1
|
Aljedani SS, Aldehaiman A, Sandholu A, Alharbi S, Mak VC, Wu H, Lugari A, Jaremko M, Morelli X, Backer JW, Ladbury JE, Nowakowski M, Cheung LW, Arold ST. Functional selection in SH3-mediated activation of the PI3 kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591319. [PMID: 38746413 PMCID: PMC11092569 DOI: 10.1101/2024.04.30.591319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The phosphoinositide-3 kinase (PI3K), a heterodimeric enzyme, plays a pivotal role in cellular metabolism and survival. Its deregulation is associated with major human diseases, particularly cancer. The p85 regulatory subunit of PI3K binds to the catalytic p110 subunit via its C-terminal domains, stabilising it in an inhibited state. Certain Src homology 3 (SH3) domains can activate p110 by binding to the proline-rich (PR) 1 motif located at the N-terminus of p85. However, the mechanism by which this N-terminal interaction activates the C-terminally bound p110 remains elusive. Moreover, the intrinsically poor ligand selectivity of SH3 domains raises the question of how they can control PI3K. Combining structural, biophysical, and functional methods, we demonstrate that the answers to both these unknown issues are linked: PI3K-activating SH3 domains engage in additional "tertiary" interactions with the C-terminal domains of p85, thereby relieving their inhibition of p110. SH3 domains lacking these tertiary interactions may still bind to p85 but cannot activate PI3K. Thus, p85 uses a functional selection mechanism that precludes nonspecific activation rather than nonspecific binding. This separation of binding and activation may provide a general mechanism for how biological activities can be controlled by promiscuous protein-protein interaction domains.
Collapse
Affiliation(s)
- Safia S. Aljedani
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Abdullah Aldehaiman
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Anandsukeerthi Sandholu
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Siba Alharbi
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Victor C.Y. Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyan Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Adrien Lugari
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Xavier Morelli
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Jonathan W. Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John E. Ladbury
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Lydia W.T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Olabode AS, Mumby MJ, Wild TA, Muñoz-Baena L, Dikeakos JD, Poon AFY. Phylogenetic Reconstruction and Functional Characterization of the Ancestral Nef Protein of Primate Lentiviruses. Mol Biol Evol 2023; 40:msad164. [PMID: 37463439 PMCID: PMC10400143 DOI: 10.1093/molbev/msad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Nef is an accessory protein unique to the primate HIV-1, HIV-2, and SIV lentiviruses. During infection, Nef functions by interacting with multiple host proteins within infected cells to evade the immune response and enhance virion infectivity. Notably, Nef can counter immune regulators such as CD4 and MHC-I, as well as the SERINC5 restriction factor in infected cells. In this study, we generated a posterior sample of time-scaled phylogenies relating SIV and HIV Nef sequences, followed by reconstruction of ancestral sequences at the root and internal nodes of the sampled trees up to the HIV-1 Group M ancestor. Upon expression of the ancestral primate lentivirus Nef protein within CD4+ HeLa cells, flow cytometry analysis revealed that the primate lentivirus Nef ancestor robustly downregulated cell-surface SERINC5, yet only partially downregulated CD4 from the cell surface. Further analysis revealed that the Nef-mediated CD4 downregulation ability evolved gradually, while Nef-mediated SERINC5 downregulation was recovered abruptly in the HIV-1/M ancestor. Overall, this study provides a framework to reconstruct ancestral viral proteins and enable the functional characterization of these proteins to delineate how functions could have changed throughout evolutionary history.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Department of Pathology & Laboratory Medicine, Western University, London, Canada
| | - Mitchell J Mumby
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Tristan A Wild
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Laura Muñoz-Baena
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Canada
- Department of Microbiology & Immunology, Western University, London, Canada
- Department of Computer Science, Western University, London, Canada
| |
Collapse
|
3
|
Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Sci Signal 2022; 15:eabn8359. [PMID: 36126115 PMCID: PMC9830684 DOI: 10.1126/scisignal.abn8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Nef protein produced by the viruses HIV-1 and SIV drives efficient viral replication partially by inducing constitutive activation of host cell tyrosine kinases, including members of the Src and Tec families. Here, we uncovered the mechanism by which both HIV-1 and SIV Nef enhanced the activity of the Tec family kinase Btk in vitro and in cells. A Nef mutant that could not bind to the SH3 domain of Src family kinases activated Btk to the same extent as did wild-type Nef, demonstrating that Nef activated Src and Tec family kinases by distinct mechanisms. The Btk SH3-SH2 region formed a homodimer requiring the CD loop in the SH2 domain, which was stabilized by the binding of Nef homodimers. Alanine substitution of Pro327 in the CD loop of the Btk SH2 domain destabilized SH3-SH2 dimers, abolished the interaction with Nef, and prevented activation by Nef in vitro. In cells, Nef stabilized and activated wild-type but not P327A Btk homodimers at the plasma membrane. These data reveal that the interaction with Nef stabilizes Btk dimers through the SH3-SH2 interface to promote kinase activity and show that the HIV-1 Nef protein evolved distinct mechanisms to activate Src and Tec family tyrosine kinases to enhance viral replication.
