1
|
Hussain W, Jiang ZL, Liu Y, Wang JY, Yasoob TB, Hussain SA, Laila UE, Wu DD, Ji XY, Dang YL. PEST Proteolysis Signals Containing Nuclear Protein Related Proteins in Eye and Eye Diseases:A Review. Exp Eye Res 2025:110451. [PMID: 40414338 DOI: 10.1016/j.exer.2025.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The human visual system is a critical component for understanding the world around us, but it is affected by various eye conditions that lead to visual impairments. More than 2.2 billion people worldwide suffer from vision problems such as macular degeneration, refractive errors, cataracts, and glaucoma. In the field of iridology, essential proteins for maintaining healthy eye activity are often mutated or dysregulated. Clear vision is essential for people, and mutations related to these proteins can significantly impact the prevalence and development of eye disorders. Proteins that are linked to ocular disorders, including the nuclear protein Ras, S-glutathionylation, the human ER1 protein, and the Pest Proteolysis Signal-containing Nuclear Protein (PCNP), were examined in this study. Identifying and studying potential treatment targets and strategies to regulate the function of these proteins is crucial for minimizing the prevalence of eye disorders. PCNP is specifically linked to the development of several eye disorders. The development of clinical strategies to effectively treat ocular disorders will benefit from an understanding of these molecular processes. The main focus of this study was on PCNP because of due to its significant role in the pathophysiology of eye disorders. Understanding the function of this protein is vital, as its dysregulation has been linked with several ocular diseases. It is important to fully understand the roles of these essential proteins to develop effective treatments and preventive measures for ocular problems. This review therefore aims to contribute to advancements in the research, treatment, and management of preventable blindness and vision impairment globally by influencing thoughts on how to target and regulate these prospective remedies.
Collapse
Affiliation(s)
- Wahab Hussain
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Oncology, Huaxian County Hospital, Huaxian Henan Province 456400, China
| | - Zhi-Liang Jiang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Yi Wang
- San-Quan College, XinXiang Medical University, No. 688 Xiangyang Road, Hongmen Town, Hongqi District, Xinxiang City, Henan 453003, China
| | - Talat Bilal Yasoob
- Department of Animal Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Syed Ashiq Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Umm E Laila
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, Henan 450064, China.
| | - Ya-Long Dang
- Department of Ophthalmology, Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, China; Department of Ophthalmology, Sanmenxia Eye Hospital, Sanmenxia, Henan, China; Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, China.
| |
Collapse
|
2
|
Luo S, Yuan X, Cheng J, Yang Z, Huang Z, Wang JJ. Enantioselective Zn-catalyzed hydrophosphinylation of nitrones: an efficient approach for constructing chiral α-hydroxyamino-phosphine oxides. Chem Sci 2025; 16:7051-7056. [PMID: 40144495 PMCID: PMC11934060 DOI: 10.1039/d5sc01453k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Although enantioselective hydrofunctionalizations of nitrones are established for the synthesis of various types of chiral hydroxylamines, the asymmetric catalytic hydrophosphinylation of nitrones remains highly challenging. Herein, an efficient asymmetric hydrophosphinylation of nitrones, catalyzed by the dinuclear zinc catalyst derived from ProPhenol, is presented, accommodating a variety of nitrones and phosphine oxides. This approach successfully addresses the long-standing challenge of catalytic hydrophosphinylation of the C[double bond, length as m-dash]N bond, and offers an efficient and rapid access towards chiral α-hydroxyamino-phosphine oxides. Control experiments suggest that the oxide anion in the nitrone motif is crucial for the enantio-control.
