1
|
Cromie J, Cullen RP, Azevedo CF, Ferrão LFV, Enciso-Rodriguez F, Benevenuto J, Muñoz PR. Genomic prediction and association analyses for breeding parthenocarpic blueberries. HORTICULTURE RESEARCH 2025; 12:uhaf086. [PMID: 40352286 PMCID: PMC12064955 DOI: 10.1093/hr/uhaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/06/2025] [Indexed: 05/14/2025]
Abstract
Parthenocarpy is a desirable trait that enables fruit set in the absence of fertilization. While blueberries typically depend on pollination for optimal yield, certain genotypes can produce seedless fruits through facultative parthenocarpy, eliminating the need for pollination. However, the development of parthenocarpic cultivars has remained limited by the challenge of evaluating large breeding populations. Thus, establishing molecular breeding tools can greatly accelerate genetic gain for this trait. In the present study, we evaluated two blueberry breeding populations for parthenocarpic fruit set and performed genome-wide association studies (GWAS) to identify markers and candidate genes associated with parthenocarpy. We also compared the predictive ability (PA) of three molecular breeding approaches, including (i) genomic selection (GS); (ii) GS de novo GWAS (GSdnGWAS), which incorporates significant GWAS markers into the GS model as prior information; and (iii) in silico marker-assisted selection (MAS), where markers from GWAS were fitted as fixed effects with no additional marker information. GWAS analyses identified 55 marker-trait associations, revealing candidate genes related to phytohormones, cell cycle regulation, and seed development. Predictive analysis showed that GSdnGWAS consistently outperformed GS and MAS, with PAs ranging from 0.21 to 0.36 depending on the population of study and the specific markers utilized. MAS showed PAs comparable to GS in some cases, suggesting it could be a cost-effective alternative to genome-wide sequencing. Together, these findings demonstrate that molecular breeding techniques can be used to improve facultative parthenocarpy, offering new avenues to develop high-yielding blueberry varieties that are less reliant on pollination.
Collapse
Affiliation(s)
- Juliana Cromie
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| | - Ryan P Cullen
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| | - Camila Ferreira Azevedo
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
- Statistics Department, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luis Felipe V Ferrão
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| | - Felix Enciso-Rodriguez
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| | - Patricio R Muñoz
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, 2560 Hull Rd, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Omenge K, Viscardo OC, De Oliveira Cantao FR, Santi S, van Bel AJE, Musetti R. SEOR2 in Arabidopsis mediates Ca 2+ dependent defense against phytoplasmas and reduction of plant growth. Sci Rep 2025; 15:17829. [PMID: 40404713 PMCID: PMC12098911 DOI: 10.1038/s41598-025-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
The Arabidopsis seor1ko line, which expresses the protein AtSEOR2 free of its bond with AtSEOR1, exhibits a lower phytoplasma titre as compared to wild type plants. In search for mechanism(s) underlying potential SEOR2-mediated defense responses the transcriptome of healthy wild type and Atseor1ko plants was disclosed by RNA sequencing. Comparative transcriptome analysis revealed 1036 differentially expressed genes (DEGs, 893 up- and 143 down-regulated) between the Atseor1ko line and the wild type. Sequence annotation and classification of the up-regulated genes identified "plant-pathogen interaction" among the most enriched clusters. The "plant-pathogen interaction" cluster included genes encoding members of the protein kinase superfamily, actors in calcium/calmodulin signaling transduction and WRKY transcription factors. An interaction network analysis and a host-phytoplasma interaction map demonstrated that AtSEOR2 protein could interact with the calcium-binding proteins CAM2 and TCH3. The latter one also turned out to be an indirect target of the SAP54CY phytoplasma effector, which suggests a SEOR2-mediated role of TCH3 in balancing nutrient investments in plant defense and plant growth.