Collapse
Affiliation(s)
- Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - David Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Kiera Regan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15260 USA
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| |
Collapse
|
4
|
Lentiviral Nef Proteins Differentially Govern the Establishment of Viral Latency. J Virol 2022; 96:e0220621. [PMID: 35266804 DOI: 10.1128/jvi.02206-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the clinical importance of latent human immunodeficiency virus type 1 (HIV-1) infection, our understanding of the biomolecular processes involved in HIV-1 latency control is still limited. This study was designed to address whether interactions between viral proteins, specifically HIV Nef, and the host cell could affect latency establishment. The study was driven by three reported observations. First, early reports suggested that human immunodeficiency virus type 2 (HIV-2) infection in patients produces a lower viral RNA/DNA ratio than HIV-1 infection, potentially indicating an increased propensity of HIV-2 to produce latent infection. Second, Nef, an early viral gene product, has been shown to alter the activation state of infected cells in a lentiviral lineage-dependent manner. Third, it has been demonstrated that the ability of HIV-1 to establish latent infection is a function of the activation state of the host cell at the time of infection. Based on these observations, we reasoned that HIV-2 Nef may have the ability to promote latency establishment. We demonstrate that HIV-1 latency establishment in T cell lines and primary T cells is indeed differentially modulated by Nef proteins. In the context of an HIV-1 backbone, HIV-1 Nef promoted active HIV-1 infection, while HIV-2 Nef strongly promoted latency establishment. Given that Nef represents the only difference in these HIV-1 vectors and is known to interact with numerous cellular factors, these data add support to the idea that latency establishment is a host cell-virus interaction phenomenon, but they also suggest that the HIV-1 lineage may have evolved mechanisms to counteract host cell suppression. IMPORTANCE Therapeutic attempts to eliminate the latent HIV-1 reservoir have failed, at least in part due to our incomplete biomolecular understanding of how latent HIV-1 infection is established and maintained. We here address the fundamental question of whether all lentiviruses actually possess a similar capacity to establish latent infections or whether there are differences between the lentiviral lineages driving differential latency establishment that could be exploited to develop improved latency reversal agents. Research investigating the viral RNA/DNA ratio in HIV-1 and HIV-2 patients could suggest that HIV-2 indeed has a much higher propensity to establish latent infections, a trait that we found, at least in part, to be attributable to the HIV-2 Nef protein. Reported Nef-mediated effects on host cell activation thus also affect latency establishment, and HIV-1 vectors that carry different lentiviral nef genes should become key tools to develop a better understanding of the biomolecular basis of HIV-1 latency establishment.
Collapse
|
5
|
Emert-Sedlak LA, Moukha-Chafiq O, Shi H, Du S, Alvarado JJ, Pathak V, Tanner SG, Hunter RN, Nebane M, Chen L, Ilina TV, Ishima R, Zhang S, Kuzmichev YV, Wonderlich ER, Schader SM, Augelli-Szafran CE, Ptak RG, Smithgall TE. Inhibitors of HIV-1 Nef-Mediated Activation of the Myeloid Src-Family Kinase Hck Block HIV-1 Replication in Macrophages and Disrupt MHC-I Downregulation. ACS Infect Dis 2022; 8:91-105. [PMID: 34985256 PMCID: PMC9274903 DOI: 10.1021/acsinfecdis.1c00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 μM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the μ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.
Collapse
Affiliation(s)
- Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Omar Moukha-Chafiq
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Vibha Pathak
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Samuel G. Tanner
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Robert N. Hunter
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Miranda Nebane
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Sixue Zhang
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Yury V. Kuzmichev
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | | | - Roger G. Ptak
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| |
Collapse
|
6
|
Zhao Z, Fagerlund R, Tossavainen H, Hopfensperger K, Lotke R, Srinivasachar Badarinarayan S, Kirchhoff F, Permi P, Sato K, Sauter D, Saksela K. Evolutionary plasticity of SH3 domain binding by Nef proteins of the HIV-1/SIVcpz lentiviral lineage. PLoS Pathog 2021; 17:e1009728. [PMID: 34780577 PMCID: PMC8629392 DOI: 10.1371/journal.ppat.1009728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/29/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy—termed the "R-clamp”—that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution. Viral replication depends on interactions with a plethora of host cell proteins. Cellular protein interactions are typically mediated by specialized binding modules, such as the SH3 domain. To gain access to host cell regulation viruses have evolved to contain SH3 domain binding sites in their proteins, a notable example of which is the HIV-1 Nef protein. Here we show that during the primate lentivirus evolution the structural strategy that underlies the avid binding of Nef to cellular SH3 domains, which we have dubbed the R-clamp, has been generated via alternative but functionally interchangeable molecular designs. These patterns of SH3 recognition depend on the amino acid combinations at the positions corresponding to residues 83 and 120 in the consensus HIV-1 Nef sequence, and are distinctly different in Nef proteins from SIVs of Eastern and Central chimpanzees, gorillas, and the four groups of HIV-1 that have independently originated from the latter two. These results highlight the evolutionary plasticity of viral proteins, and have implications on therapeutic development aiming to interfere with SH3 binding of Nef.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kristina Hopfensperger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
7
|
Synergy and allostery in ligand binding by HIV-1 Nef. Biochem J 2021; 478:1525-1545. [PMID: 33787846 PMCID: PMC8079166 DOI: 10.1042/bcj20201002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like ‘tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.