Collapse
Affiliation(s)
- Shihui Luo
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong China
| | - Xinzhu Yuan
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong China
| | - Jiangtao Cheng
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong China
| | - Zhiping Yang
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong China
| | - Zhongxing Huang
- Department of Chemistry, The University of Hong Kong Hong Kong China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong China
| |
Collapse
|
3
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2025; 20:291-304. [PMID: 39707712 PMCID: PMC11792828 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Hazim RA, Williams DS. The Importance of Differentiated RPE Cultures for studying Cell Biological Processes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:351-355. [PMID: 39930221 DOI: 10.1007/978-3-031-76550-6_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The retinal pigment epithelium (RPE) is a polarized monolayer of cells that provides essential functions to the light-sensitive photoreceptors in the retina. Many of the cell biological processes involving the RPE, including those underlying disease mechanisms, can be studied using in vitro culture systems. For such models to be informative, the RPE cultures must be well-differentiated and fully mature, exhibiting the key characteristics of their native counterparts. In this mini review, we emphasize this requirement to use fully differentiated RPE cultures by discussing structural, functional, and metabolic aspects of the RPE.
Collapse
Affiliation(s)
- Roni A Hazim
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - David S Williams
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. J Lipid Res 2025; 66:100716. [PMID: 39608569 PMCID: PMC11745954 DOI: 10.1016/j.jlr.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024] Open
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR/Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with an abnormal eye phenotype and demonstrate that even morphologically normal siblings exhibit dysregulated vision and stress response gene pathways. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities, and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Ugarte M, Lawless C. Putative retina metal/metalloid-binding proteins: molecular functions, biological processes and retina disease associations. Metallomics 2024; 16:mfae045. [PMID: 39322243 PMCID: PMC11523097 DOI: 10.1093/mtomcs/mfae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
The mammalian retina contains high amounts of metals/metalloid-selenium. Their dyshomeostases are associated with certain retinal diseases. We carried out this bioinformatics study to identify the relationships between putative retinal metal/selenium binding proteins, their molecular functions, and biological processes. Identification of putative mouse metal/selenium binding proteins was based on known binding motifs, domains, patterns, and profiles. Annotations were obtained from Uniprot keywords 'metal binding', 'metal ion co-factors', 'selenium proteins'. Protein functions were estimated by associative frequency with key words in UniProt annotations. The raw data of five mouse proteomics PRIDE datasets (available to date) were downloaded and processed with Mascot against the mouse taxa of Uniprot (SwissProt/Trembl) and MaxQuant (version 1.6.10.43) for qualitative and quantitative datasets, respectively. Clinically relevant variants were evaluated using archives and aggregated information in ClinVar. The 438 proteins common to all the retina proteomics datasets were used to identify over-represented Gene Ontology categories. The putative mouse retinal metal/metalloid binding proteins identified are mainly involved in: (1) metabolic processes (enzymes), (2) homeostasis, (3) transport (vesicle mediated, transmembrane, along microtubules), (4) cellular localization, (5) regulation of signalling and exocytosis, (6) organelle organization, (7) (de)phosphorylation, and (8) complex assembly. Twenty-one proteins were identified as involved in response to light stimulus and/or visual system development. An association of metal ion binding proteins rhodopsin, photoreceptor specific nuclear receptor, calcium binding protein 4 with disease-related mutations in inherited retinal conditions was identified, where the mutations affected an area within or in close proximity to the metal binding site or domain. These findings suggest a functional role for the putative metal/metalloid binding site in retinal proteins in certain retinal disorders.
Collapse
Affiliation(s)
- Marta Ugarte
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Rm A.3034a Michael-Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Xie J, Goodbourn PT, Bui BV, Jusuf PR. Establishment and comprehensive characterization of a novel dark-reared zebrafish model for myopia studies. Exp Eye Res 2024; 246:110009. [PMID: 39067805 DOI: 10.1016/j.exer.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Myopia is predicted to impact approximately 5 billion people by 2050, necessitating mechanistic understanding of its development. Myopia results from dysregulated genetic mechanisms of emmetropization, caused by over-exposure to aberrant visual environments; however, these genetic mechanisms remain unclear. Recent human genome-wide association studies have identified a range of novel myopia-risk genes. To facilitate large-scale in vivo mechanistic examination of gene-environment interactions, this study aims to establish a myopia model platform that allows efficient environmental and genetic manipulations. We established an environmental zebrafish myopia model by dark-rearing. Ocular biometrics including relative ocular refraction were quantified using optical coherence tomography images. Spatial vision was assessed using optomotor response (OMR). Retinal function was analyzed via electroretinography (ERG). Myopia-associated molecular contents or distributions were examined using RT-qPCR or immunohistochemistry. Our model produces robust phenotypic changes, showing myopia after 2 weeks of dark-rearing, which were recoverable within 2 weeks after returning animals to normal lighting. 2-week dark-reared zebrafish have reduced spatial-frequency tuning function. ERG showed reduced photoreceptor and bipolar cell function (a- and b-waves) after only 2 days of dark-rearing, which worsened after 2 weeks of dark-rearing. We also found dark-rearing-induced changes to expression of myopia-risk genes, including egr1, vegfaa, vegfab, rbp3, gjd2a and gjd2b, inner retinal distribution of EFEMP1, TIMP2 and MMP2, as well as transiently reduced PSD95 density in the inner plexiform layer. Coupled with the gene editing tools available for zebrafish, our environmental myopia model provides an excellent platform for large-scale investigation of gene-environment interactions in myopia development.