Collapse
Affiliation(s)
- Keziah Omenge
- Institute for Biosafety in Plant Biotechnology (SB), Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Ottone Carmelo Viscardo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
- CREA Centro di Ricerca per la Viticoltura e l'Enologia, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | | | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Aart Jan Eeuwe van Bel
- Institute of Phytopathology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
3
|
Mo F, Cui J, Li C, Zhang Y, Xue X, Cheng M, Lv R, Meng F, He X, Chen X, Wang A. Identification of the small auxin up-regulated RNA in tomato and investigation of SlSAUR50 as a positive regulator of tomato resistance to Botrytis cinerea. Int J Biol Macromol 2025; 306:141738. [PMID: 40049488 DOI: 10.1016/j.ijbiomac.2025.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
The indole-3-acetic acid (IAA) signaling pathway plays a critical role in plant growth, development, and stress responses. Botrytis cinerea is a major biotic stress factor affecting tomato production. However, the mechanism by which small auxin up-regulated RNA (SAUR) genes participate in the response of tomato plants to B. cinerea remains unclear. In this study, the high-quality tomato genome SL4.0 was used to conduct a comprehensive genome-wide identification of 114 SlSAUR genes. We performed an integrative analysis of phylogenetic relationships, gene structure, cis-acting elements, gene duplications, and stress- and hormone-responsive expression patterns. Among the SAUR genes, SlSAUR50 was identified as a promising candidate because of its significant response to both B. cinerea infection and IAA treatment. Subcellular localization analysis revealed that SlSAUR50 was ubiquitously localized in protoplasts. Functional characterization showed that SlSAUR50 knockout aggravated B. cinerea infection in tomato leaves, whereas its overexpression significantly mitigated infection. Further analysis demonstrated that SlSAUR50 enhanced resistance to B. cinerea by promoting reactive oxygen species scavenging. In summary, this study provides a comprehensive analysis of the SAUR gene family in tomato and offers a theoretical basis for understanding the roles of SlSAUR genes, particularly SlSAUR50, in tomato's defense against B. cinerea infection.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jia Cui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Changlu Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yu Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiaopeng Xue
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Fanyue Meng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xuhui He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| |
Collapse
|
4
|
Xu T, Wei H, Yang P, Zhou X, Ma D, Luo C, Chen Y, Zhang J. Genome-wide identification of CML gene family in Salix matsudana and functional verification of SmCML56 in tolerance to salts tress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109600. [PMID: 39922020 DOI: 10.1016/j.plaphy.2025.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Calmodulin-like protein (CML) mediates Ca2+ signaling in response to abiotic stress. It has been shown that manipulating this signaling can improve crop stress resistance. However, the CML family in Willow has not been comprehensively and deeply studied. In this study, 157 SmCML genes were identified on the whole genome of Salix matsudana using bioinformatics method. Phylogenetic analysis showed that CML homologs between S. matsudana and Arabidopsis thaliana shared close relationships. The identified SmCML genes were distributed on 41 chromosomes. Analysis of cis-acting elements indicated that SmCMLs play an important role in plant hormone signal transduction and environmental stress response. SmCML56 gene was successfully cloned from S. matsudana and overexpressed in A. thaliana was constructed by flower dip method, and overexpressed in willow was constructed by Agrobacterium rhizogenes K599 mediated genetic transformation of willow hairy roots. Phenotypic, physiological and biochemical analysis confirmed that overexpression of SmCML56 significantly increased the tolerance of plants to salt. At the same time, VIGS experiment showed that the tolerance of silenced plants to salt stress decreased. The results of this study increased the understanding and characterization of SmCML genes in willow and will be a rich resource for further studies to investigate SmCML protein function in various developmental processes of willow. It provided a reference for related calmodulin-like studies in other perennial species.
Collapse
Affiliation(s)
- Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
5
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
6
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
8
|
Liu S, Zheng Y, Zhao L, Gulam M, Ullah A, Xie G. CALMODULIN-LIKE16 and PIN-LIKES7a cooperatively regulate rice seedling primary root elongation under chilling. PLANT PHYSIOLOGY 2024; 195:1660-1680. [PMID: 38445796 DOI: 10.1093/plphys/kiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024]
Abstract
Low-temperature sensitivity at the germination stage is a challenge for direct seeding of rice in Asian countries. How Ca2+ and auxin (IAA) signaling regulate primary root growth under chilling remains unexplored. Here, we showed that OsCML16 interacted specifically with OsPILS7a to improve primary root elongation of early rice seedlings under chilling. OsCML16, a subgroup 6c member of the OsCML family, interacted with multiple cytosolic loop regions of OsPILS7a in a Ca2+-dependent manner. OsPILS7a localized to the endoplasmic reticulum membranes and functioned as an auxin efflux carrier in a yeast growth assay. Transgenics showed that presence of OsCML16 enhanced primary root elongation under chilling, whereas the ospils7a knockout mutant lines showed the opposite phenotype. Moreover, under chilling conditions, OsCML16 and OsPILS7a-mediated Ca2+ and IAA signaling and regulated the transcription of IAA signaling-associated genes (OsIAA11, OsIAA23, and OsARF16) and cell division marker genes (OsRAN1, OsRAN2, and OsLTG1) in primary roots. These results show that OsCML16 and OsPILS7a cooperatively regulate primary root elongation of early rice seedlings under chilling. These findings enhance our understanding of the crosstalk between Ca2+ and IAA signaling and reveal insights into the mechanisms underlying cold-stress response during rice germination.
Collapse
Affiliation(s)
- Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuying Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyan Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mihray Gulam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Barton S, Broad Z, Ortiz-Barrientos D, Donovan D, Lefevre J. Hypergraphs and centrality measures identifying key features in gene expression data. Math Biosci 2023; 366:109089. [PMID: 37914024 DOI: 10.1016/j.mbs.2023.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multidisciplinary approaches can significantly advance our understanding of complex systems. For instance, gene co-expression networks align prior knowledge of biological systems with studies in graph theory, emphasising pairwise gene to gene interactions. In this paper, we extend these ideas, promoting hypergraphs as an investigative tool for studying multi-way interactions in gene expression data. Additional freedoms are achieved by representing individual genes with hyperedges, and simultaneously testing each gene against many features/vertices. Further gene/hyperedge interactions can be captured and explored using the line graph representations, a technique that reduces the complexity of dense hypergraphs. Such an approach provides access to graph centrality measures, which identifies salient features within a data set. For instance dominant or hub-like hyperedges, leading to key knowledge on gene expression. The validity of this approach is established through the study of gene expression data for the plant species Senecio lautus and results will be interpreted within this biological setting.
