1
|
Zheng K, Lu J, He X, Lan S, Zhai T, Cao S, Lin Y. Genome-Wide Identification and Expression Analysis of GATA Family Genes in Dimocarpus longan Lour. Int J Mol Sci 2024; 25:731. [PMID: 38255805 PMCID: PMC10815313 DOI: 10.3390/ijms25020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 μmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiayue Lu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinyu He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shuoxian Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
2
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
3
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Wei LJ, Cao X, Liu JJ, Kwak S, Jin YS, Wang W, Hua Q. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2. Appl Environ Microbiol 2021; 87:e0048121. [PMID: 34132586 PMCID: PMC8357297 DOI: 10.1128/aem.00481-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Ogbede JU, Giaever G, Nislow C. A genome-wide portrait of pervasive drug contaminants. Sci Rep 2021; 11:12487. [PMID: 34127714 PMCID: PMC8203678 DOI: 10.1038/s41598-021-91792-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Using a validated yeast chemogenomic platform, we characterized the genome-wide effects of several pharmaceutical contaminants, including three N-nitrosamines (NDMA, NDEA and NMBA), two related compounds (DMF and 4NQO) and several of their metabolites. A collection of 4800 non-essential homozygous diploid yeast deletion strains were screened in parallel and the strain abundance was quantified by barcode sequencing. These data were used to rank deletion strains representing genes required for resistance to the compounds to delineate affected cellular pathways and to visualize the global cellular effects of these toxins in an easy-to-use searchable database. Our analysis of the N-nitrosamine screens uncovered genes (via their corresponding homozygous deletion mutants) involved in several evolutionarily conserved pathways, including: arginine biosynthesis, mitochondrial genome integrity, vacuolar protein sorting and DNA damage repair. To investigate why NDMA, NDEA and DMF caused fitness defects in strains lacking genes of the arginine pathway, we tested several N-nitrosamine metabolites (methylamine, ethylamine and formamide), and found they also affected arginine pathway mutants. Notably, each of these metabolites has the potential to produce ammonium ions during their biotransformation. We directly tested the role of ammonium ions in N-nitrosamine toxicity by treatment with ammonium sulfate and we found that ammonium sulfate also caused a growth defect in arginine pathway deletion strains. Formaldehyde, a metabolite produced from NDMA, methylamine and formamide, and which is known to cross-link free amines, perturbed deletion strains involved in chromatin remodeling and DNA repair pathways. Finally, co-administration of N-nitrosamines with ascorbic or ferulic acid did not relieve N-nitrosamine toxicity. In conclusion, we used parallel deletion mutant analysis to characterize the genes and pathways affected by exposure to N-nitrosamines and related compounds, and provide the data in an accessible, queryable database.
Collapse
Affiliation(s)
- Joseph Uche Ogbede
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Guri Giaever
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada
| | - Corey Nislow
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada.
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Tate JJ, Rai R, De Virgilio C, Cooper TG. N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization. Genetics 2021; 217:iyab017. [PMID: 33857304 PMCID: PMC8049557 DOI: 10.1093/genetics/iyab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/24/2021] [Indexed: 12/31/2022] Open
Abstract
Gln3 activates Nitrogen Catabolite Repression, NCR-sensitive expression of the genes required for Saccharomyces cerevisiae to scavenge poor nitrogen sources from its environment. The global TorC1 kinase complex negatively regulates nuclear Gln3 localization, interacting with an α-helix in the C-terminal region of Gln3, Gln3656-666. In nitrogen replete conditions, Gln3 is sequestered in the cytoplasm, whereas when TorC1 is down-regulated, in nitrogen restrictive conditions, Gln3 migrates into the nucleus. In this work, we show that the C-terminal Gln3-Tor1 interaction site is required for wild type, rapamycin-elicited, Sit4-dependent nuclear Gln3 localization, but not for its dephosphorylation. In fact, truncated Gln31-384 can enter the nucleus in the absence of Sit4 in both repressive and derepressive growth conditions. However, Gln31-384 can only enter the nucleus if a newly discovered second positively-acting Gln3-Tor1 interaction site remains intact. Importantly, the N- and C-terminal Gln3-Tor1 interaction sites function both autonomously and collaboratively. The N-terminal Gln3-Tor1 interaction site, previously designated Gln3URS contains a predicted α-helix situated within an unstructured coiled-coil region. Eight of the thirteen serine/threonine residues in the Gln3URS are dephosphorylated 3-15-fold with three of them by 10-15-fold. Substituting phosphomimetic aspartate for serine/threonine residues in the Gln3 URS abolishes the N-terminal Gln3-Tor1 interaction, rapamycin-elicited nuclear Gln3 localization, and ½ of the derepressed levels of nuclear Gln3 localization. Cytoplasmic Gln3 sequestration in repressive conditions, however, remains intact. These findings further deconvolve the mechanisms that achieve nitrogen-responsive transcription factor regulation downstream of TorC1.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
8
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
9
|
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in Saccharomyces cerevisiae. Genetics 2017; 208:207-227. [PMID: 29113979 DOI: 10.1534/genetics.117.300457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 01/20/2023] Open
Abstract
Gln3 is responsible for Nitrogen Catabolite Repression-sensitive transcriptional activation in the yeast Saccharomyces cerevisiae In nitrogen-replete medium, Gln3 is cytoplasmic and NCR-sensitive transcription is repressed. In nitrogen-limiting medium, in cells treated with TorC1 inhibitor, rapamycin, or the glutamine synthetase inhibitor, methionine sulfoximine (Msx), Gln3 becomes highly nuclear and NCR-sensitive transcription derepressed. Previously, nuclear Gln3 localization was concluded to be mediated by a single nuclear localization sequence, NLS1. Here, we show that nuclear Gln3-Myc13 localization is significantly more complex than previously appreciated. We identify three Gln3 sequences, other than NLS1, that are highly required for nuclear Gln3-Myc13 localization. Two of these sequences exhibit characteristics of monopartite (K/R-Rich NLS) and bipartite (S/R NLS) NLSs, respectively. Mutations altering these sequences are partially epistatic to a ure2Δ. The third sequence, the Ure2 relief sequence, exhibits no predicted NLS homology and is only necessary when Ure2 is present. Substitution of the basic amino acid repeats in the Ure2 relief sequence or phosphomimetic aspartate substitutions for the serine residues between them abolishes nuclear Gln3-Myc13 localization in response to both limiting nitrogen and rapamycin treatment. In contrast, Gln3-Myc13 responses are normal in parallel serine-to-alanine substitution mutants. These observations suggest that Gln3 responses to specific nitrogen environments likely occur in multiple steps that can be genetically separated. At least one general step that is associated with the Ure2 relief sequence may be prerequisite for responses to the specific stimuli of growth in poor nitrogen sources and rapamycin inhibition of TorC1.
