active in gametocytes. The GCV enzyme dihydrolipoamide dehydrogenase has two isoforms encoded by two different genes. It has been demonstrated recently that both genes are functional, with one of them identified as being part of a pyruvate dehydrogenase complex that is present exclusively in the apicoplast of Plasmodium species. The other isoform probably forms part of the Plasmodium GCV. The GCV is the first enzyme complex involved in folate metabolism in this parasite that can be assumed, with a good degree of certainty, to be located in the mitochondria.
Collapse
Affiliation(s)
- Enrique Salcedo
- Centro de Investigaciones, Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, Colombia
| | | | | |
Collapse
|
27
|
Mathieu M, Debousker G, Vincent S, Viviani F, Bamas-Jacques N, Mikol V. Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy. J Biol Chem 2005; 280:18916-22. [PMID: 15705579 DOI: 10.1074/jbc.m413799200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.
Collapse
Affiliation(s)
- Magali Mathieu
- Department of Structural Biology, Aventis Pharma, 13 Quai J. Guesde, F-94403 Vitry/Seine, France.
| | | | | | | | | | | |
Collapse
|
28
|
Basset GJC, Ravanel S, Quinlivan EP, White R, Giovannoni JJ, Rébeillé F, Nichols BP, Shinozaki K, Seki M, Gregory JF, Hanson AD. Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:453-461. [PMID: 15500462 DOI: 10.1111/j.1365-313x.2004.02231.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, the last step in the synthesis of p-aminobenzoate (PABA) moiety of folate remains to be elucidated. In Escherichia coli, this step is catalyzed by the PabC protein, a beta-lyase that converts 4-amino-4-deoxychorismate (ADC)--the reaction product of the PabA and PabB enzymes--to PABA and pyruvate. So far, the only known plant enzyme involved in PABA synthesis is ADC synthase, which has fused domains homologous to E. coli PabA and PabB and is located in plastids. ADC synthase has no lyase activity, implying that plants have a separate ADC lyase. No such lyase is known in any eukaryote. Genomic and phylogenetic approaches identified Arabidopsis and tomato cDNAs encoding PabC homologs with putative chloroplast-targeting peptides. These cDNAs were shown to encode functional enzymes by complementation of an E. coli pabC mutant, and by demonstrating that the partially purified recombinant proteins convert ADC to PABA. Plant ADC lyase is active as dimer and is not feedback inhibited by physiologic concentrations of PABA, its glucose ester, or folates. The full-length Arabidopsis ADC lyase polypeptide was translocated into isolated pea chloroplasts and, when fused to green fluorescent protein, directed the passenger protein to Arabidopsis chloroplasts in transient expression experiments. These data indicate that ADC lyase, like ADC synthase, is present in plastids. As shown previously for the ADC synthase transcript, the level of ADC lyase mRNA in the pericarp of tomato fruit falls sharply as ripening advances, suggesting that the expression of these two enzymes is coregulated.
Collapse
Affiliation(s)
- Gilles J C Basset
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Güldener U, Koehler GJ, Haussmann C, Bacher A, Kricke J, Becher D, Hegemann JH. Characterization of the Saccharomyces cerevisiae Fol1 protein: starvation for C1 carrier induces pseudohyphal growth. Mol Biol Cell 2004; 15:3811-28. [PMID: 15169867 PMCID: PMC491839 DOI: 10.1091/mbc.e03-09-0680] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tetrahydrofolate (vitamin B9) and its folate derivatives are essential cofactors in one-carbon (C1) transfer reactions and absolutely required for the synthesis of a variety of different compounds including methionine and purines. Most plants, microbial eukaryotes, and prokaryotes synthesize folate de novo. We have characterized an important enzyme in this pathway, the Saccharomyces cerevisiae FOL1 gene. Expression of the budding yeast gene FOL1 in Escherichia coli identified the folate biosynthetic enzyme activities dihydroneopterin aldolase (DHNA), 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK), and dihydropteroate synthase (DHPS). All three enzyme activities were also detected in wild-type yeast strains, whereas fol1Delta deletion strains only showed background activities, thus demonstrating that Fol1p catalyzes three sequential steps of the tetrahydrofolate biosynthetic pathway and thus is the central enzyme of this pathway, which starting from GTP consists of seven enzymatic reactions in total. Fol1p is exclusively localized to mitochondria as shown by fluorescence microscopy and immune electronmicroscopy. FOL1 is an essential gene and the nongrowth phenotype of the fol1 deletion leads to a recessive auxotrophy for folinic acid (5'-formyltetrahydrofolate). Growth of the fol1Delta deletion strain on folinic acid-supplemented rich media induced a dimorphic switch with haploid invasive and filamentous pseudohyphal growth in the presence of glucose and ammonium, which are known suppressors of filamentous and invasive growth. The invasive growth phenotype induced by the depletion of C1 carrier is dependent on the transcription factor Ste12p and the flocullin/adhesin Flo11p, whereas the filamentation phenotype is independent of Ste12p, Tec1p, Phd1p, and Flo11p, suggesting other signaling pathways as well as other adhesion proteins.