Collapse
Affiliation(s)
- Jiaheng Xie
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Patrick T Goodbourn
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Patricia Regina Jusuf
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
9
|
Ranard KM, Appel B. Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605803. [PMID: 39131270 PMCID: PMC11312534 DOI: 10.1101/2024.07.30.605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.
Collapse
Affiliation(s)
- Katherine M Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
11
|
Werner S, Okenve-Ramos P, Hehlert P, Zitouni S, Priya P, Mendonça S, Sporbert A, Spalthoff C, Göpfert MC, Jana SC, Bettencourt-Dias M. IFT88 maintains sensory function by localising signalling proteins along Drosophila cilia. Life Sci Alliance 2024; 7:e202302289. [PMID: 38373798 PMCID: PMC10876440 DOI: 10.26508/lsa.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.
Collapse
Affiliation(s)
| | | | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Sihem Zitouni
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institut de Génétique Humaine (IGH), UMR, 9002 CNRS, Montpellier, France
| | - Pranjali Priya
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Berlin, Germany
| | - Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | | |
Collapse
|
12
|
Yu J, Yin Y, Leng Y, Zhang J, Wang C, Chen Y, Li X, Wang X, Liu H, Liao Y, Jin Y, Zhang Y, Lu K, Wang K, Wang X, Wang L, Zheng F, Gu Z, Li Y, Fan Y. Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: current progress and future perspectives. Adv Drug Deliv Rev 2023; 197:114842. [PMID: 37105398 DOI: 10.1016/j.addr.2023.114842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Collapse
Affiliation(s)
- Jiaheng Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqi Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubing Leng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingcheng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanyun Chen
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaorui Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xudong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yishan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yihan Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Keyu Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kehao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| |
Collapse
|
13
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
14
|
The First Homozygote Mutation c.499G>T (Asp167Tyr) in the RPE65 Gene Encoding Retinoid Isomerohydrolase Causing Retinal Dystrophy. Curr Issues Mol Biol 2022; 44:6397-6403. [PMID: 36547097 PMCID: PMC9777422 DOI: 10.3390/cimb44120436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
RPE65, an abundant membrane-associated protein present in the retinal pigment epithelium (RPE), is a vital retinoid isomerase necessary for regenerating 11-cis-retinaldehyde from all-trans retinol in the visual cycle. In patients with inherited retinal dystrophy (IRD), precise genetic diagnosis is an indispensable approach as it is required to establish eligibility for the genetic treatment of RPE65-associated IRDs. This case report aims to report the specific phenotype−genotype correlation of the first patient with a homozygous missense variant RPE65 c.499G>T, p. (Asp167Tyr). We report a case of a 66-year-old male who demonstrated a unique phenotype manifesting less severe functional vision deterioration in childhood and adolescence, and extensive nummular pigment clusters. The underlying causes of the differences in the typical bone spicule and atypical nummular pigment clumping are unknown, but suggest that the variant itself influenced the rate of photoreceptor death. Functional studies are needed to define whether the substitution of aspartate impairs the folding of the tertiary RPE65 structure only and does not lead to the complete abolishment of chromophore production, thus explaining the less severe phenotype in adolescence.