Collapse
|
8
|
HIV-1 Nef-Induced Secretion of the Proinflammatory Protease TACE into Extracellular Vesicles Is Mediated by Raf-1 and Can Be Suppressed by Clinical Protein Kinase Inhibitors. J Virol 2021; 95:JVI.00180-21. [PMID: 33597213 DOI: 10.1128/jvi.00180-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
Chronic immune activation is an important driver of human immunodeficiency virus type 1 (HIV-1) pathogenesis and has been associated with the presence of tumor necrosis factor-α converting enzyme (TACE) in extracellular vesicles (EVs) circulating in infected individuals. We have recently shown that activation of the Src-family tyrosine kinase hematopoietic cell kinase (Hck) by HIV-1 Nef can trigger the packaging of TACE into EVs via an unconventional protein secretion pathway. Using a panel of HIV-1 Nef mutants and natural HIV-2 and simian immunodeficiency virus (SIV) Nef alleles, we now show that the capacity to promote TACE secretion depends on the superior ability of HIV-1-like Nef alleles to induce Hck kinase activity, whereas other Nef effector functions are dispensable. Strikingly, among the numerous Src-family downstream effectors, serine/threonine kinase Raf-1 was found to be necessary and alone sufficient to trigger the secretion of TACE into EVs. These data reveal the involvement of Raf-1 in regulation of unconventional protein secretion and highlight the importance of Raf-1 as a cellular effector of Nef, thereby suggesting a novel rationale for testing pharmacological inhibitors of the Raf-MAPK pathway to treat HIV-associated immune activation.IMPORTANCE Chronic immune activation contributes to the immunopathogenesis of human immunodeficiency virus type 1 (HIV-1) infection and is associated with poor recovery of the immune system despite potent antiretroviral therapy, which is observed in 10% to 40% drug-treated patients depending on the definition of immune reconstitution. We have previously shown that the HIV pathogenicity factor Nef can promote loading of the proinflammatory protease TACE into extracellular vesicles (EVs), and the levels of such TACE-containing EVs circulating in the blood correlate with low CD4 lymphocyte counts in HIV patients receiving antiretroviral therapy. Here, we show that Nef promotes uploading of TACE into EVs by triggering unconventional secretion via activation of the Hck/Raf/mitogen-activated protein kinase (MAPK) cascade. We find that several pharmaceutical inhibitors of these kinases that are currently in clinical use for other diseases can potently suppress this pathogenic deregulation and could thus provide a novel strategy for treating HIV-associated immune activation.
Collapse
|
9
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Li WF, Aryal M, Shu ST, Smithgall TE. HIV-1 Nef dimers short-circuit immune receptor signaling by activating Tec-family kinases at the host cell membrane. J Biol Chem 2020; 295:5163-5174. [PMID: 32144207 DOI: 10.1074/jbc.ra120.012536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 virulence factor Nef promotes high-titer viral replication, immune escape, and pathogenicity. Nef interacts with interleukin-2-inducible T-cell kinase (Itk) and Bruton's tyrosine kinase (Btk), two Tec-family kinases expressed in HIV-1 target cells (CD4 T cells and macrophages, respectively). Using a cell-based bimolecular fluorescence complementation assay, here we demonstrate that Nef recruits both Itk and Btk to the cell membrane and induces constitutive kinase activation in transfected 293T cells. Nef homodimerization-defective mutants retained their interaction with both kinases but failed to induce activation, supporting a role for Nef homodimer formation in the activation mechanism. HIV-1 infection up-regulates endogenous Itk activity in SupT1 T cells and donor-derived peripheral blood mononuclear cells. However, HIV-1 strains expressing Nef variants with mutations in the dimerization interface replicated poorly and were significantly attenuated in Itk activation. We conclude that direct activation of Itk and Btk by Nef at the membrane in HIV-infected cells may override normal immune receptor control of Tec-family kinase activity to enhance the viral life cycle.