Collapse
|
10
|
Ferrareze PAG, Streit RSA, Santos PRD, Santos FMD, Almeida RMCD, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Transcriptional Analysis Allows Genome Reannotation and Reveals that Cryptococcus gattii VGII Undergoes Nutrient Restriction during Infection. Microorganisms 2017; 5:microorganisms5030049. [PMID: 28832534 PMCID: PMC5620640 DOI: 10.3390/microorganisms5030049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus gattii is a human and animal pathogen that infects healthy hosts and caused the Pacific Northwest outbreak of cryptococcosis. The inhalation of infectious propagules can lead to internalization of cryptococcal cells by alveolar macrophages, a niche in which C. gattii cells can survive and proliferate. Although the nutrient composition of macrophages is relatively unknown, the high induction of amino acid transporter genes inside the phagosome indicates a preference for amino acid uptake instead of synthesis. However, the presence of countable errors in the R265 genome annotation indicates significant inhibition of transcriptomic analysis in this hypervirulent strain. Thus, we analyzed RNA-Seq data from in vivo and in vitro cultures of C. gattii R265 to perform the reannotation of the genome. In addition, based on in vivo transcriptomic data, we identified highly expressed genes and pathways of amino acid metabolism that would enable C. gattii to survive and proliferate in vivo. Importantly, we identified high expression in three APC amino acid transporters as well as the GABA permease. The use of amino acids as carbon and nitrogen sources, releasing ammonium and generating carbohydrate metabolism intermediaries, also explains the high expression of components of several degradative pathways, since glucose starvation is an important host defense mechanism.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Rodrigo Silva Araujo Streit
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Patricia Ribeiro Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | | | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| |
Collapse
|
11
|
TORC1-Dependent Phosphorylation Targets in Fission Yeast. Biomolecules 2017; 7:biom7030050. [PMID: 28671615 PMCID: PMC5618231 DOI: 10.3390/biom7030050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Target of rapamycin (TOR) kinase controls cell metabolism and growth in response to environmental cues such as nutrients, growth factors, and stress. TOR kinase is widely conserved across eukaryotes. As in other organisms, the fission yeast Schizosaccharomyces pombe has two types of TOR complex, namely TOR complex 1 (TORC1) and TORC2. It is interesting that the two TOR complexes in S. pombe have opposite roles in sexual differentiation, which is induced by nutrient starvation. TORC1, which contains Tor2 as a catalytic subunit, promotes vegetative growth and represses sexual differentiation in nutrient-rich conditions, while TORC2 is required for the initiation of sexual differentiation. Multiple targets of TORC1 have been identified. Some of these, such as S6 kinase and an autophagy regulator Atg13, are known targets in other organisms. In addition, there is a novel group of TORC1 targets involved in the regulation of sexual differentiation. Here, we review recent findings on phosphorylation targets of TORC1 in S. pombe. Furthermore, we briefly report a novel S. pombe target of TORC1.
Collapse
|
12
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
13
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
14
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
15
|
Pomraning KR, Kim YM, Nicora CD, Chu RK, Bredeweg EL, Purvine SO, Hu D, Metz TO, Baker SE. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica. BMC Genomics 2016; 17:138. [PMID: 26911370 PMCID: PMC4766638 DOI: 10.1186/s12864-016-2471-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
Background Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. Results We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in β-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. Conclusions Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for β-oxidation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2471-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle R Pomraning
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Rosalie K Chu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Erin L Bredeweg
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Samuel O Purvine
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Dehong Hu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Scott E Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
16
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
17
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine. Genetics 2015; 201:989-1016. [PMID: 26333687 PMCID: PMC4649666 DOI: 10.1534/genetics.115.177725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Karthik Shanmuganatham
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
18
|
TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1. mBio 2015; 6:e00959. [PMID: 26152587 PMCID: PMC4488950 DOI: 10.1128/mbio.00959-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. TOR complex 1 (TORC1) is an evolutionary conserved protein complex that positively regulates growth and proliferation, while inhibiting starvation responses. In fission yeast, the activity of TORC1 is downregulated in response to nitrogen starvation, and cells reprogram their transcriptional profile and prepare for sexual development. We identify Gaf1, a GATA-like transcription factor that regulates transcription and sexual development in response to starvation, as a downstream target for TORC1 signaling. Under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Budding yeast TORC1 regulates GATA transcription factors via the phosphatase Sit4, a structural homologue of Ppe1. Thus, the TORC1-GATA transcription module appears to be conserved in evolution and may also be found in higher eukaryotes.
