1
|
Alishlash AS, Yu Z, Lazrak A, Simpson R, Ale GB, Harris WT, Matalon S. Pediatric Chronic Pulmonary Aspiration Is Associated With Low Molecular Weight Hyaluronic Acid in the Bronchoalveolar Lavage. Pediatr Pulmonol 2025; 60:e71070. [PMID: 40152084 DOI: 10.1002/ppul.71070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Low molecular-weight hyaluronic acid (LMW-HA) is produced by the degradation of high-molecular-weight hyaluronic acid at the pulmonary interstitium and alveolar epithelium by reactive intermediates following lung injury. We aimed to investigate the role of bronchoalveolar lavage (BAL) LMW-HA as a biomarker of pediatric chronic pulmonary aspiration (CPA). METHODS Single-center prospective comparison of LMW-HA presence in BAL in pediatric Aerodigestive patients with and without CPA undergoing clinically indicated bronchoscopy. Pediatric pulmonologists diagnosed CPA based on video-fluoroscopic swallowing evaluation. RESULTS Fifteen children (mean age 6.1 years, male predominance at 73%, and 53% with CPA) were enrolled. Children with CPA have comparable baseline characteristics (age, sex, and race), but their BAL had higher white blood cell count, higher neutrophil percentages, higher bacterial culture positivity rates, and lower macrophage percentages than those without CPA. The two groups were comparable in sex, BAL lymphocyte percentages, eosinophil percentages, red blood cell counts, and lipid-laden macrophage positivity. Detection of BAL LMW-HA in the BAL had a 100% specificity and 88% sensitivity for CPA diagnosis. BAL protein levels were higher in the CPA group and in participants with positive LMW-HA. CONCLUSIONS We suggest BAL LMW-HA as a potential novel biomarker of pediatric CPA with high specificity and sensitivity. BAL LMW-HA is not detectable in subjects without CPA and is associated with increased BAL protein levels.
Collapse
Affiliation(s)
- Ammar Saadoon Alishlash
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryne Simpson
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guillermo Beltran Ale
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William T Harris
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Johnston RA, Pilkington AW, Atkins CL, Boots TE, Brown PL, Jackson WT, Spencer CY, Siddiqui SR, Haque IU. Inconsequential role for chemerin-like receptor 1 in the manifestation of ozone-induced lung pathophysiology in male mice. Physiol Rep 2024; 12:e16008. [PMID: 38631890 PMCID: PMC11023814 DOI: 10.14814/phy2.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-β-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.
Collapse
Affiliation(s)
- Richard A. Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of MedicineWest Virginia UniversityMorgantownWest VirginiaUSA
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Integrative Biology and PharmacologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Albert W. Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Constance L. Atkins
- Division of Pulmonary Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Theresa E. Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Philip L. Brown
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - William T. Jackson
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Chantal Y. Spencer
- Section of Pediatric Pulmonology, Department of PediatricsBaylor College of MedicineHoustonTexasUSA
| | - Saad R. Siddiqui
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ikram U. Haque
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Division of Critical Care, Department of PediatricsSidra MedicineDohaQatar
| |
Collapse
|
3
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lazrak A, Song W, Yu Z, Zhang S, Nellore A, Hoopes CW, Woodworth BA, Matalon S. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor. Matrix Biol 2023; 116:67-84. [PMID: 36758905 PMCID: PMC10012407 DOI: 10.1016/j.matbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Shaoyan Zhang
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Anoma Nellore
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Charles W Hoopes
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35295, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| |
Collapse
|
5
|
Johnston RA, Atkins CL, Siddiqui SR, Jackson WT, Mitchell NC, Spencer CY, Pilkington AW, Kashon ML, Haque IU. Interleukin-11 receptor subunit α-1 is required for maximal airway responsiveness to methacholine after acute exposure to ozone. Am J Physiol Regul Integr Comp Physiol 2022; 323:R921-R934. [PMID: 36283092 PMCID: PMC9722265 DOI: 10.1152/ajpregu.00213.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.