Collapse
Affiliation(s)
- Wing Fai Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
11
|
Hirao K, Andrews S, Kuroki K, Kusaka H, Tadokoro T, Kita S, Ose T, Rowland-Jones SL, Maenaka K. Structure of HIV-2 Nef Reveals Features Distinct from HIV-1 Involved in Immune Regulation. iScience 2019; 23:100758. [PMID: 31927483 PMCID: PMC6956826 DOI: 10.1016/j.isci.2019.100758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023] Open
Abstract
The human immunodeficiency virus (HIV) accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2-infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The di-leucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2-mediated endocytosis for CD3. The highly conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of simian immunodeficiency virus (SIV) Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide insights into the distinct pathogenesis of HIV-2 infection. Structure of HIV-2 Nef revealed a conserved C-terminal α-helix not present in HIV-1 C-terminal structure is conserved in SIV Nef, likely involved in MHC-I downregulation Di-leucine AP-2-mediated sorting motif forms a helix bound to the α1 and α2 helices ITC demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef
Collapse
Affiliation(s)
- Kengo Hirao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sophie Andrews
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroki Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK.
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
12
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
13
|
Kuo LS, Baugh LL, Denial SJ, Watkins RL, Liu M, Garcia JV, Foster JL. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix. Retrovirology 2012; 9:47. [PMID: 22651890 PMCID: PMC3464899 DOI: 10.1186/1742-4690-9-47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
Background HIV-1 Nef is a multifunctional protein required for full pathogenicity of the virus. As Nef has no known enzymatic activity, it necessarily functions through protein-protein interaction interfaces. A critical Nef protein interaction interface is centered on its polyproline segment (P69VRPQVPLRP78) which contains the helical SH3 domain binding protein motif, PXXPXR. We hypothesized that any Nef-SH3 domain interactions would be lost upon mutation of the prolines or arginine of PXXPXR. Further, mutation of the non-motif “X” residues, (Q73, V74, and L75) would give altered patterns of inhibition for different Nef/SH3 domain protein interactions. Results We found that mutations of either of the prolines or the arginine of PXXPXR are defective for Nef-Hck binding, Nef/activated PAK2 complex formation and enhancement of virion infectivity (EVI). Mutation of the non-motif “X” residues (Q, V and L) gave similar patterns of inhibition for Nef/activated PAK2 complex formation and EVI which were distinct from the pattern for Hck binding. These results implicate an SH3 domain containing protein other than Hck for Nef/activated PAK2 complex formation and EVI. We have also mutated Nef residues at the N-and C-terminal ends of the polyproline segment to explore interactions outside of PXXPXR. We discovered a new locus GFP/F (G67, F68, P69 and F90) that is required for Nef/activated PAK2 complex formation and EVI. MHC Class I (MHCI) downregulation was only partially inhibited by mutating the PXXPXR motif residues, but was fully inhibited by mutating the C-terminal P78. Further, we observed that MHCI downregulation strictly requires G67 and F68. Our mutational analysis confirms the recently reported structure of the complex between Nef, AP-1 μ1 and the cytoplasmic tail of MHCI, but does not support involvement of an SH3 domain protein in MHCI downregulation. Conclusion Nef has evolved to be dependent on interactions with multiple SH3 domain proteins. To the N- and C- terminal sides of the polyproline helix are multifunctional protein interaction sites. The polyproline segment is also adapted to downregulate MHCI with a non-canonical binding surface. Our results demonstrate that Nef polyproline helix is highly adapted to directly interact with multiple host cell proteins.
Collapse
Affiliation(s)
- Lillian S Kuo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Y9.206, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol 2011; 86:1421-32. [PMID: 22090132 DOI: 10.1128/jvi.05993-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2-mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2-mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking.