Collapse
|
19
|
Kupiec M, Weisman R. TOR links starvation responses to telomere length maintenance. Cell Cycle 2014; 11:2268-71. [DOI: 10.4161/cc.20401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
20
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Cooper TG. A domain in the transcription activator Gln3 specifically required for rapamycin responsiveness. J Biol Chem 2014; 289:18999-9018. [PMID: 24847055 DOI: 10.1074/jbc.m114.563668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitrogen-responsive control of Gln3 localization is implemented through TorC1-dependent (rapamycin-responsive) and TorC1-independent (nitrogen catabolite repression-sensitive and methionine sulfoximine (Msx)-responsive) regulatory pathways. We previously demonstrated amino acid substitutions in a putative Gln3 α-helix(656-666), which are required for a two-hybrid Gln3-Tor1 interaction, also abolished rapamycin responsiveness of Gln3 localization and partially abrogated cytoplasmic Gln3 sequestration in cells cultured under nitrogen-repressive conditions. Here, we demonstrate these three characteristics are not inextricably linked together. A second distinct Gln3 region (Gln3(510-589)) is specifically required for rapamycin responsiveness of Gln3 localization, but not for cytoplasmic Gln3 sequestration under repressive growth conditions or relocation to the nucleus following Msx addition. Aspartate or alanine substitution mutations throughout this region uniformly abolish rapamycin responsiveness. Contained within this region is a sequence with a predicted propensity to form an α-helix(583-591), one side of which consists of three hydrophobic amino acids flanked by serine residues. Substitution of aspartate for even one of these serines abolishes rapamycin responsiveness and increases rapamycin resistance without affecting either of the other two Gln3 localization responses. In contrast, alanine substitutions decrease rapamycin resistance. Together, these data suggest that targets in the C-terminal portion of Gln3 required for the Gln3-Tor1 interaction, cytoplasmic Gln3 sequestration, and Gln3 responsiveness to Msx addition and growth in poor nitrogen sources are distinct from those needed for rapamycin responsiveness.
Collapse
Affiliation(s)
- Rajendra Rai
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Jennifer J Tate
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Karthik Shanmuganatham
- the Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Terrance G Cooper
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
21
|
Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, Georis I. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Microbiologyopen 2014; 3:271-87. [PMID: 24644271 PMCID: PMC4082702 DOI: 10.1002/mbo3.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification.
Collapse
Affiliation(s)
- Mohammad Fayyadkazan
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, 1070, Brussels, Belgium; Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Harari Y, Romano GH, Ungar L, Kupiec M. Nature vs nurture: interplay between the genetic control of telomere length and environmental factors. Cell Cycle 2013; 12:3465-70. [PMID: 24091626 DOI: 10.4161/cc.26625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology; Tel Aviv University; Ramat Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:102485. [PMID: 23970946 PMCID: PMC3736409 DOI: 10.1155/2013/102485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022]
Abstract
During their development and aging on solid substrates, yeast giant colonies produce ammonia, which acts as a quorum sensing molecule. Ammonia production is connected with alkalization of the surrounding medium and with extensive reprogramming of cell metabolism. In addition, ammonia signaling is important for both horizontal (colony centre versus colony margin) and vertical (upper versus lower cell layers) colony differentiations. The centre of an aging differentiated giant colony is thus composed of two major cell subpopulations, the subpopulation of long-living, metabolically active and stress-resistant cells that form the upper layers of the colony and the subpopulation of stress-sensitive starving cells in the colony interior. Here, we show that microcolonies originating from one cell pass through similar developmental phases as giant colonies. Microcolony differentiation is linked to ammonia signaling, and cells similar to the upper and lower cells of aged giant colonies are formed even in relatively young microcolonies. A comparison of the properties of these cells revealed a number of features that are similar in microcolonies and giant colonies as well as a few that are only typical of chronologically aged giant colonies. These findings show that colony age per se is not crucial for colony differentiation.
Collapse
|
24
|
Rai R, Tate JJ, Nelson DR, Cooper TG. gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1. J Biol Chem 2012; 288:2789-804. [PMID: 23223232 DOI: 10.1074/jbc.m112.421826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GATA family transcription activator, Gln3 responds to the nitrogen requirements and environmental resources of the cell. When rapidly utilized, "good" nitrogen sources, e.g., glutamine, are plentiful, Gln3 is completely sequestered in the cytoplasm, and the transcription it mediates is minimal. In contrast, during nitrogen-limiting conditions, Gln3 quickly relocates to the nucleus and activates transcription of genes required to scavenge alternative, "poor" nitrogen sources, e.g., proline. This physiological response has been designated nitrogen catabolite repression (NCR). Because rapamycin treatment also elicits nuclear Gln3 localization, TorC1 has been thought to be responsible for NCR-sensitive Gln3 regulation. However, accumulating evidence now suggests that GATA factor regulation may occur by two separate pathways, one TorC1-dependent and the other NCR-sensitive. Therefore, the present experiments were initiated to identify Gln3 amino acid substitutions capable of dissecting the individual contributions of these pathways to overall Gln3 regulation. The rationale was that different regulatory pathways might be expected to operate through distinct Gln3 sensor residues. We found that C-terminal truncations or amino acid substitutions in a 17-amino acid Gln3 peptide with a predicted propensity to fold into an α-helix partially abolished the ability of the cell to sequester Gln3 in the cytoplasm of glutamine-grown cells and eliminated the rapamycin response of Gln3 localization, but did not adversely affect its response to limiting nitrogen. However, overall wild type control of intracellular Gln3 localization requires the contributions of both individual regulatory systems. We also found that Gln3 possesses at least one Tor1-interacting site in addition to the one previously reported.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
25
|
Feller A, Georis I, Tate JJ, Cooper TG, Dubois E. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. J Biol Chem 2012. [PMID: 23184930 DOI: 10.1074/jbc.m112.385054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway.
Collapse
Affiliation(s)
- Andre Feller
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
26
|
Lee IR, Lim JWC, Ormerod KL, Morrow CA, Fraser JA. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans. PLoS One 2012; 7:e32585. [PMID: 22470421 PMCID: PMC3314646 DOI: 10.1371/journal.pone.0032585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis.