Collapse
Affiliation(s)
- Samuel Barton
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| | - Zoe Broad
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Diane Donovan
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - James Lefevre
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
11
|
Pan XX, Liu HZ, Li Y, Zhou P, Wen Y, Lu CX, Zhu YY, Yang MZ. The Interactions between Two Fungal Endophytes Epicoccum layuense R2-21 and Alternaria alternata XHYN2 and Grapevines ( Vitis vinifera) with De Novo Established Symbionts under Aseptic Conditions. J Fungi (Basel) 2023; 9:1154. [PMID: 38132755 PMCID: PMC10744766 DOI: 10.3390/jof9121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we focused on grapevine-endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2) at three different time points (6 h, 6 d, 15 d) were analyzed. As expected, a total of 5748 and 5817 differentially expressed genes (DEGs) were separately initiated in Epi R2-21 and Alt XHYN2 symbiotic tissue cultured seedlings compared to no endophyte treatment. The up-regulated DEGs at all time points in Epi R2-21- or Alt XHYN2-treated seedlings were mainly enriched in the flavonoid biosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, and circadian rhythm-plant pathways. In addition, the up-regulated DEGs at all sampling times in Alt XHYN2-treated tissue cultured seedlings were enriched in the plant-pathogen interaction pathway, but appeared in Epi R2-21 symbiotic seedlings only after 15 d of treatment. The down-regulated DEGs were not enriched in any KEGG pathways after 6 h inoculation for Epi R2-21 and Alt XHYN2 treatments, but were enriched mainly in photosynthesis-antenna proteins and plant hormone signal transduction pathways at other sampling times. At three different time points, a total of 51 DEGs (all up-regulated, 1.33-10.41-fold) were involved in secondary metabolism, and 22 DEGs (all up-regulated, 1.01-8.40-fold) were involved in defense responses in endophytic fungi symbiotic tissue cultured seedlings. The protein-protein interaction (PPI) network demonstrated that genes encoding CHS (VIT_10s0042g00920, VIT_14s0068g00920, and VIT_16s0100g00910) and the VIT_11s0065g00350 gene encoding CYP73A mediated the defense responses, and might induce more defense-associated metabolites. These results illustrated the activation of stress-associated secondary metabolism in the host grapevine during the establishment of fungi-plant endophytism. This work provides avenues for reshaping the qualities and characteristics of wine grapes utilizing specific endophytes and better understanding plant-microbe interactions.
Collapse
Affiliation(s)
- Xiao-Xia Pan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Hui-Zhi Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Yu Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Ping Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Yun Wen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Chun-Xi Lu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - You-Yong Zhu
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Zhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| |
Collapse
|
12
|
Ma X, Dai S, Qin N, Zhu C, Qin J, Li J. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.). BMC PLANT BIOLOGY 2023; 23:31. [PMID: 36639742 PMCID: PMC9840322 DOI: 10.1186/s12870-023-04055-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Auxin performs important functions in plant growth and development processes, as well as abiotic stress. Small auxin-up RNA (SAUR) is the largest gene family of auxin-responsive factors. However, the knowledge of the SAUR gene family in foxtail millet is largely obscure. RESULTS In the current study, 72 SiSAUR genes were identified and renamed according to their chromosomal distribution in the foxtail millet genome. These SiSAUR genes were unevenly distributed on nine chromosomes and were classified into three groups through phylogenetic tree analysis. Most of the SiSAUR members from the same group showed similar gene structure and motif composition characteristics. Analysis of cis-acting elements showed that many hormone and stress response elements were identified in the promoter region of SiSAURs. Gene replication analysis revealed that many SiSAUR genes were derived from gene duplication events. We also found that the expression of 10 SiSAURs was induced by abiotic stress and exogenous hormones, which indicated that SiSAUR genes may participated in complex physiological processes. CONCLUSIONS Overall, these results will be valuable for further studies on the biological role of SAUR genes in foxtail development and response to stress conditions and may shed light on the improvement of the genetic breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaoqian Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China
| | - Shutao Dai
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Na Qin
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Cancan Zhu
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jiafan Qin
- Luoyang Academy of Agriculture and Forestry Sciences, Sweet Potato and Millet Institute, , Luoyang, 471023, Henan, People's Republic of China
| | - Junxia Li
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
13
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
14
|
Irineu LESDS, Soares CDP, Soares TS, de Almeida FA, Almeida-Silva F, Gazara RK, Meneses CHSG, Canellas LP, Silveira V, Venancio TM, Olivares FL. Multiomic Approaches Reveal Hormonal Modulation and Nitrogen Uptake and Assimilation in the Initial Growth of Maize Inoculated with Herbaspirillum seropedicae. PLANTS (BASEL, SWITZERLAND) 2022; 12:48. [PMID: 36616175 PMCID: PMC9824467 DOI: 10.3390/plants12010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. This work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of H. seropedicae inoculation in maize. To perform these studies, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained eight days after inoculation (d.a.i) showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize-inoculated seedlings and increased green content and development. Omics data analysis, before a positive biostimulation phenotype (5 d.a.i.) revealed that inoculation increases N-uptake and N-assimilation machinery through differentially expressed nitrate transporters and amino acid pathways, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamine pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants, leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal modulation coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon-nitrogen integrative pathways.