Collapse
|
15
|
Abstract
Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disruption of Golgi function and intracellular trafficking with trapping of diverse vesicle tethers, SNAREs and SNAPs in the Golgi membranes of enlarged pulmonary arterial endothelial cells (PAECs) and pulmonary arterial smooth muscle cells (PASMCs). Consequences included the loss of cell surface caveolin-1, hyperactivation of STAT3, mislocalization of eNOS with reduced cell surface/caveolar NO and hypo-S-nitrosylation of trafficking-relevant proteins. Similar Golgi tether, SNARE and SNAP dysfunctions were also observed in hypoxic PAECs in culture and in PAECs subjected to NO scavenging. Strikingly, a hypo-NO state promoted PAEC mitosis and cell proliferation. Golgi dysfunction was also observed in pulmonary vascular cells in idiopathic PAH (IPAH) in terms of a marked cytoplasmic dispersal and increased cellular content of the Golgi tethers, giantin and p115, in cells in the proliferative, obliterative and plexiform lesions in IPAH. The question of whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH was approached by genetic means using HIV-nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the non-chimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and increase in giantin and p115. Specifically, it was the HIV-nef–positive cells that showed increased giantin. Elucidating how each of these changes fits into the multifactorial context of hypoxia, reduced NO bioavailability, mutations in BMPR II, modulation of disease penetrance and gender effects in disease occurrence in the pathogenesis of PAH is part of the road ahead.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | | |
Collapse
|
16
|
Lugari A, Breuer S, Coursindel T, Opi S, Restouin A, Shi X, Nazabal A, Torbett BE, Martinez J, Collette Y, Parrot I, Arold ST, Morelli X. A specific protein disorder catalyzer of HIV-1 Nef. Bioorg Med Chem 2011; 19:7401-6. [PMID: 22061824 DOI: 10.1016/j.bmc.2011.10.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
Abstract
The HIV-1 auxiliary protein Nef is required for the onset and progression of AIDS in HIV-1-infected persons. Here, we have deciphered the mode of action of a second-generation inhibitor of Nef, DLC27-14, presenting a competitive IC(50) of ∼16 μM measured by MALDI-TOF experiments. Thermal protein denaturation experiments revealed a negative effect on stability of Nef in the presence of a saturating concentration of the inhibitor. The destabilizing action of DLC27-14 was confirmed by a HIV protease-based experiment, in which the protease sensitivity of DLC27-14-bound Nef was three times as high as that of apo Nef. The only compatible docking modes of action for DLC27-14 suggest that DLC27-14 promotes an opening of two α-helices that would destabilize the Nef core domain. DLC27-14 thus acts as a specific protein disorder catalyzer that destabilizes the folded conformation of the protein. Our results open novel avenues toward the development of next-generation Nef inhibitors.
Collapse
Affiliation(s)
- Adrien Lugari
- IMR Laboratory, CNRS-UPR 3243, Centre National de Recherche Scientifique, Institut de Microbiologie de Méditerranée and Aix-Marseille Universités, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
18
|
Bae H, Gray JS, Li M, Vines L, Kim J, Pestka JJ. Hematopoietic cell kinase associates with the 40S ribosomal subunit and mediates the ribotoxic stress response to deoxynivalenol in mononuclear phagocytes. Toxicol Sci 2010; 115:444-52. [PMID: 20181660 DOI: 10.1093/toxsci/kfq055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trichothecene deoxynivalenol (DON) binds to eukaryotic ribosomes and triggers p38-driven proinflammatory gene expression in the macrophage-a response that is dependent on both double-stranded RNA-activated protein kinase (PKR) and hematopoietic cell kinase (Hck). Here we elucidated critical linkages that exist among the ribosome and these kinases during the course of DON-induced ribotoxic stress in mononuclear phagocytes. Similar to PKR inhibitors, Hck inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2) suppressed p38 activation and p38-driven interleukin 8 (IL-8) expression in the U937 human monocyte cell line. U937 cells stably transfected with a PKR antisense vector (U9K-A1) displayed marked reduction of DON-induced p38 activation and IL-8 expression as compared to cells transfected with empty vector (U9K-C2), with both responses being completely ablated by PP2. Western analysis of sucrose density gradient fractions revealed that PKR and Hck interacted with the 40S ribosomal subunit in U9K-C2 but not U9K-A1 cells. Subsequent transfection and immunoprecipitation studies with HeLa cells indicated that Hck interacted with ribosomal protein S3. Consistent with U937 cells, DON induced p38 association with the ribosome and phosphorylation in peritoneal macrophages from wild-type but not PKR-deficient mice. DON-induced phosphorylation of ribosome-associated Hck in RAW 264.7 murine macrophages was also suppressed by 2-aminopurine (2-AP). Both 2-AP and PP2 inhibited DON-induced phosphorylation of p38 as well as two kinases, apoptosis signal-regulating kinase 1 and mitogen-activated protein kinase 3/6, known to be upstream of p38. Taken together, PKR and Hck were critical for DON-induced ribosomal recruitment of p38, its subsequent phosphorylation, and, ultimately, p38-driven proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Heekyong Bae
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodóvar S, Tuder RM, Flores SC. Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. Am J Physiol Lung Cell Mol Physiol 2009; 297:L729-37. [PMID: 19648286 DOI: 10.1152/ajplung.00087.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Golgi dysfunction has been previously investigated as a mechanism involved in monocrotaline-induced pulmonary hypertension (PAH). In the present study, we addressed whether Golgi dysfunction might occur in pulmonary vascular cells in idiopathic PAH (IPAH) and whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH. Quantitative immunostaining for the Golgi tethers giantin and p115 on human lung tissue from patients with IPAH (n = 6) compared with controls demonstrated a marked cytoplasmic dispersal of giantin- and p115-bearing vesicular elements in vascular cells in the proliferative, obliterative, and plexiform lesions in IPAH and an increase in the amounts of these Golgi tethers/matrix proteins per cell. The causality question was approached by genetic means using human immunodeficiency virus (HIV)-Nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the nonchimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Giantin and p115 levels and their subcellular distribution in pulmonary vascular cells in lungs of SHIV-nef infected macaques (n = 4) were compared with SIV-infected (n = 3) and an uninfected macaque control. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and an increase in giantin and p115. Specifically, the HIV-Nef-positive cells showed increased giantin, p115, and the activated transcription factor PY-STAT3. These data represent the first test of the Golgi dysfunction hypothesis in IPAH and place trafficking and Golgi disruption in the chain of causality of pulmonary vasculopathies in the macaque model.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Rm. 201 Basic Sciences Bldg., Dept. of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 2009; 7:467-76. [PMID: 19305418 DOI: 10.1038/nrmicro2111] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.