Collapse
Affiliation(s)
- I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W. C. Lim
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kate L. Ormerod
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
27
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
28
|
Ungar L, Harari Y, Toren A, Kupiec M. Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 2011; 21:2115-20. [PMID: 22169538 DOI: 10.1016/j.cub.2011.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/25/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeric DNA is synthesized by telomerase, which is expressed only at the early stages of development [1, 2]. To become malignant, any cell has to be able to replenish telomeres [3]. Thus, understanding how telomere length is monitored has significant medical implications, especially in the fields of aging and cancer. In yeast, telomerase is constitutively active. A large network of genes participates in controlling telomere length [4-8]. Tor1 and Tor2 (targets of rapamycin [9]) are two similar kinases that regulate cell growth [10]. Both can be found as part of the TOR complex 1 (TORC1 [11]), which coordinates the response to nutrient starvation and is sensitive to rapamycin [12]. The rapamycin-insensitive TOR complex 2 (TORC2) contains only Tor2 and regulates actin cytoskeleton polarization [13]. Here we provide evidence for a role of TORC1 in telomere shortening upon starvation in yeast cells. The TORC1 signal is transduced by the Gln3/Gat1/Ure2 pathway, which controls the levels of the Ku heterodimer, a telomere regulator. We discuss the potential implications for the usage of rapamycin as a therapeutic agent against cancer and the effect that calorie restriction may have on telomere length.
Collapse
Affiliation(s)
- Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
29
|
Casey F, Krogan N, Shields DC, Cagney G. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs. BMC SYSTEMS BIOLOGY 2011; 5:133. [PMID: 21859460 PMCID: PMC3176491 DOI: 10.1186/1752-0509-5-133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/22/2011] [Indexed: 11/24/2022]
Abstract
Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.
Collapse
|
30
|
Georis I, Tate JJ, Cooper TG, Dubois E. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J Biol Chem 2011; 286:44897-912. [PMID: 22039046 DOI: 10.1074/jbc.m111.290577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | |
Collapse
|
31
|
Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 2011; 6:420. [PMID: 20959818 DOI: 10.1038/msb.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/27/2010] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.
Collapse
|
32
|
Tuite MF, Marchante R, Kushnirov V. Fungal prions: structure, function and propagation. Top Curr Chem (Cham) 2011; 305:257-98. [PMID: 21717344 DOI: 10.1007/128_2011_172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prions are not uniquely associated with rare fatal neurodegenerative diseases in the animal kingdom; prions are also found in fungi and in particular the yeast Saccharomyces cerevisiae. As with animal prions, fungal prions are proteins able to exist in one or more self-propagating alternative conformations, but show little primary sequence relationship with the mammalian prion protein PrP. Rather, fungal prions represent a relatively diverse collection of proteins that participate in key cellular processes such as transcription and translation. Upon switching to their prion form, these proteins can generate stable, sometimes beneficial, changes in the host cell phenotype. Much has already been learnt about prion structure, and propagation and de novo generation of the prion state through studies in yeast and these findings are reviewed here.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | | | |
Collapse
|
33
|
Georis I, Tate JJ, Feller A, Cooper TG, Dubois E. Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast. Mol Cell Biol 2011; 31:92-104. [PMID: 20974806 PMCID: PMC3019842 DOI: 10.1128/mcb.00482-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/03/2010] [Accepted: 10/17/2010] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a central Tor pathway phosphatase consisting of a catalytic subunit (Pph21 or Pph22), a scaffold subunit (Tpd3), and one of two regulatory subunits (Cdc55 or Rts1), has been repeatedly shown to play important roles in cytoplasmically localized signal transduction activities. In contrast, its involvement in intranuclear control of mRNA production has heretofore not been reported. Here, we demonstrate for the first time that binding of the nitrogen catabolite repression-responsive GATA transcription activators (Gln3 and Gat1) to the DAL5 promoter and DAL5 expression require Pph21/22-Tpd3-Cdc55/Rts1 in rapamycin-treated glutamine-grown cells. This conclusion is supported by the following observations. (i) Rapamycin-induced DAL5 expression along with Gln3 and Gat1 binding to the DAL5 promoter fails to occur in pph21Δ pph22Δ, tpd3Δ, and cdc55Δ rts1Δ mutants. (ii) The Pph21/22 requirement persists even when Gat1 and Gln3 are rendered constitutively nuclear, thus dissociating the intranuclear requirement of PP2A from its partial requirement for rapamycin-induced nuclear Gat1 localization. (iii) Pph21-Myc(13) (Ppp21 tagged at the C terminus with 13 copies of the Myc epitope) weakly associates with the DAL5 promoter in a Gat1-dependent manner, whereas a similar Pph22-Myc(13) association requires both Gln3 and Gat1. Finally, we demonstrate that a pph21Δ pph22Δ double mutant is epistatic to ure2Δ for nuclear Gat1 localization in untreated glutamine-grown cells, whereas for Gln3, just the opposite occurs: i.e., ure2Δ is epistatic to pph21Δ pph22Δ. This final observation adds additional support to our previous conclusion that the Gln3 and Gat1 GATA factor localizations are predominantly controlled by different regulatory pathways.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Jennifer J. Tate
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - André Feller
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Terrance G. Cooper
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Evelyne Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium, Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| |
Collapse
|
34
|
The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat Rev Mol Cell Biol 2010; 11:823-33. [PMID: 21081963 DOI: 10.1038/nrm3007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prions are unusual proteinaceous infectious agents that are typically associated with a class of fatal degenerative diseases of the mammalian brain. However, the discovery of fungal prions, which are not associated with disease, suggests that we must now consider the effect of these factors on basic cellular physiology in a different light. Fungal prions are epigenetic determinants that can alter a range of cellular processes, including metabolism and gene expression pathways, and these changes can lead to a range of prion-associated phenotypes. The mechanistic similarities between prion propagation in mammals and fungi suggest that prions are not a biological anomaly but instead could be a newly appreciated and perhaps ubiquitous regulatory mechanism.