Collapse
Affiliation(s)
- Luiz Eduardo Souza da Silva Irineu
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | | | - Tatiane Sanches Soares
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Felipe Astolpho de Almeida
- Institute de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Fabrício Almeida-Silva
- VIB-UGent Center for Plant Systems Biology, Ghent University, UGENT, 9000 Ghent, Belgium
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Rajesh Kumar Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | | | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Fabio Lopes Olivares
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
16
|
The calcium signaling module CaM-IQM destabilizes IAA-ARF interaction to regulate callus and lateral root formation. Proc Natl Acad Sci U S A 2022; 119:e2202669119. [PMID: 35763576 PMCID: PMC9271181 DOI: 10.1073/pnas.2202669119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Induction of a pluripotent cell mass, called callus, from detached organs is an initial step in in vitro plant regeneration, during which phytohormone auxin-induced ectopic activation of a root developmental program has been shown to be required for subsequent de novo regeneration of shoots and roots. However, whether other signals are involved in governing callus formation, and thus plant regeneration capability, remains largely unclear. Here, we report that the Arabidopsis calcium (Ca2+) signaling module CALMODULIN IQ-MOTIF CONTAINING PROTEIN (CaM-IQM) interacts with auxin signaling to regulate callus and lateral root formation. We show that disruption of IQMs or CaMs retards auxin-induced callus and lateral root formation by dampening auxin responsiveness, and that CaM-IQM complexes physically interact with the auxin signaling repressors INDOLE-3-ACETIC ACID INDUCIBLE (IAA) proteins in a Ca2+-dependent manner. We further provide evidence that the physical interaction of CaM6 with IAA19 destabilizes the repressive interaction of IAA19 with AUXIN RESPONSE FACTOR 7 (ARF7), and thus regulates auxin-induced callus formation. These findings not only define a critical role of CaM-IQM-mediated Ca2+ signaling in callus and lateral root formation, but also provide insight into the interplay of Ca2+ signaling and auxin actions during plant regeneration and development.
Collapse
|
17
|
Comparative Genomic Analysis of SAUR Gene Family, Cloning and Functional Characterization of Two Genes (PbrSAUR13 and PbrSAUR52) in Pyrus bretschneideri. Int J Mol Sci 2022; 23:ijms23137054. [PMID: 35806062 PMCID: PMC9266570 DOI: 10.3390/ijms23137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The SAUR (small auxin-up RNA) gene family is the biggest family of early auxin response genes in higher plants and has been associated with the control of a variety of biological processes. Although SAUR genes had been identified in several genomes, no systematic analysis of the SAUR gene family has been reported in Chinese white pear. In this study, comparative and systematic genomic analysis has been performed in the SAUR gene family and identified a total of 116 genes from the Chinese white pear. A phylogeny analysis revealed that the SAUR family could be classified into four groups. Further analysis of gene structure (introns/exons) and conserved motifs showed that they are diverse functions and SAUR-specific domains. The most frequent mechanisms are whole-genome duplication (WGD) and dispersed duplication (DSD), both of which may be important in the growth of the SAUR gene family in Chinese white pear. Moreover, cis-acting elements of the PbrSAUR genes were found in promoter regions associated with the auxin-responsive elements that existed in most of the upstream sequences. Remarkably, the qRT-PCR and transcriptomic data indicated that PbrSAUR13 and PbrSAUR52 were significantly expressed in fruit ripening. Subsequently, subcellular localization experiments revealed that PbrSAUR13 and PbrSAUR52 were localized in the nucleus. Moreover, PbrSAUR13 and PbrSAUR52 were screened for functional verification, and Dangshan pear and frandi strawberry were transiently transformed. Finally, the effects of these two genes on stone cells and lignin were analyzed by phloroglucinol staining, Fourier infrared spectroscopy, and qRT-PCR. It was found that PbrSAUR13 promoted the synthesis and accumulation of stone cells and lignin, PbrSAUR52 inhibited the synthesis and accumulation of stone cells and lignin. In conclusion, these results indicate that PbrSAUR13 and PbrSAUR52 are predominantly responsible for lignin inhibit synthesis, which provides a basic mechanism for further study of PbrSAUR gene functions.
Collapse
|
18
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
19
|
Gain H, Nandi D, Kumari D, Das A, Dasgupta SB, Banerjee J. Genome‑wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics 2022; 22:193-214. [PMID: 35169940 DOI: 10.1007/s10142-022-00828-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/29/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022]
Abstract
The calmodulin-binding transcription activator (CAMTA) is a family of transcriptional factors containing a cluster of calmodulin-binding proteins that can activate gene regulation in response to stresses. The presence of this family of genes has been reported earlier, though, the comprehensive analyses of rice CAMTA (OsCAMTA) genes, their promoter regions, and the proteins were not deliberated till date. The present report revealed the existence of seven CAMTA genes along with their alternate transcripts in five chromosomes of rice (Oryza sativa) genome. Phylogenetic trees classified seven CAMTA genes into three clades indicating the evolutionary conservation in gene structure and their association with other plant species. The in silico study was carried out considering 2 kilobases (kb) promoter regions of seven OsCAMTA genes regarding the distribution of transcription factor binding sites (TFbs) of major and plant-specific transcription factors whereas OsCAMTA7a was identified with highest number of TFbs, while OsCAMTA4 had the lowest. Comparative modelling, i.e., homology modelling, and molecular docking of the CAMTA proteins contributed the thoughtful comprehension of protein 3D structures and protein-protein interaction with probable partners. Gene ontology annotation identified the involvement of the proteins in biological processes, molecular functions, and localization in cellular components. Differential gene expression study gave an insight on functional multiplicity to showcase OsCAMTA3b as most upregulated stress-responsive gene. Summarization of the present findings can be interpreted that OsCAMTA gene duplication, variation in TFbs available in the promoters, and interactions of OsCAMTA proteins with their binding partners might be linked to tolerance against multiple biotic and abiotic cues.