Collapse
|
21
|
Trible RP, Emert-Sedlak L, Smithgall TE. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 2006; 281:27029-38. [PMID: 16849330 PMCID: PMC2892265 DOI: 10.1074/jbc.m601128200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
Collapse
Affiliation(s)
- Ronald P. Trible
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Lori Emert-Sedlak
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Thomas E. Smithgall
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
22
|
Hochrein JM, Wales TE, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Conformational features of the full-length HIV and SIV Nef proteins determined by mass spectrometry. Biochemistry 2006; 45:7733-9. [PMID: 16784224 DOI: 10.1021/bi060438x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Nef protein from human or simian immunodeficiency virus enhances viral replication, downregulates immune cell receptors, and activates multiple host cell signaling pathways. Conformational information about full-length Nef has been difficult to obtain as the full-length protein is not readily amenable to NMR or X-ray crystallography due to aggregation at high concentrations. As an alternative, full-length HIV and SIV Nef were probed with hydrogen exchange mass spectrometry, a method compatible with the low concentration requirements of Nef. The results showed that HIV Nef contains a solvent-protected core, as previously demonstrated with both NMR and X-ray crystallography. SIV Nef, for which there is no structural information, had a similar protected core, although it was more flexible and dynamic than its HIV counterpart. Many of the regions outside the core in both SIV and HIV Nef were highly solvent exposed. However, limited protection from exchange was observed in both N- and C-terminal regions, suggesting the presence of structured elements. Protection from exchange was also observed in a large loop emanating from the core that was deleted for NMR and X-ray analysis. These data show that while the majority of Nef was highly solvent exposed, regions outside the core may have structural attributes which may contribute to Nef functions known to map to these regions.
Collapse
Affiliation(s)
- James M Hochrein
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
23
|
Choi HJ, Smithgall TE. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. J Mol Biol 2004; 343:1255-68. [PMID: 15491611 DOI: 10.1016/j.jmb.2004.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
The Nef protein of the primate lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is essential for high-titer viral replication and acquired immune deficiency syndrome (AIDS) progression. Nef binds to the macrophage-specific Src family member Hck through its SH3 domain, resulting in constitutive kinase activation capable of transforming rodent fibroblasts. Nef-Hck interaction may be essential for M-tropic HIV replication and AIDS pathogenesis, identifying this virus-host protein complex as a rational target for anti-HIV drug discovery. Here, we investigated whether interaction with Hck is a common feature of Nef alleles from different strains of HIV-1. We compared the ability of four different laboratory HIV-1 Nef alleles (SF2, LAI, ELI, and Consensus) to induce Hck activation and transformation in our Rat-2 fibroblast model. While SF2, LAI, and Consensus Nef all bound and activated Hck, ELI Nef failed to bind to the Hck SH3 domain in vitro and did not cooperate with Hck in fibroblast transformation. Molecular modeling identified three residues in the core region of SF2 Nef (Ala83, His116, and Tyr120) which are substituted in ELI with Glu, Asn, and Ile, respectively. Two of these residues (Ala83 and Tyr120) form part of the hydrophobic pocket that contacts Ile 96 in the RT loop of the Hck SH3 domain in the Nef-SH3 crystal structure. Substitution of SF2 Nef Tyr120 with Ile completely abolished Hck recruitment and activation. In a complementary experiment, substitution of ELI Ile120 with Tyr partly restored ELI Nef-induced Hck activation and transformation in Rat-2 cells. Hck activation increased further by substitution of ELI Glu83 with Ala and Asn116 with His, suggestive of a supportive role for these residues in Hck binding. This study provides the first biological evidence that the HIV-1 Nef hydrophobic pocket is critical to Hck recruitment and activation in vivo. Targeting the Nef hydrophobic pocket with a small molecule may be sufficient to disrupt Nef signaling through Hck in HIV-infected macrophages, slowing disease progression.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
24
|
Bauer F, Hofinger E, Hoffmann S, Rösch P, Schweimer K, Sticht H. Characterization of Lck-binding elements in the herpesviral regulatory Tip protein. Biochemistry 2004; 43:14932-9. [PMID: 15554700 DOI: 10.1021/bi0485068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus saimiri encodes a tyrosine kinase interacting protein (Tip) that binds to T-cell-specific tyrosine kinase Lck via multiple sequence motifs and controls its activity. The regulation of Lck by Tip represents a key mechanism in the transformation of human T-lymphocytes during herpesviral infection. In this study, the interaction of Tip with the regulatory SH3 and SH2 domains of Lck was investigated by biophysical and computational techniques. NMR spectroscopy of isotopically labeled Tip(140-191) revealed that the interaction with the LckSH3 domain is not restricted to the classical proline-rich motif, but also involves the C-terminally adjacent residues which pack into a hydrophobic pocket on the surface of the SH3 domain, thus playing a likely role in mediating binding specificity. Fluorescence binding studies of Tip further demonstrate that Tyr127 in its phosphorylated form represents a strong ligand of the LckSH2 domain, indicating the presence of an additional Lck interaction motif. In contrast, Tyr114, known to be essential for STAT-3 binding, does not interact with the LckSH2 domain, showing that the tyrosines in Tip exhibit distinct binding specificity. The existence of numerous interaction sites between Tip and the regulatory domains of Lck implies a complex regulatory mechanism and may have evolved to allow a gradual regulation of Lck activity in different pathogenic states.