Collapse
|
35
|
Tate JJ, Georis I, Dubois E, Cooper TG. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem 2010; 285:17880-95. [PMID: 20378536 PMCID: PMC2878551 DOI: 10.1074/jbc.m109.085712] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/09/2010] [Indexed: 12/21/2022] Open
Abstract
In yeast, rapamycin (Rap)-inhibited TorC1, and the phosphatases it regulates (Sit4 and PP2A) are components of a conserved pathway regulating the response of eukaryotic cells to nutrient availability. TorC1 and intracellular nitrogen levels regulate the localization of Gln3 and Gat1, the activators of nitrogen catabolite repression (NCR)-sensitive genes whose products are required to utilize poor nitrogen sources. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and NCR-sensitive transcription is repressed. During nitrogen limitation or Rap treatment, Gln3 and Gat1 are nuclear, and transcription is derepressed. We previously demonstrated that the Sit4 and Pph21/22-Tpd3-Cdc55/Rts1 requirements for nuclear Gln3 localization differ. We now show that Sit4 and Pph21/22-Tpd3-Cdc55/Rts1 requirements for NCR-sensitive and Rap-induced nuclear Gat1 localization markedly differ from those of Gln3. Our data suggest that Gln3 and Gat1 localizations are controlled by two different regulatory pathways. Gln3 localization predominantly responds to intracellular nitrogen levels, as reflected by its stronger NCR-sensitivity, weaker response to Rap treatment, and strong response to methionine sulfoximine (Msx, a glutamine synthetase inhibitor). In contrast, Gat1 localization predominantly responds to TorC1 regulation as reflected by its weaker NCR sensitivity, stronger response to Rap, and immunity to the effects of Msx. Nuclear Gln3 localization in proline-grown (nitrogen limited) cells exhibits no requirement for Pph21/22-Tpd3/Cdc55, whereas nuclear Gat1 localization under these conditions is absolutely dependent on Pph21/22-Tpd3/Cdc55. Furthermore, the extent to which Pph21/22-Tpd3-Cdc55 is required for the TorC1 pathway (Rap) to induce nuclear Gat1 localization is regulated in parallel with Pph21/22-Tpd3-Cdc55-dependent Gln3 dephosphorylation and NCR-sensitive transcription, being highest in limiting nitrogen and lowest when nitrogen is in excess.
Collapse
Affiliation(s)
- Jennifer J. Tate
- From the Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163 and
| | - Isabelle Georis
- the Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium
| | - Evelyne Dubois
- the Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium
| | - Terrance G. Cooper
- From the Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163 and
| |
Collapse
|
36
|
Wong KH, Hynes MJ, Todd RB, Davis MA. Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. MICROBIOLOGY-SGM 2009; 155:3868-3880. [PMID: 19628561 DOI: 10.1099/mic.0.031252-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Aspergillus nidulans transcription factor AreA is a key regulator of nitrogen metabolic gene expression. AreA contains a C-terminal GATA zinc finger DNA-binding domain and activates expression of genes necessary for nitrogen acquisition. Previous studies identified AreB as a potential negative regulator of nitrogen catabolism showing similarity with Penicillium chrysogenum NreB and Neurospora crassa ASD4. The areB gene encodes multiple products containing an N-terminal GATA zinc finger and a leucine zipper motif. We deleted the areB gene and now show that AreB negatively regulates AreA-dependent nitrogen catabolic gene expression under nitrogen-limiting or nitrogen-starvation conditions. AreB also acts pleiotropically, with functions in growth, conidial germination and asexual development, though not in sexual development. AreB overexpression results in severe growth inhibition, aberrant cell morphology and reduced AreA-dependent gene expression. Deletion of either the DNA-binding domain or the leucine zipper domain results in loss of both nitrogen and developmental phenotypes.
Collapse
Affiliation(s)
- Koon Ho Wong
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Michael J Hynes
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS 66506-5502 USA.,Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Meryl A Davis
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
37
|
The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol 2009; 29:3803-15. [PMID: 19380492 DOI: 10.1128/mcb.00399-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Saccharomyces cerevisiae cells are able to adapt their metabolism according to the quality of the nitrogen sources available in the environment. Nitrogen catabolite repression (NCR) restrains the yeast's capacity to use poor nitrogen sources when rich ones are available. NCR-sensitive expression is modulated by the synchronized action of four DNA-binding GATA factors. Although the first identified GATA factor, Gln3, was considered the major activator of NCR-sensitive gene expression, our work positions Gat1 as a key factor for the integrated control of NCR in yeast for the following reasons: (i) Gat1 appeared to be the limiting factor for NCR gene expression, (ii) GAT1 expression was regulated by the four GATA factors in response to nitrogen availability, (iii) the two negative GATA factors Dal80 and Gzf3 interfered with Gat1 binding to DNA, and (iv) Gln3 binding to some NCR promoters required Gat1. Our study also provides mechanistic insights into the mode of action of the two negative GATA factors. Gzf3 interfered with Gat1 by nuclear sequestration and by competition at its own promoter. Dal80-dependent repression of NCR-sensitive gene expression occurred at three possible levels: Dal80 represses GAT1 expression, it competes with Gat1 for binding, and it directly represses NCR gene transcription.