Collapse
|
15
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
16
|
Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front Nutr 2022; 9:914457. [PMID: 35923205 PMCID: PMC9339908 DOI: 10.3389/fnut.2022.914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rose M. Gilbert
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
17
|
Coenzyme Q10 in the eye isomerizes by sunlight irradiation. Sci Rep 2022; 12:12104. [PMID: 35840805 PMCID: PMC9287378 DOI: 10.1038/s41598-022-16343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function. To explore any photoisomerizable lipids in the eyes, the nonirradiated and sunlight-irradiated eyeball extracts were subjected to liquid chromatography-mass spectrometry analysis, followed by the identification of the decreased lipid species in the irradiated extracts. Surprisingly, more than nine hundred lipid species were decreased in the irradiated extracts. Three lipid species, coenzyme Q10 (CoQ10), triglyceride(58:4), and coenzyme Q9, were decreased both significantly (p < 0.05) and by more than two-fold, where CoQ10 showed the most significant decrease. Later, photoisomerization was identified as the prominent cause underlying the decrease of CoQ10. Interestingly, CoQ10 in the sunlight-irradiated fresh eyeballs was also isomerized. Both the visible light and ultraviolet radiation were capable of producing CoQ10 isomer, while the latter showed rapid action. This study is believed to enhance our understanding of the biochemistry and photodamage of the eye and can potentially contribute to the advancement of opto-lipidomics.
Collapse
|
18
|
Zhou J, Flores-Bellver M, Pan J, Benito-Martin A, Shi C, Onwumere O, Mighty J, Qian J, Zhong X, Hogue T, Amponsah-Antwi B, Einbond L, Gharbaran R, Wu H, Chen BJ, Zheng Z, Tchaikovskaya T, Zhang X, Peinado H, Canto-Soler MV, Redenti S. Human retinal organoids release extracellular vesicles that regulate gene expression in target human retinal progenitor cells. Sci Rep 2021; 11:21128. [PMID: 34702879 PMCID: PMC8548301 DOI: 10.1038/s41598-021-00542-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/07/2021] [Indexed: 01/23/2023] Open
Abstract
The mechanisms underlying retinal development have not been completely elucidated. Extracellular vesicles (EVs) are novel essential mediators of cell-to-cell communication with emerging roles in developmental processes. Nevertheless, the identification of EVs in human retinal tissue, characterization of their cargo, and analysis of their potential role in retina development has not been accomplished. Three-dimensional retinal tissue derived from human induced pluripotent stem cells (hiPSC) provide an ideal developmental system to achieve this goal. Here we report that hiPSC-derived retinal organoids release exosomes and microvesicles with small noncoding RNA cargo. EV miRNA cargo-predicted targetome correlates with Gene Ontology (GO) pathways involved in mechanisms of retinogenesis relevant to specific developmental stages corresponding to hallmarks of native human retina development. Furthermore, uptake of EVs by human retinal progenitor cells leads to changes in gene expression correlated with EV miRNA cargo predicted gene targets, and mechanisms involved in retinal development, ganglion cell and photoreceptor differentiation and function.
Collapse
Affiliation(s)
- Jing Zhou
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz- Rodgers Eye Center, University of Colorado, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Jianbo Pan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alberto Benito-Martin
- Departments of Pediatrics, Hematology/Oncology Division, Weill Medical College of Cornell University, 413 E. 69th St., New York, NY, 10021, USA
| | - Cui Shi
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | | | - Jason Mighty
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tasmim Hogue
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | | | - Linda Einbond
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | | | - Hao Wu
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - Zhiliang Zheng
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Tatyana Tchaikovskaya
- Department of Medicine, Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Department of Medicine, Computational Genomics Core in Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Maria Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz- Rodgers Eye Center, University of Colorado, 12800 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Stephen Redenti
- Lehman College, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
- Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
19
|
Chiu W, Lin TY, Chang YC, Isahwan-Ahmad Mulyadi Lai H, Lin SC, Ma C, Yarmishyn AA, Lin SC, Chang KJ, Chou YB, Hsu CC, Lin TC, Chen SJ, Chien Y, Yang YP, Hwang DK. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci 2021; 22:ijms22094534. [PMID: 33926102 PMCID: PMC8123696 DOI: 10.3390/ijms22094534] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye’s accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.