Collapse
Affiliation(s)
- Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debarati Nandi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
20
|
Abstract
The promotive effect of auxin on shoot cell expansion provided the bioassay used to isolate this central plant hormone nearly a century ago. While the mechanisms underlying auxin perception and signaling to regulate transcription have largely been elucidated, how auxin controls cell expansion is only now attaining molecular-level definition. The good news is that the decades-old acid growth theory invoking plasma membrane H+-ATPase activation is still useful. The better news is that a mechanistic framework has emerged, wherein Small Auxin Up RNA (SAUR) proteins regulate protein phosphatases to control H+-ATPase activity. In this review, we focus on rapid auxin effects, their relationship to H+-ATPase activation and other transporters, and dependence on TIR1/AFB signaling. We also discuss how some observations, such as near-instantaneous effects on ion transport and root growth, do not fit into a single, comprehensive explanation of how auxin controls cell expansion, and where more research is warranted.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA;
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| |
Collapse
|
21
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
22
|
Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nat Commun 2019; 10:726. [PMID: 30760714 PMCID: PMC6374474 DOI: 10.1038/s41467-019-08575-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/15/2019] [Indexed: 11/11/2022] Open
Abstract
In plants mechanical signals pattern morphogenesis through the polar transport of the hormone auxin and through regulation of interphase microtubule (MT) orientation. To date, the mechanisms by which such signals induce changes in cell polarity remain unknown. Through a combination of time-lapse imaging, and chemical and mechanical perturbations, we show that mechanical stimulation of the SAM causes transient changes in cytoplasmic calcium ion concentration (Ca2+) and that transient Ca2+ response is required for downstream changes in PIN-FORMED 1 (PIN1) polarity. We also find that dynamic changes in Ca2+ occur during development of the SAM and this Ca2+ response is required for changes in PIN1 polarity, though not sufficient. In contrast, we find that Ca2+ is not necessary for the response of MTs to mechanical perturbations revealing that Ca2+ specifically acts downstream of mechanics to regulate PIN1 polarity response. Auxin transport and microtubule orientation respond to mechanical stimulation at the shoot apical meristem. Here Li et al. show that mechanical stimulation causes cytosolic calcium concentration transients, and preventing such changes impairs reorientation of the PIN1 auxin efflux carrier, but not of microtubules.
Collapse
|
23
|
Stortenbeker N, Bemer M. The SAUR gene family: the plant's toolbox for adaptation of growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:17-27. [PMID: 30239806 DOI: 10.1093/jxb/ery332] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
The family of small auxin up-regulated RNA (SAUR) genes is a family of auxin-responsive genes with ~60-140 members in most higher plant species. Despite the early discovery of their auxin responsiveness, their function and mode of action remained unknown for a long time. In recent years, the importance of SAUR genes in the regulation of dynamic and adaptive growth, and the molecular mechanisms by which SAUR proteins act are increasingly well understood. SAURs play a central role in auxin-induced acid growth, but can also act independently of auxin, tissue specifically regulated by various other hormone pathways and transcription factors. In this review, we summarize recent advances in the characterization of the SAUR genes in Arabidopsis and other plant species. We particularly elaborate on their capacity to fine-tune growth in response to internal and external signals, and discuss the breakthroughs in understanding the mode of action of SAURs in relation to their complex regulation.
Collapse
Affiliation(s)
- Niek Stortenbeker
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology and Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
24
|
Zhang W, Li Z, Fang H, Zhang M, Duan L. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.). PLoS One 2018; 13:e0193072. [PMID: 29466465 PMCID: PMC5821358 DOI: 10.1371/journal.pone.0193072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize.
Collapse
Affiliation(s)
- Weiqiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhi Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Hui Fang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
25
|
Kathare PK, Dharmasiri S, Dharmasiri N. SAUR53 regulates organ elongation and apical hook development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1514896. [PMID: 30260266 PMCID: PMC6204813 DOI: 10.1080/15592324.2018.1514896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SAUR53 is a member of SAUR (Small Auxin-Up RNA) gene family of primary auxin responsive genes. In Arabidopsis, SAUR gene family is represented by 81 genes including two pseudogenes; however, the functions of most of these genes are not fully characterized yet. In the present study, we show that SAUR53 expresses throughout the plant and localizes to both plasma membrane and the nucleus. Unlike most other SAUR genes, expression of SAUR53 is not induced in response to auxin. Ectopic expression of SAUR53 results in the elongation of cells and organs, and also interferes with normal apical hook development by accelerating the hook maintenance phase. Moreover, root growth of SAUR53 overexpression seedlings is significantly insensitive to IAA and 2,4-D, while showing wild-type sensitivity to NAA, suggesting that elevated level of SAUR53 may interfere with normal auxin transport. Collectively, this study indicates that while SAUR53 positively regulates cell and organ elongation, it probably negatively regulates auxin transport in Arabidopsis.