Collapse
|
38
|
Georis I, Feller A, Tate JJ, Cooper TG, Dubois E. Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 2009; 181:861-74. [PMID: 19104072 PMCID: PMC2651060 DOI: 10.1534/genetics.108.099051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
Nitrogen catabolite repression (NCR)-sensitive genes, whose expression is highly repressed when provided with excess nitrogen and derepressed when nitrogen is limited or cells are treated with rapamycin, are routinely used as reporters in mechanistic studies of the Tor signal transduction pathway in Saccharomyces cerevisiae. Two GATA factors, Gln3 and Gat1, are responsible for NCR-sensitive transcription, but recent evidence demonstrates that Tor pathway regulation of NCR-sensitive transcription bifurcates at the level of GATA factor localization. Gln3 requires Sit4 phosphatase for nuclear localization and NCR-sensitive transcription while Gat1 does not. In this article, we demonstrate that the extent to which Sit4 plays a role in NCR-sensitive transcription depends upon whether or not (i) Gzf3, a GATA repressor homologous to Dal80, is active in the genetic background assayed; (ii) Gat1 is able to activate transcription of the assayed gene in the absence of Gln3 in that genetic background; and (iii) the gene chosen as a reporter is able to be transcribed by Gln3 or Gat1 in the absence of the other GATA factor. Together, the data indicate that in the absence of these three pieces of information, overall NCR-sensitive gene transcription data are unreliable as Tor pathway readouts.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
39
|
Tate JJ, Georis I, Feller A, Dubois E, Cooper TG. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. J Biol Chem 2009; 284:2522-34. [PMID: 19015262 PMCID: PMC2629088 DOI: 10.1074/jbc.m806162200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/11/2008] [Indexed: 01/12/2023] Open
Abstract
Gln3, the major activator of nitrogen catabolite repression (NCR)-sensitive transcription, is often used as an assay of Tor pathway regulation in Saccharomyces cerevisiae. Gln3 is cytoplasmic in cells cultured with repressive nitrogen sources (Gln) and nuclear with derepressive ones (Pro) or after treating Gln-grown cells with the Tor inhibitor, rapamycin (Rap). In Raptreated or Pro-grown cells, Sit4 is posited to dephosphorylate Gln3, which then dissociates from a Gln3-Ure2 complex and enters the nucleus. However, in contrast with this view, Sit4-dependent Gln3 dephosphorylation is greater in Gln than Pro. Investigating this paradox, we show that PP2A (another Tor pathway phosphatase)-dependent Gln3 dephosphorylation is regulated oppositely to that of Sit4, being greatest in Pro- and least in Gln-grown cells. It thus parallels nuclear Gln3 localization and NCR-sensitive transcription. However, because PP2A is not required for nuclear Gln3 localization in Pro, PP2A-dependent Gln3 dephosphorylation and nuclear localization are likely parallel responses to derepressive nitrogen sources. In contrast, Rap-induced nuclear Gln3 localization absolutely requires all four PP2A components (Pph21/22, Tpd3, Cdc55, and Rts1). In pph21Delta22Delta, tpd3Delta, or cdc55Delta cells, however, Gln3 is dephosphorylated to the same level as in Rap-treated wild-type cells, indicating Rap-induced Gln3 dephosphorylation is insufficient to achieve nuclear localization. Finally, PP2A-dependent Gln3 dephosphorylation parallels conditions where Gln3 is mostly nuclear, while Sit4-dependent and Rap-induced dephosphorylation parallels those where Gln3 is mostly cytoplasmic, suggesting the effects of these phosphatases on Gln3 may occur in different cellular compartments.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
40
|
Tate JJ, Cooper TG. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 8:1223-35. [PMID: 19054131 DOI: 10.1111/j.1567-1364.2008.00441.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Indirect immunofluorescence (IF) microscopy is a frequently used method to determine intracellular protein localization. It is especially useful for low abundance proteins, for example the GATA-factors (Gln3, Gat1) which activate nitrogen catabolite repression (NCR)-sensitive transcription. Limiting nitrogen or treating cells with Tor pathway inhibitor, rapamycin, elicits nuclear GATA-factor localization and increased NCR-sensitive transcription, whereas excess nitrogen restricts these proteins to the cytoplasm and decreases transcription. The initial step of the IF procedure is formalin-fixation that quenches cellular activity and fixes protein locations via cross-linking. We find that under some conditions, formalin itself can influence GATA-factor localization. With low formalin (0.8% or 1.6%), Gat1-Myc(13) became more nuclear, and with higher concentrations (5.6%), it became more cytoplasmic. Gln3-Myc(13) localization, on the other hand, did not respond to low formalin, but became more cytoplasmic at the higher concentration. Interestingly, the high concentration of formalin had no demonstrable effect when the GATA factors were completely nuclear, i.e. after rapamycin (Gat1-Myc(13)) or Msx (Gln3-Myc(13)) treatment. These effects are most likely elicited by polyoxymethylene glycols, which significantly increase the osmolarity of the medium (0.5-2). We suggest that varying degrees of osmotic stress and transcription factor movement in response to it can occur after the beginning of fixation but before proteins become immobilized.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
41
|
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. EUKARYOTIC CELL 2008; 7:917-25. [PMID: 18441120 DOI: 10.1128/ec.00076-08] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Georis I, Tate JJ, Cooper TG, Dubois E. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem 2008; 283:8919-29. [PMID: 18245087 PMCID: PMC2276367 DOI: 10.1074/jbc.m708811200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/15/2008] [Indexed: 01/11/2023] Open
Abstract
The Tor1,2 protein kinases globally influence many cellular processes including nitrogen-responsive gene expression that correlates with intracellular localization of GATA transcription activators Gln3 and Gat1/Nil1. Gln3-Myc(13) and Gat1-Myc(13) are restricted to the cytoplasm of cells provided with good nitrogen sources, e.g. glutamine. Following the addition of the Tor1,2 inhibitor, rapamycin, both transcription factors relocate to the nucleus. Gln3-Myc(13) localization is highly dependent upon Ure2 and type 2A-related phosphatase, Sit4. Ure2 is required for Gln3 to be restricted to the cytoplasm of cells provided with good nitrogen sources, and Sit4 is required for its location to the nucleus following rapamycin treatment. The paucity of analogous information concerning Gat1 regulation prompted us to investigate the effects of deleting SIT4 and URE2 on Gat1-Myc(13) localization, DNA binding, and NCR-sensitive transcription. Our data demonstrate that Tor pathway control of NCR-responsive transcription bifurcates at the regulation of Gln3 and Gat1. Gat1-Myc(13) localization is not strongly influenced by deleting URE2, nor is its nuclear targeting following rapamycin treatment strongly dependent on Sit4. ChIP experiments demonstrated that Gat1-Myc(13) can bind to the DAL5 promoter in the absence of Gln3. Gln3-Myc(13), on the other hand, cannot bind to DAL5 in the absence of Gat1. We conclude that: (i) Tor pathway regulation of Gat1 differs markedly from that of Gln3, (ii) nuclear targeting of Gln3-Myc(13) is alone insufficient for its recruitment to the DAL5 promoter, and (iii) the Tor pathway continues to play an important regulatory role in NCR-sensitive transcription even after Gln3-Myc(13) is localized to the nucleus.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | |
Collapse
|
43
|
Tate JJ, Feller A, Dubois E, Cooper TG. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. J Biol Chem 2006; 281:37980-92. [PMID: 17015442 PMCID: PMC2266077 DOI: 10.1074/jbc.m606973200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tor1,2 control of type 2A-related phosphatase activities in Saccharomyces cerevisiae has been reported to be responsible for the regulation of Gln3 phosphorylation and intracellular localization in response to the nature of the nitrogen source available. According to the model, excess nitrogen stimulates Tor1,2 to phosphorylate Tip41 and/or Tap42. Tap42 then complexes with and inactivates Sit4 phosphatase, thereby preventing it from dephosphorylating Gln3. Phosphorylated Gln3 complexes with Ure2 and is sequestered in the cytoplasm. When Tor1,2 kinase activities are inhibited by limiting nitrogen, or rapamycin-treatment, Tap42 can no longer complex with Sit4. Active Sit4 dephosphorylates Gln3, which can then localize to the nucleus and activate transcription. The paucity of experimental data directly correlating active Sit4 and Pph3 with Gln3 regulation prompted us to assay Gln3-Myc(13) phosphorylation and intracellular localization in isogenic wild type, sit4, pph3, and sit4pph3 deletion strains. We found that Sit4 actively brought about Gln3-Myc(13) dephosphorylation in both good (glutamine or ammonia) and poor (proline) nitrogen sources. This Sit4 activity masked nitrogen source-dependent changes in Gln3-Myc(13) phosphorylation which were clearly visible when SIT4 was deleted. The extent of Sit4 requirement for Gln3 nuclear localization was both nitrogen source- and strain-dependent. In some strains, Sit4 was not even required for Gln3 nuclear localization in untreated or rapamycin-treated, proline-grown cells or Msx-treated, ammonia-grown cells.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Molecular Sciences, University of Tennessee, Memphis Tennessee 38163 U.S.A
| | - André Feller
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie ULB, B1070, Brussels, Belgium
| | - Evelyne Dubois
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie ULB, B1070, Brussels, Belgium
| | - Terrance G. Cooper
- Department of Molecular Sciences, University of Tennessee, Memphis Tennessee 38163 U.S.A
| |
Collapse
|
44
|
Kulkarni A, Buford TD, Rai R, Cooper TG. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:218-29. [PMID: 16487345 PMCID: PMC2266585 DOI: 10.1111/j.1567-1364.2006.00031.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gln3 and Gat1/Nil1 are GATA-family transcription factors responsible for transcription of nitrogen-catabolic genes in Saccharomyces cerevisiae. Intracellular Gln3 localization and Gln3-dependent transcription respond in parallel to the nutritional environment and inhibitors of Tor1/2 (rapamycin) and glutamine synthetase (L-methionine sulfoximine, MSX). However, detectable Gln3 phosphorylation, though influenced by nutrients and inhibitors, correlates neither with Gln3 localization nor nitrogen catabolite repression-sensitive transcription in a consistent way. To establish relationships between Gln3 and Gat1 regulation, we performed experiments parallel to those we previously reported for Gln3. Gat1 and Gln3 localization are similar during steady-state growth, being cytoplasmic and nuclear with good and poor nitrogen sources, respectively. Localization correlates with Gat1- and Gln3-mediated transcription. In contrast, three characteristics of Gat1 and Gln3 differ significantly: (i) the kinetics of their localization in response to nutritional transitions and rapamycin-treatment; (ii) their opposite responses to MSX-treatment, i.e. that cytoplasmic Gln3 becomes nuclear following MSX addition, whereas nuclear Gat1 becomes cytoplasmic; and (iii) their phosphorylation levels in the above situations. In instances where Gln3 phosphorylation can be straightforwardly demonstrated to change, Gat1 phosphorylation (in the same samples) appears invariant. The only exception was following carbon starvation, where Gat1, like Gln3, is hyperphosphorylated in a Snf1-dependent manner. However, neither carbon starvation nor MSX treatment elicits Snf1-independent Gat1 hyperphosphorylation, as observed for Gln3.
Collapse
Affiliation(s)
- Ajit Kulkarni
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
45
|
Rai R, Daugherty JR, Tate JJ, Buford TD, Cooper TG. Synergistic operation of four cis-acting elements mediate high level DAL5 transcription in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:29-41. [PMID: 15381120 PMCID: PMC4384465 DOI: 10.1016/j.femsyr.2004.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/06/2004] [Accepted: 06/07/2004] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae allantoate/ureidosuccinate permease gene (DAL5) is often used as a reporter in studies of the Tor1/2 protein kinases which are specifically inhibited by the clinically important immunosuppressant and anti-neoplastic drug, rapamycin. To date, only a single type of cis-acting element has been shown to be required for DAL5 expression, two copies of the GATAA-containing UAS(NTR) element that mediates nitrogen catabolite repression-sensitive transcription. UAS(NTR) is the binding site for the transcriptional activator, Gln3 whose intracellular localization responds to the nitrogen supply, accumulating in the nuclei of cells provided with poor nitrogen sources and in the cytoplasm when excess nitrogen is available. Recent data raised the possibility that DAL5 might also be regulated by the retrograde system responsible for control of early TCA cycle gene expression, prompting us to investigate the structure of the DAL5 promoter in more detail. Here, we show that clearly one (UAS(B)), and possibly two (UAS(A)), additional cis-acting elements are required for full DAL5 expression. One of these elements (UAS(B)) is in a region that is heavily protected from DNaseI digestion and functions in a highly synergistic manner with the two UAS(NTR) elements. Cis-acting elements UAS(NTR)-UAS(A) and UAS(NTR)-UAS(B) are situated on the same face of the DNA two and one turn apart, respectively. We also found that decreased DAL5 expression in glutamate-grown cells, a characteristic shared with retrograde regulation, likely derives from decreased nuclear Gln3 levels that occur under these growth conditions rather than direct retrograde system control.