Collapse
Affiliation(s)
- Finn Bauer
- Lehrstuhl für Biopolymere, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Padua E, Jenkins A, Brown S, Bootman J, Paixao MT, Almond N, Berry N. Natural variation of the nef gene in human immunodeficiency virus type 2 infections in Portugal. J Gen Virol 2003; 84:1287-1299. [PMID: 12692296 DOI: 10.1099/vir.0.18908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infections cause severe immunodeficiency in humans, although HIV-2 is associated frequently with reduced virulence and pathogenicity compared to HIV-1. Genetic determinants that play a role in HIV pathogenesis are relatively poorly understood but nef has been implicated in inducing a more pathogenic phenotype in vivo. However, relatively little is known about the role of nef in HIV-2 pathogenesis. To address this, the genetic composition of 44 nef alleles from 37 HIV-2-infected individuals in Portugal, encompassing a wide spectrum of disease associations, CD4 counts and virus load, has been assessed. All nef alleles were subtype A, with no evidence of gross deletions, truncations or disruptions in the nef-encoding sequence; all were full-length and intact. HIV-2 long terminal repeat sequences were conserved and also indicated subtype A infections. Detailed analysis of motifs that mediate nef function in HIV-1 and simian immunodeficiency virus, such as CD4 downregulation and putative SH2/SH3 interactions, revealed significant natural variation. In particular, the central P(104)xxPLR motif exhibited wide interpatient variation, ranging from an HIV-1-like tetra-proline structure (PxxP)(3) to a disrupted minimal core motif (P(104)xxQLR). The P(107)-->Q substitution was associated with an asymptomatic phenotype (Fisher's exact test, P=0.026) and low virus loads. These data indicate that discrete differences in the nef gene sequence rather than gross structural changes are more likely to play a role in HIV-2 pathogenesis mediated via specific functional interactions.
Collapse
Affiliation(s)
- Elizabeth Padua
- AIDS Reference Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Adrian Jenkins
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Stuart Brown
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Janet Bootman
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Maria Teresa Paixao
- AIDS Reference Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Neil Almond
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
26
|
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
27
|
Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 2003; 28:323-35. [PMID: 12734410 DOI: 10.1007/bf02970151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.
Collapse
Affiliation(s)
- Alison L Greenway
- Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Commercial and Punt Roads, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Clump DA, Clem R, Qian Y, Guappone-Koay A, Berrebi AS, Flynn DC. Protein expression levels of the Src activating protein AFAP are developmentally regulated in brain. JOURNAL OF NEUROBIOLOGY 2003; 54:473-85. [PMID: 12532398 DOI: 10.1002/neu.10143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.
Collapse
Affiliation(s)
- David A Clump
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hiipakka M, Saksela K. Capacity of simian immunodeficiency virus strain mac Nef for high-affinity Src homology 3 (SH3) binding revealed by ligand-tailored SH3 domains. J Gen Virol 2002; 83:3147-3152. [PMID: 12466492 DOI: 10.1099/0022-1317-83-12-3147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simian immunodeficiency virus (SIV) Nef protein contains a consensus Src-homology 3 (SH3) binding motif. However, no SH3-domain proteins showing strong binding to SIV Nef have yet been found, and its potential capacity for high-affinity SH3 binding has therefore remained unproven. Here we have used phage-display-assisted protein engineering to develop artificial SH3 domains that bind tightly to SIV strain mac (SIVmac) Nef. Substitution of six amino acids in the RT loop region of Hck-SH3 with the sequence E/DGWWG resulted in SH3 domains that bound in vitro to SIVmac Nef much better than the natural Hck- or Fyn-SH3 domains. These novel SH3 domains also efficiently associated with SIVmac Nef when co-expressed in 293T cells and displayed a strikingly differential specificity when compared with SH3 domains similarly targeted for binding to human immunodeficiency virus type 1 (HIV-1) Nef. Thus, SIVmac Nef is competent for high-affinity SH3 binding, but its natural SH3 protein partners are likely to be different from those of HIV-1 Nef.