Collapse
Affiliation(s)
- Ulrich Güldener
- Heinrich-Heine-Universität, Funktionelle Genomforschung der Mikroorganismen, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Onisha G Patel
- Royal Melbourne Institute of Technology University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
31
|
|
32
|
Quinlivan EP, Roje S, Basset G, Shachar-Hill Y, Gregory JF, Hanson AD. The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. J Biol Chem 2003; 278:20731-7. [PMID: 12668665 DOI: 10.1074/jbc.m302894200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants synthesize p-aminobenzoate (pABA) in chloroplasts and use it for folate synthesis in mitochondria. It has generally been supposed that pABA exists as the free acid in plant cells and that it moves between organelles in this form. Here we show that fruits and leaves of tomato and leaves of a diverse range of other plants have a high capacity to convert exogenously supplied pABA to its beta-D-glucopyranosyl ester (pABA-Glc), whereas yeast and Escherichia coli do not. High performance liquid chromatography analysis indicated that much of the endogenous pABA in fruit and leaf tissues is esterified and that the total pool of pABA (free plus esterified) varies greatly between tissues (from 0.2 to 11 nmol g-1 of fresh weight). UDP-glucose:pABA glucosyltransferase activity was readily detected in fruit and leaf extracts, and the reaction was found to be freely reversible. p-Aminobenzoic acid beta-D-glucopyranosyl ester esterase activity was also detected in extracts. Subcellular fractionation indicated that the glucosyltransferase and esterase activities are predominantly if not solely cytosolic. Taken together, these results show that reversible formation of pABA-Glc in the cytosol is interposed between pABA production in chloroplasts and pABA consumption in mitochondria. As pABA is a hydrophobic weak acid, its uncharged form is membrane-permeant, and its anion is consequently prone to distribute itself spontaneously among subcellular compartments according to their pH. Esterification of pABA may eliminate such errant behavior and provide a readily reclaimable storage form of pABA as well as a substrate for membrane transporters.
Collapse
Affiliation(s)
- Eoin P Quinlivan
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ishikawa T, Machida C, Yoshioka Y, Kitano H, Machida Y. The GLOBULAR ARREST1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:235-244. [PMID: 12535338 DOI: 10.1046/j.1365-313x.2003.01621.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a mutation in Arabidopsis that resulted in defective embryos, and we designated this mutation globular arrest1 (gla1). The predicted amino acid sequence encoded by the GLA1 gene is homologous to the amino acid sequences of folylpolyglutamate synthetase (FPGS) and dihydrofolate synthetase (DHFS), which participate in folate biosynthesis. The defect of gla1 in the formation of calli was rescued by the supplement of 5-formyl tetrahydrofolate. These results indicated that GLA1 is involved in the biosynthesis of tetrahydrofolate. The gla1 embryos developed normally in the early stage of development but did not undergo the transition to the heart stage. Thus, the function of the GLA1 gene in embryogenesis appears to be required after the globular stage. However, when the levels of GLA1 transcripts in transgenic plants were increased by introduction of several copies of a GLA1 transgene (GLA6.8), the gla1 embryos that grew on gla1/gla1 GLA6.8/- plants developed as far as the heart to bent-cotyledon stage. This result suggests that the GLA1 function is provided to embryos by maternal tissues until embryos reach the globular stage.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
34
|
Holmes WB, Appling DR. Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J Biol Chem 2002; 277:20205-13. [PMID: 11923304 DOI: 10.1074/jbc.m201242200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folate derivative 5-formyltetrahydrofolate (folinic acid; 5-CHO-THF) was discovered over 40 years ago, but its role in metabolism remains poorly understood. Only one enzyme is known that utilizes 5-CHO-THF as a substrate: 5,10-methenyltetrahydrofolate synthetase (MTHFS). A BLAST search of the yeast genome using the human MTHFS sequence revealed a 211-amino acid open reading frame (YER183c) with significant homology. The yeast enzyme was expressed in Escherichia coli, and the purified recombinant enzyme exhibited kinetics similar to previously purified MTHFS. No new phenotype was observed in strains disrupted at MTHFS or in strains additionally disrupted at the genes encoding one or both serine hydroxymethyltransferases (SHMT) or at the genes encoding one or both methylenetetrahydrofolate reductases. However, when the MTHFS gene was disrupted in a strain lacking the de novo folate biosynthesis pathway, folinic acid (5-CHO-THF) could no longer support the folate requirement. We have thus named the yeast gene encoding methenyltetrahydrofolate synthetase FAU1 (folinic acid utilization). Disruption of the FAU1 gene in a strain lacking both 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase isozymes (ADE16 and ADE17) resulted in a growth deficiency that was alleviated by methionine. Genetic analysis suggested that intracellular accumulation of the purine intermediate AICAR interferes with a step in methionine biosynthesis. Intracellular levels of 5-CHO-THF were determined in yeast disrupted at FAU1 and other genes encoding folate-dependent enzymes. In fau1 disruptants, 5-CHO-THF was elevated 4-fold over wild-type yeast. In yeast lacking MTHFS along with both AICAR transformylases, 5-CHO-THF was elevated 12-fold over wild type. 5-CHO-THF was undetectable in strains lacking SHMT activity, confirming SHMT as the in vivo source of 5-CHO-THF. Taken together, these results indicate that S. cerevisiae harbors a single, nonessential, MTHFS activity. Growth phenotypes of multiply disrupted strains are consistent with a regulatory role for 5-CHO-THF in one-carbon metabolism and additionally suggest a metabolic interaction between the purine and methionine pathways.