Collapse
Affiliation(s)
| | | | | | | | - Terrance G. Cooper
- Corresponding author. Tel.: +1-901-448-6179; fax: +1-901-448-3244. (T.G. Cooper)
| |
Collapse
|
46
|
Saxena D, Kannan KB, Brandriss MC. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:552-9. [PMID: 12796300 PMCID: PMC161436 DOI: 10.1128/ec.2.3.552-559.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of Saccharomyces cerevisiae cells with the immunosuppressive drug rapamycin results in a variety of cellular changes in response to perceived nutrient deprivation. Among other effects, rapamycin treatment results in the nuclear localization of the global nitrogen activators Gln3p and Nil1p/Gat1p, which leads to expression of nitrogen assimilation genes. The proline utilization (Put) pathway genes were shown to be among the genes induced by rapamycin. Having previously shown that the Put pathway activator Put3p is differentially phosphorylated in response to the quality of the nitrogen source, we examined the phosphorylation status of Put3p after rapamycin treatment. Treatment with rapamycin resulted in the hyperphosphorylation of Put3p, which was independent of Gln3p, Nil1p, and Ure2p. The relative contributions of global nitrogen (Gln3p and Nil1p) and pathway-specific (Put3p) activators to rapamycin-induced expression of the target gene PUT1 were also examined. We found that Nil1p and Put3p, but not Gln3p, play major roles in rapamycin-induced PUT1 expression. Our findings show that perceived nitrogen deprivation triggered by rapamycin treatment and steady-state growth in nitrogen-derepressing conditions are associated with hyperphosphorylation of Put3p and increased PUT1 expression. Rapamycin treatment and nitrogen derepression may share some, but not all, regulatory elements, since Gln3p and Nil1p do not participate identically in both processes and are not required for hyperphosphorylation. A complex relationship exists among the global and pathway-specific regulators, depending on the nature and quality of the nitrogen source.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07101-1709, USA
| | | | | |
Collapse
|
47
|
Rai R, Tate JJ, Cooper TG. Ure2, a prion precursor with homology to glutathione S-transferase, protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. J Biol Chem 2003; 278:12826-33. [PMID: 12562760 PMCID: PMC4384689 DOI: 10.1074/jbc.m212186200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ure2, the protein that negatively regulates GATA factor (Gln3, Gat1)-mediated transcription in Saccharomyces cerevisiae, possesses prion-like characteristics. Identification of metabolic and environmental factors that influence prion formation as well as any activities that prions or prion precursors may possess are important to understanding them and developing treatment strategies for the diseases in which they participate. Ure2 exhibits primary sequence and three-dimensional homologies to known glutathione S-transferases. However, multiple attempts over nearly 2 decades to demonstrate Ure2-mediated S-transferase activity have been unsuccessful, leading to the possibility that Ure2 may well not participate in glutathionation reactions. Here we show that Ure2 is required for detoxification of glutathione S-transferase substrates and cellular oxidants. ure2 Delta mutants are hypersensitive to cadmium and nickel ions and hydrogen peroxide. They are only slightly hypersensitive to diamide, which is nitrogen source-dependent, and minimally if at all hypersensitive to 1-chloro-2,4-dinitrobenzene, the most commonly used substrate for glutathione S-transferase enzyme assays. Therefore, Ure2 shares not only structural homology with various glutathione S-transferases, but ure2 mutations possess the same phenotypes as mutations in known S. cerevisiae and Schizosaccharomyces pombe glutathione S-transferase genes. These findings are consistent with Ure2 serving as a glutathione S-transferase in S. cerevisiae.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6179; Fax: 901-448-8462;
| |
Collapse
|
48
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
49
|
Cooper TG. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 2002; 26:223-38. [PMID: 12165425 PMCID: PMC4384438 DOI: 10.1111/j.1574-6976.2002.tb00612.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Major advances have recently occurred in our understanding of GATA factor-mediated, nitrogen catabolite repression (NCR)-sensitive gene expression in Saccharomyces cerevisiae. Under nitrogen-rich conditions, the GATA family transcriptional activators, Gln3 and Gat1, form complexes with Ure2, and are localized to the cytoplasm, which decreases NCR-sensitive expression. Under nitrogen-limiting conditions, Gln3 and Gat1 are dephosphorylated, move from the cytoplasm to the nucleus, in wild-type but not rna1 and srp1 mutants, and increase expression of NCR-sensitive genes. 'Induction' of NCR-sensitive gene expression and dephosphorylation of Gln3 (and Ure2 in some laboratories) when cells are treated with rapamycin implicates the Tor1/2 signal transduction pathway in this regulation. Mks1 is posited to be a negative regulator of Ure2, positive regulator of retrograde gene expression and to be itself negatively regulated by Tap42. In addition to Tap42, phosphatases Sit4 and Pph3 are also argued by some to participate in the regulatory pathway. Although a treasure trove of information has recently become available, much remains unknown (and sometimes controversial) with respect to the precise biochemical functions and regulatory pathway connections of Tap42, Sit4, Pph3, Mks1 and Ure2, and how precisely Gln3 and Gat1 are prevented from entering the nucleus. The purpose of this review is to provide background information needed by students and investigators outside of the field to follow and evaluate the rapidly evolving literature in this exciting field.
Collapse
Affiliation(s)
- Terrance G Cooper
- Department of Molecular Sciences, University of Tennessee, 858 Madison Ave., Memphis, TN 38163, USA.
| |
Collapse
|
50
|
Abstract
Yeast cells can respond to growth on relatively poor nitrogen sources by increasing expression of the enzymes for the synthesis of glutamate and glutamine and by increasing the activities of permeases responsible for the uptake of amino acids for use as a source of nitrogen. These general responses to the quality of nitrogen source in the growth medium are collectively termed nitrogen regulation. In this review, we discuss the historical foundations of the study of nitrogen regulation as well as the current understanding of the regulatory networks that underlie nitrogen regulation. One focus of the review is the array of four GATA type transcription factors which are responsible for the regulation the expression of nitrogen-regulated genes. They are the activators Gln3p and Nil1p and their antagonists Nil2p and Dal80p. Our discussion includes consideration of the DNA elements which are the targets of the transcription factors and of the regulated translocation of Gln3p and Nil1p from the cytoplasm to the nucleus. A second focus of the review is the nitrogen regulation of the general amino acid permease, Gap1p, and the proline permease, Put4p, by ubiquitin mediated intracellular protein sorting in the secretory and endosomal pathways.
Collapse
Affiliation(s)
- Boris Magasanik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|