Collapse
Affiliation(s)
- Praveen Kumar Kathare
- Department of Biology, Texas State University, San Marcos, TX, USA
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Nihal Dharmasiri
- Department of Biology, Texas State University, San Marcos, TX, USA
- CONTACT Nihal Dharmasiri ;
| |
Collapse
|
26
|
Kim J, Oh J, Yoon DH, Sung GH. Identification of calmodulin binding proteins in the entomopathogenic fungus Beauveria bassiana. Folia Microbiol (Praha) 2017; 63:13-16. [PMID: 28497337 DOI: 10.1007/s12223-017-0529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/05/2017] [Indexed: 01/24/2023]
Abstract
Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Deok-Hyo Yoon
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| |
Collapse
|
27
|
Xu YX, Xiao MZ, Liu Y, Fu JL, He Y, Jiang DA. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. PLANT MOLECULAR BIOLOGY 2017; 94:97-107. [PMID: 28321650 DOI: 10.1007/s11103-017-0595-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/16/2017] [Indexed: 05/25/2023]
Abstract
This research is the first to demonstrate that OsSAUR45 is involved in plant growth though affecting auxin synthesis and transport by repressing OsYUCCA and OsPIN gene expression in rice. Small auxin-up RNAs (SAURs) comprise a large multigene family and are rapidly activated as part of the primary auxin response in plants. However, little is known about the role of SAURs in plant growth and development, especially in monocots. Here, we report the biological function of OsSAUR45 in the model plant rice (Oryza sativa). OsSAUR45 is expressed in a tissue-specific pattern and is localized to the cytoplasm. Rice lines overexpressing OsSAUR45 displayed pleiotropic developmental defects including reduced plant height and primary root length, fewer adventitious roots, narrower leaves, and reduced seed setting. Auxin levels and transport were reduced in the OsSAUR45 overexpression lines, potentially because of decreased expression of Flavin-binding monooxygenase family proteins (OsYUCCAs) and PIN-FORMED family proteins (OsPINs). Exogenous auxin application rapidly induced OsSAUR45 expression and partially restored the phenotype of rice lines overexpressing OsSAUR45. These results demonstrate that OsSAUR45 is involved in plant growth by affecting auxin synthesis and transport through the repression of OsYUCCA and OsPIN gene expression in rice.
Collapse
Affiliation(s)
- Yan-Xia Xu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng-Zhu Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun-Liang Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - De-An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Bai Q, Hou D, Li L, Cheng Z, Ge W, Liu J, Li X, Mu S, Gao J. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis). Genome 2016; 60:325-336. [PMID: 28177844 DOI: 10.1139/gen-2016-0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.
Collapse
Affiliation(s)
- Qingsong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Wei Ge
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| |
Collapse
|
29
|
Comparative transcriptome analysis of differentially expressed genes between the curly and normal leaves of Cymbidium goeringii var. longibracteatum. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0443-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Peng H, Yang T, Whitaker BD, Shangguan L, Fang J. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis. BMC PLANT BIOLOGY 2016; 16:197. [PMID: 27609111 PMCID: PMC5017016 DOI: 10.1186/s12870-016-0888-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/01/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND UDP-glucosyltransferase (UGT) is a key enzyme for anthocyanin biosynthesis, which by catalyzing glycosylation of anthocyanidins increases their solubility and accumulation in plants. Previously we showed that pre-harvest spray of CaCl2 enhanced anthocyanin accumulation in strawberry fruit by stimulating the expression of anthocyanin structural genes including a fruit specific FvUGT1. RESULTS To further understand the regulation of anthocyanin biosynthesis, we conducted kinetic analysis of recombinant FvUGT1 on glycosylation of pelargonidin, the major anthocyanidin in strawberry fruit. At the fixed pelargonidin concentration, FvUGT1 catalyzed the sugar transfer from UDP-glucose basically following Michaelis-Menten kinetics. By contrast, at the fixed UDP-glucose concentration, pelargonidin over 150 μM exhibited marked partial substrate inhibition in an uncompetitive mode. These results suggest that the sugar acceptor at high concentration inhibits FvUGT1 activity by binding to another site in addition to the catalytic site. Furthermore, calcium/calmodulin specifically bound FvUGT1 at a site partially overlapping with the interdomain linker, and significantly relieved the substrate inhibition. In the presence of 0.1 and 0.5 μM calmodulin, V max was increased by 71.4 and 327 %, respectively. CONCLUSIONS FvUGT1 activity is inhibited by anthocyanidin, the sugar acceptor substrate, and calcium/calmodulin binding to FvUGT1 enhances anthocyanin accumulation via alleviation of this substrate inhibition.
Collapse
Affiliation(s)
- Hui Peng
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, Hunan 410128 China
| | - Tianbao Yang
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Bruce D. Whitaker
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Lingfei Shangguan
- Agricultural Research Service of U.S. Department of Agriculture, From the Food Quality Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
31
|
No plastidial calmodulin-like proteins detected by two targeted mass-spectrometry approaches and GFP fusion proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.neps.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.). Int J Genomics 2016; 2016:2128010. [PMID: 27419124 PMCID: PMC4933857 DOI: 10.1155/2016/2128010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022] Open
Abstract
The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativa L.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning.