Collapse
Affiliation(s)
- William B Holmes
- Department of Chemistry and Biochemistry, the Institute for Cellular and Molecular Biology, and the Biochemical Institute, University of Texas, Austin 78712, USA
| | | |
Collapse
|
35
|
Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F. Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2001; 98:15360-5. [PMID: 11752472 PMCID: PMC65034 DOI: 10.1073/pnas.261585098] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrofolate coenzymes involved in one-carbon (C1) metabolism are polyglutamylated. In organisms that synthesize tetrahydrofolate de novo, dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) catalyze the attachment of glutamate residues to the folate molecule. In this study we isolated cDNAs coding a DHFS and three isoforms of FPGS from Arabidopsis thaliana. The function of each enzyme was demonstrated by complementation of yeast mutants deficient in DHFS or FPGS activity, and by measuring in vitro glutamate incorporation into dihydrofolate or tetrahydrofolate. DHFS is present exclusively in the mitochondria, making this compartment the sole site of synthesis of dihydrofolate in the plant cell. In contrast, FPGS is present as distinct isoforms in the mitochondria, the cytosol, and the chloroplast. Each isoform is encoded by a separate gene, a situation that is unique among eukaryotes. The compartmentation of FPGS isoforms is in agreement with the predominance of gamma-glutamyl-conjugated tetrahydrofolate derivatives and the presence of serine hydroxymethyltransferase and C1-tetrahydrofolate interconverting enzymes in the cytosol, the mitochondria, and the plastids. Thus, the combination of FPGS with these folate-mediated reactions can supply each compartment with the polyglutamylated folate coenzymes required for the reactions of C1 metabolism. Also, the multicompartmentation of FPGS in the plant cell suggests that the transported forms of folate are unconjugated.
Collapse
Affiliation(s)
- S Ravanel
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5019, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Université Joseph Fourier, 38054 Grenoble Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Salcedo E, Cortese JF, Plowe CV, Sims PF, Hyde JE. A bifunctional dihydrofolate synthetase--folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. Mol Biochem Parasitol 2001; 112:239-52. [PMID: 11223131 DOI: 10.1016/s0166-6851(00)00370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Folate metabolism in the human malaria parasite Plasmodium falciparum is an essential activity for cell growth and replication, and the target of an important class of therapeutic agents in widespread use. However, resistance to antifolate drugs is a major health problem in the developing world. To date, only two activities in this complex pathway have been targeted by antimalarials. To more fully understand the mechanisms of antifolate resistance and to identify promising targets for new chemotherapies, we have cloned genes encoding as yet uncharacterised enzymes in this pathway. By means of complementation experiments using 1-carbon metabolism mutants of both Escherichia coli and Saccharomyces cerevisiae, we demonstrate here that one of these parasite genes encodes both dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) activities, which catalyse the synthesis and polyglutamation of folate derivatives, respectively. The malaria parasite is the first known example of a eukaryote encoding both DHFS and FPGS activities in a single gene. DNA sequencing of this gene in antifolate-resistant strains of P. falciparum, as well as drug-inhibition assays performed on yeast and bacteria expressing PfDHFS--FPGS, indicate that current antifolate regimes do not target this enzyme. As PfDHFS--FPGS harbours two activities critical to folate metabolism, one of which has no human counterpart, this gene product offers a novel chemotherapeutic target with the potential to deliver a powerful blockage to parasite growth.
Collapse
Affiliation(s)
- E Salcedo
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK
| | | | | | | | | |
Collapse
|
37
|
Coenzymes of Oxidation—Reduction Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
|