Collapse
Affiliation(s)
- Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
6
|
Albtoush N, Petrey AC. The role of Hyaluronan synthesis and degradation in the critical respiratory illness COVID-19. Am J Physiol Cell Physiol 2022; 322:C1037-C1046. [PMID: 35442830 PMCID: PMC9126216 DOI: 10.1152/ajpcell.00071.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan (HA) is a polysaccharide found in all tissues as an integral component of the extracellular matrix (ECM) that plays a central regulatory role in inflammation. In fact, HA matrices are increasingly considered as a barometer of inflammation. A number of proteins specifically recognize the HA structure and these interactions modify cell behavior and control the stability of the ECM. Moreover, inflamed airways are remarkably rich with HA and are associated with various inflammatory diseases including cystic fibrosis, influenza, sepsis, and more recently coronavirus disease 2019 (COVID-19). COVID-19 is a worldwide pandemic caused by a novel coronavirus called SARS-CoV-2, and infected individuals have a wide range of disease manifestations ranging from asymptomatic to severe illness. Critically ill COVID-19 patient cases are frequently complicated by development of acute respiratory distress syndrome (ARDS), which typically leads to poor outcomes with high mortality rate. In general, ARDS is characterized by poor oxygenation accompanied with severe lung inflammation, damage, and vascular leakage and has been suggested to be linked to an accumulation of HA within the airways. Here, we provide a succinct overview of known inflammatory mechanisms regulated by HA in general, and those both observed and postulated in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States.,Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Di Cicco M, Peroni D, Sepich M, Tozzi MG, Comberiati P, Cutrera R. Hyaluronic acid for the treatment of airway diseases in children: Little evidence for few indications. Pediatr Pulmonol 2020; 55:2156-2169. [PMID: 32530559 DOI: 10.1002/ppul.24901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hyaluronic acid (HA) is major physiological component of the extracellular matrix, which, in its high molecular weight form (HMW-HA) has anti-inflammatory properties. The diffusion of many different medical devices for inhalation therapy containing HA has led to an increase in their prescription, also in children. Here, we systematically review the published evidence on the efficacy and safety of HA for the treatment of upper and lower airway diseases in childhood. METHODS Relevant published studies (randomized controlled trials) for the efficacy of HA inhalation in children with upper airways diseases, asthma, cystic fibrosis (CF), and non-CF bronchiectasis were searched in Pubmed, Scopus, and Web of Knowledge databases by combining the adequate Medical Subject Headings terms and keywords, with no limit for the year of publication. RESULTS We identified seven relevant publications for upper airways diseases, one for asthma, and five for CF, while we found no clinical trial including children with non-CF bronchiectasis. Meta-analysis was not conducted due to the heterogeneity of the included studies. CONCLUSIONS The evidence of HA efficacy in the treatment of the upper and lower airways is still limited in children. Available data suggest that inhaled HMW-HA could be useful in the treatment of recurrent upper respiratory infections and chronic or recurrent inflammation of the middle ear and adenoids as well as of the lower airways in cystic fibrosis in association with hypertonic saline solution. Studies on larger populations and on the different formulations and nebulization methods, especially in pediatric age, are urgently needed.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Margherita Sepich
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Tozzi
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Comberiati
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Renato Cutrera
- Department of Academic Pediatric, Respiratory unit, Pediatric Hospital "Bambino Gesù", Rome, Italy
| |
Collapse
|
8
|
Patial S, Saini Y. Lung macrophages: current understanding of their roles in Ozone-induced lung diseases. Crit Rev Toxicol 2020; 50:310-323. [PMID: 32458707 DOI: 10.1080/10408444.2020.1762537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through the National Ambient Air Quality Standards (NAAQS), the Clean Air Act of the United States outlines acceptable levels of six different air pollutants considered harmful to humans and the environment. Included in this list is ozone (O3), a highly reactive oxidant gas, respiratory health hazard, and common environmental air pollutant at ground level. The respiratory health effects due to O3 exposure are often associated with molecular and cellular perturbations in the respiratory tract. Periodic review of NAAQS requires comprehensive scientific evaluation of the public health effects of these pollutants, which is formulated through integrated science assessment (ISA) of the most policy-relevant scientific literature. This review focuses on the protective and pathogenic effects of macrophages in the O3-exposed respiratory tract, with emphasis on mouse model-based toxicological studies. Critical findings from 39 studies containing the words O3, macrophage, mice, and lung within the full text were assessed. While some of these studies highlight the presence of disease-relevant pathogenic macrophages in the airspaces, others emphasize a protective role for macrophages in O3-induced lung diseases. Moreover, a comprehensive list of currently known macrophage-specific roles in O3-induced lung diseases is included in this review and the significant knowledge gaps that still exist in the field are outlined. In conclusion, there is a vital need in this field for additional policy-relevant scientific information, including mechanistic studies to further define the role of macrophages in response to O3.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2054-2070. [PMID: 30336830 DOI: 10.1016/j.jacc.2018.07.099] [Citation(s) in RCA: 743] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Fine particulate matter <2.5 μm (PM2.5) air pollution is the most important environmental risk factor contributing to global cardiovascular (CV) mortality and disability. Short-term elevations in PM2.5 increase the relative risk of acute CV events by 1% to 3% within a few days. Longer-term exposures over several years increase this risk by a larger magnitude (∼10%), which is partially attributable to the development of cardiometabolic conditions (e.g., hypertension and diabetes mellitus). As such, ambient PM2.5 poses a major threat to global public health. In this review, the authors provide an overview of air pollution and health, including assessment of exposure, impact on CV outcomes, mechanistic underpinnings, and impact of air pollution reduction strategies to mitigate CV risk. The review concludes with future challenges, including the inextricable link between air pollution and climate change, and calls for large-scale trials to allow the promulgation of formal evidence-based recommendations to lower air pollution-induced health risks.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.
| | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio
| | - Robert D Brook
- Michigan Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Malik F, Cromar KR, Atkins CL, Price RE, Jackson WT, Siddiqui SR, Spencer CY, Mitchell NC, Haque IU, Johnston RA. Chemokine (C-C Motif) Receptor-Like 2 is not essential for lung injury, lung inflammation, or airway hyperresponsiveness induced by acute exposure to ozone. Physiol Rep 2018; 5:5/24/e13545. [PMID: 29242308 PMCID: PMC5742705 DOI: 10.14814/phy2.13545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
Inhalation of ozone (O3), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O3. Furthermore, each of these aforementioned cells express chemokine (C‐C motif) receptor‐like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O3‐induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O3, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O3. To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl‐β‐methylcholine chloride (respiratory system resistance) in wild‐type and mice genetically deficient in Ccrl2 (Ccrl2‐deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O3. In air‐exposed mice, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased BALF chemerin in mice of both genotypes, yet following O3 exposure, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O3 exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O3‐induced lung pathology.
Collapse
Affiliation(s)
- Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Kevin R Cromar
- Marron Institute of Urban Management New York University, New York, New York
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas .,Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
11
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
12
|
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in Metabolites Present in Lung-Lining Fluid Following Exposure of Humans to Ozone. Toxicol Sci 2018; 163:430-439. [PMID: 29471466 PMCID: PMC6348881 DOI: 10.1093/toxsci/kfy043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.
Collapse
Affiliation(s)
- WanYun Cheng
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Kelly E Duncan
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Cavin Ward-Caviness
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | | | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| |
Collapse
|
13
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Jixin Zhong
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Robert D. Brook
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Zhou T, Yu Z, Jian MY, Ahmad I, Trempus C, Wagener BM, Pittet JF, Aggarwal S, Garantziotis S, Song W, Matalon S. Instillation of hyaluronan reverses acid instillation injury to the mammalian blood gas barrier. Am J Physiol Lung Cell Mol Physiol 2018; 314:L808-L821. [PMID: 29368549 DOI: 10.1152/ajplung.00510.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acid (HCl) aspiration during anesthesia may lead to acute lung injury. There is no effective therapy. We hypothesized that HCl instilled intratracheally in C57BL/6 mice results in the formation of low-molecular weight hyaluronan (L-HA), which activates RhoA and Rho kinase (ROCK), causing airway hyperresponsiveness (AHR) and increased permeability. Furthermore, instillation of high-molecular weight hyaluronan (H-HA; Yabro) will reverse lung injury. We instilled HCl in C57BL/6 wild-type (WT), myeloperoxidase gene-deficient (MPO-/-) mice, and CD44 gene-deficient (CD44-/-) mice. WT mice were also instilled intranasally with H-HA (Yabro) at 1 and 23 h post-HCl. All measurements were performed at 1, 5, or 24 h post-HCl. Instillation of HCl in WT but not in CD44-/- resulted in increased inflammation, AHR, lung injury, and L-HA in the bronchoalveolar lavage fluid (BALF) 24 h post-HCl; L-HA levels and lung injury were significantly lower in HCl-instilled MPO-/- mice. Isolated perfused lungs of HCl instilled WT but not of CD44-/- mice had elevated values of the filtration coefficient ( Kf). Addition of L-HA on the apical surface of human primary bronchial epithelial cell monolayer decreased barrier resistance ( RT). H-HA significantly mitigated inflammation, AHR, and pulmonary vascular leakage at 24 h after HCl instillation and mitigated the increase of Kf and RT, as well as ROCK2 phosphorylation. Increased H- and L-HA levels were found in the BALF of mechanically ventilated patients but not in healthy volunteers. HCl instillation-induced lung injury is mediated by the L-HA-CD44-RhoA-ROCK2 signaling pathway, and H-HA is a potential novel therapeutic agent for acid aspiration-induced lung injury.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ming-Yuan Jian
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Carol Trempus
- Matrix Biology Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Stavros Garantziotis
- Matrix Biology Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|