Collapse
|
33
|
HUANG XING, BAO YANING, WANG BO, LIU LIJUN, CHEN JIE, DAI LUNJIN, BALOCH SANAULLAH, PENG DINGXIANG. Identification of small auxin-up RNA (SAUR) genes in Urticales plants: mulberry (Morus notabilis), hemp (Cannabis sativa) and ramie (Boehmeria nivea). J Genet 2016; 95:119-29. [DOI: 10.1007/s12041-016-0622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Eckstein A, Krzeszowiec W, Waligórski P, Gabryś H. Auxin and chloroplast movements. PHYSIOLOGIA PLANTARUM 2016; 156:351-366. [PMID: 26467664 DOI: 10.1111/ppl.12396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.
Collapse
Affiliation(s)
- Aleksandra Eckstein
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
35
|
Abstract
As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| |
Collapse
|
36
|
Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J. Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:377-92. [PMID: 26296956 DOI: 10.1111/pce.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.
Collapse
Affiliation(s)
- Penghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Naomi Gonzales
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingqing Guo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Honghong Hu
- College of Life Science and technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
37
|
Li P, Zhao C, Zhang Y, Wang X, Wang X, Wang J, Wang F, Bi Y. Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. PROTOPLASMA 2016; 253:185-200. [PMID: 25837011 DOI: 10.1007/s00709-015-0810-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) toxicity has been widely studied in different plant species. However, the mechanism involved in its toxicity and the cell response to Cd has not been well established. In the present study, we investigated the possible mechanism of calcium (Ca) in protecting Arabidopsis from Cd toxicity. The results showed that 50 μM Cd significantly inhibited the seedling growth and decreased the chlorophyll content in Arabidopsis. Specifically, the primary root (PR) length was decreased but the lateral root (LR) number was increased under Cd stress. Furthermore, Cd enhanced the hydrogen peroxide (H2O2) content and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. Cd also altered the level and the distribution of auxin in PR tips (as evidenced by DR5::GUS and PIN:GFP reporter expression) and the expression of several putative auxin biosynthetic, catabolic, and transport pathway-related genes. Application of 3 mM Ca alleviated the inhibition of Cd on the root growth. Ca application not only led to reducing oxidative injuries but also restoring the normal auxin transport and distribution in Arabidopsis root under Cd stress. Taken together, these results suggest that Ca alleviates the root growth inhibition caused by Cd through maintaining auxin homeostasis in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chengzhou Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yongqiang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianfeng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Feng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
38
|
Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, Zheng H, Li W. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 2015; 16:598. [PMID: 26268218 PMCID: PMC4542112 DOI: 10.1186/s12864-015-1800-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. RESULTS A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. CONCLUSIONS GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were obtained for the resistance to the two Hg Types of SCN. The multiple beneficial alleles from resistant germplasm sources will be useful for the breeding of cultivars with improved resistance to SCN. Analysis of genes near association signals may facilitate the recognition of the causal gene(s) underlying SCN resistances.
Collapse
Affiliation(s)
- Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Guanglu Cao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yinghui Li
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Dongyuan Liu
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Zhiwu Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Dongmei Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, 101300, Beijing, China.
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
40
|
Ren H, Gray WM. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. MOLECULAR PLANT 2015; 8:1153-64. [PMID: 25983207 PMCID: PMC5124491 DOI: 10.1016/j.molp.2015.05.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, small auxin up RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H(+)-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development.
Collapse
Affiliation(s)
- Hong Ren
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - William M Gray
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
41
|
Li ZG, Chen HW, Li QT, Tao JJ, Bian XH, Ma B, Zhang WK, Chen SY, Zhang JS. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci Rep 2015. [PMID: 26207341 PMCID: PMC4513569 DOI: 10.1038/srep12477] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ethylene perceived by a family of five receptors regulates many developmental processes in Arabidopsis. Here we conducted the yeast two-hybrid assay to screen for additional unidentified proteins that interact with subfamily II ethylene receptor ETR2. Three SAUR proteins, named SAUR76, 77 and 78, were identified to associate with both ETR2 and EIN4 in different assays. Interaction of SAUR76 and SAUR78 with ETR2 was further verified by co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays. Expressions of SAUR76-78 are induced by auxin and ethylene treatments. Compared with wild type, SAUR-overexpressing plants exhibit reduced ethylene sensitivity, while SAUR-RNAi lines exhibit enhanced ethylene sensitivity. Overexpressing the three SAURs partially complements the phenotype of subfamily II ethylene receptor loss-of-function double mutant etr2-3ein4-4, which has increased ethylene response and small cotyledon and rosette. saur76 mutation partially suppresses the reduced ethylene sensitivity of etr2-2. SAUR76/78 proteins are regulated by 26S proteasome system and larger tag increases their protein stability. These findings suggest that SAUR76-78 may affect ethylene receptor signaling and promote plant growth in Arabidopsis.
Collapse
Affiliation(s)
- Zhi-Gang Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A. Funct Integr Genomics 2015; 15:729-40. [PMID: 26115718 DOI: 10.1007/s10142-015-0450-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission.