Collapse
Affiliation(s)
- Marita Hiipakka
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland1
| | - Kalle Saksela
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland1
| |
Collapse
|
30
|
Picard C, Greenway A, Holloway G, Olive D, Collette Y. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Virology 2002; 295:320-7. [PMID: 12033791 DOI: 10.1006/viro.2002.1381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simian and human immunodeficiency virus type 1 (SIV and HIV-1) Nef proteins are thought to use different molecular surfaces to mediate the protein-protein interactions required for their otherwise similar functions. This genetically separable function suggests convergent evolution of primate lentiviruses and/or structural differences between human and nonhuman primate cellular target proteins. However, such comparative molecular analyses have not been undertaken so far using the respective natural host-derived cellular targets. We cloned simian Src family kinase Hck and analyzed structurally and biochemically its interaction with SIV Nef.
Collapse
Affiliation(s)
- C Picard
- Institut de Cancérologie et d'Immunologie de Marseille, U119 INSERM, 27 boulevard Leï Roure, 13009, France
| | | | | | | | | |
Collapse
|
31
|
Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P. Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol 2002; 76:3981-95. [PMID: 11907238 PMCID: PMC136064 DOI: 10.1128/jvi.76.8.3981-3995.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to study the functions of simian immunodeficiency virus (SIV) Nef in vivo in a small-animal model, we constructed transgenic (Tg) mice expressing the SIV(mac)239 nef gene in the natural target cells of the virus under the control of the human CD4 gene promoter (CD4C). These CD4C/SHIV-nef(SIV) Tg mice develop a severe AIDS-like disease, with manifestations including premature death, failure to thrive or weight loss, wasting, thymic atrophy, an especially low number of peripheral CD8+ T cells as well as a low number of peripheral CD4+ T cells, diarrhea, splenomegaly, and kidney (interstitial nephritis, segmental glomerulosclerosis), lung (lymphocytic interstitial pneumonitis), and heart disease. In addition, these Tg mice fail to mount a class-switched antibody response after immunization with ovalbumin, they produce anti-DNA autoantibodies, and some of them develop Pneumocystis carinii lung infections. All these results suggest a generalized Nef-induced immunodeficiency. The low numbers of peripheral CD8+ and CD4+ T cells are likely to reflect a thymic defect and may be similar to the DiGeorge-like "thymic defect" immunophenotype described for a subgroup of human immunodeficiency virus type 1-infected children. Therefore, it appears that SIV Nef alone expressed in mice, in appropriate cell types and at sufficient levels, can elicit many of the phenotypes of simian and human AIDS. These Tg mice should be instrumental in studying the pathogenesis of SIV Nef-induced phenotypes.
Collapse
Affiliation(s)
- Marie-Chantal Simard
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Hanna Z, Weng X, Kay DG, Poudrier J, Lowell C, Jolicoeur P. The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. J Virol 2001; 75:9378-92. [PMID: 11533201 PMCID: PMC114506 DOI: 10.1128/jvi.75.19.9378-9392.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 06/23/2001] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important determinant of AIDS pathogenesis. We have previously reported that HIV-1 Nef is responsible for the induction of a severe AIDS-like disease in CD4C/HIV transgenic (Tg) mice. To understand the molecular mechanisms of this Nef-induced disease, we generated Tg mice expressing a mutated Nef protein in which the SH3 ligand-binding domain (P(72)XXP(75)XXP(78)) was mutated to A(72)XXA(75)XXQ(78). This mutation completely abolished the pathogenic potential of Nef, although a partial downregulation of the CD4 cell surface expression was still observed in these Tg mice. We also studied whether Hck, one of the effectors previously found to bind to this PXXP motif of Nef, was involved in disease development. Breeding of Tg mice expressing wild-type Nef on an hck(-/-) (knockout) background did not abolish any of the pathological phenotypes. However, the latency of disease development was prolonged. These data indicate that an intact PXXP domain is essential for inducing an AIDS-like disease in CD4C/HIV Tg mice and suggest that interaction of a cellular effector(s) with this domain is required for the induction of this multiorgan disease. Our findings indicate that Hck is an important, but not an essential, effector of Nef and suggest that another factor(s), yet to be identified, may be more critical for disease development.
Collapse
Affiliation(s)
- Z Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | | | |
Collapse
|