Collapse
|
43
|
Valluru R. Fructan and hormone connections. FRONTIERS IN PLANT SCIENCE 2015; 6:180. [PMID: 25852727 PMCID: PMC4369654 DOI: 10.3389/fpls.2015.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
|
44
|
Bidzinski P, Noir S, Shahi S, Reinstädler A, Gratkowska DM, Panstruga R. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. PLANT, CELL & ENVIRONMENT 2014; 37:2738-53. [PMID: 24738718 DOI: 10.1111/pce.12353] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 03/18/2014] [Indexed: 05/05/2023]
Abstract
Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.
Collapse
Affiliation(s)
- Przemyslaw Bidzinski
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhang Y, Yin H, Zhao X, Wang W, Du Y, He A, Sun K. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr Polym 2014; 113:446-54. [DOI: 10.1016/j.carbpol.2014.06.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023]
|
47
|
Chen Y, Hao X, Cao J. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:133-50. [PMID: 24472286 DOI: 10.1111/jipb.12127] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 05/19/2023]
Abstract
Small auxin-up RNAs (SAURs) are the early auxin-responsive genes represented by a large multigene family in plants. Here, we identified 79 SAUR gene family members from maize (Zea mays subsp. mays) by a reiterative database search and manual annotation. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, and maize had divided into 16 groups. These genes were non-randomly distributed across the maize chromosomes, and segmental duplication and tandem duplication contributed to the expansion of the maize SAUR gene family. Synteny analysis established orthology relationships and functional linkages between SAUR genes in maize and sorghum genomes. We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members. Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs. Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the SAUR gene family. Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested. The results reveal a comprehensive overview of the maize SAUR gene family and may pave the way for deciphering their function during plant development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, 212013, China
| | | | | |
Collapse
|
48
|
Afiyanti M, Chen HJ. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:35-47. [PMID: 24331417 DOI: 10.1016/j.jplph.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 05/09/2023]
Abstract
Catalase (CAT) functions as one of the key enzymes in the scavenging of reactive oxygen species and affects the H2O2 homeostasis in plants. In sweet potato, a major catalase isoform was detected, and total catalase activity showed the highest level in mature leaves (L3) compared to immature (L1) and completely yellow, senescent leaves (L5). The major catalase isoform as well as total enzymatic activity were strongly suppressed by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). This inhibition could be specifically and significantly mitigated in mature L3 leaves by exogenous CaCl2, but not MgCl2 or CoCl2. EGTA also inhibited the activity of the catalase isoform in vitro. Furthermore, chlorpromazine (CPZ), a calmodulin (CAM) inhibitor, drastically suppressed the major catalase isoform as well as total enzymatic activity, and this suppression was alleviated by exogenous sweet potato calmodulin (SPCAM) fusion protein in L3 leaves. CPZ also inhibited the activity of the catalase isoform in vitro. Protein blot hybridization showed that both anti-catalase SPCAT1 and anti-calmodulin SPCAM antibodies detect a band at the same position, which corresponds to the activity of the major catalase isoform from unboiled, but not boiled crude protein extract of L3 leaves. An inverse correlation between the major catalase isoform/total enzymatic activity and the H2O2 level was also observed. These data suggest that sweet potato CAT activity is modulated by CaCl2 and SPCAM, and plays an important role in H2O2 homeostasis in mature leaves. Association of SPCAM with the major CAT isoform is required and regulates the in-gel CAT activity band.
Collapse
Affiliation(s)
- Mufidah Afiyanti
- Department of Biological Sciences, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan
| | - Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan.
| |
Collapse
|
49
|
Vanneste S, Friml J. Calcium: The Missing Link in Auxin Action. PLANTS (BASEL, SWITZERLAND) 2013; 2:650-75. [PMID: 27137397 PMCID: PMC4844386 DOI: 10.3390/plants2040650] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Abstract
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and number of organs, bend according to gravity and light, and regenerate tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, auxin. Another versatile signal is the cation, Ca(2+), which is a crucial second messenger for many rapid cellular processes during responses to a wide range of endogenous and environmental signals, such as hormones, light, drought stress and others. Auxin is a good candidate for one of these Ca(2+)-activating signals. However, the role of auxin-induced Ca(2+) signaling is poorly understood. Here, we will provide an overview of possible developmental and physiological roles, as well as mechanisms underlying the interconnection of Ca(2+) and auxin signaling.
Collapse
Affiliation(s)
- Steffen Vanneste
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium.
| | - Jiří Friml
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg 3400, Austria
| |
Collapse
|
50
|
Merelo P, Xie Y, Brand L, Ott F, Weigel D, Bowman JL, Heisler MG, Wenkel S. Genome-wide identification of KANADI1 target genes. PLoS One 2013; 8:e77341. [PMID: 24155946 PMCID: PMC3796457 DOI: 10.1371/journal.pone.0077341] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022] Open
Abstract
Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.
Collapse
Affiliation(s)
- Paz Merelo
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yakun Xie
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucas Brand
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Felix Ott
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Marcus G. Heisler
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- School of Biologlical Sciences, Sydney University, Sydney, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- * E-mail: (JLB); (MGH); (SW)
| |
Collapse
|