Collapse
Affiliation(s)
- Wei Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Henkie Isahwan-Ahmad Mulyadi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shen-Che Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Bai Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| |
Collapse
|
20
|
Nigalye A, Pundlik S, Kim J, Luo G, Husain D. Delayed dark adaptation in central serous chorioretinopathy. Am J Ophthalmol Case Rep 2021; 22:101098. [PMID: 33997469 PMCID: PMC8094908 DOI: 10.1016/j.ajoc.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate the effect of central serous chorioretinopathy (CSCR) on retinal function using dark adaptation in a human subject, and to follow it through resolution of the disease. Patients Single patient, 50 years old male patient, with acute CSCR in one eye and resolved old CSCR in the other eye. Observations Observational study in patient with CSCR followed through resolution of the subretinal fluid (52 days). Dark adaptation was assessed using the AdaptDx® (Maculogix Inc.) measured by Rod Intercept time (RIT) in minutes. A normal retinal locus of the same eye on the opposite side of the fovea was used as control. Retinal separation (microns) was measured using Spectralis Optical Coherence Tomography (Spectralis®, HRA + OCT, Heidelberg engineering). Change in time to dark adapt, were correlated with retinal separation measured in microns, during the course of CSCR. The Rod Intercept time was delayed in the area of detached retina compared to the normal region (control) on presentation with retinal separation (RS) of 104 μm. The Rod Intercept time returned to normal as the retinal separation from retinal pigment epithelium decreased and eventually resolved. Conclusions This case shows that delay in dark adaptation is proportional to the amount of separation of neurosensory retina from retinal pigment epithelium in CSCR, this may offer a potential of using DA to characterize visual function in CSCR. The association of dark adaptation response with the state of retinal pigment epithelial function and its ability to predict the recurrence of CSCR needs further evaluation.
Collapse
Affiliation(s)
- Archana Nigalye
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Shrinivas Pundlik
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Janice Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Gang Luo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Fathi M, Ross CT, Hosseinzadeh Z. Functional 3-Dimensional Retinal Organoids: Technological Progress and Existing Challenges. Front Neurosci 2021; 15:668857. [PMID: 33958988 PMCID: PMC8095320 DOI: 10.3389/fnins.2021.668857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cell scientists have developed methods for the self-formation of artificial organs, often referred to as organoids. Organoids can be used as model systems for research in multiple biological disciplines. Yoshiki Sasai’s innovation for deriving mammalian retinal tissue from in vitro stem cells has had a large impact on the study of the biology of vision. New developments in retinal organoid technology provide avenues for in vitro models of human retinal diseases, studies of pathological mechanisms, and development of therapies for retinal degeneration, including electronic retinal implants and gene therapy. Moreover, these innovations have played key roles in establishing models for large-scale drug screening, studying the stages of retinal development, and providing a human model for personalized therapeutic approaches, like cell transplants to replace degenerated retinal cells. Here, we first discuss the importance of human retinal organoids to the biomedical sciences. Then, we review various functional features of retinal organoids that have been developed. Finally, we highlight the current limitations of retinal organoid technologies.
Collapse
Affiliation(s)
- Meimanat Fathi
- Department of Cell Techniques and Applied Stem Cell Biology, Faculty of Medicine, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany.,Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Cody T Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Zohreh Hosseinzadeh
- Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Sasai N, Kadoya M, Ong Lee Chen A. Neural induction: Historical views and application to pluripotent stem cells. Dev Growth Differ 2021; 63:26-37. [PMID: 33289091 DOI: 10.1111/dgd.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state-of-the-art stem cell research.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Agnes Ong Lee Chen
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
24
|
Garafalo AV, Sheplock R, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG. Childhood-onset genetic cone-rod photoreceptor diseases and underlying pathobiology. EBioMedicine 2021; 63:103200. [PMID: 33421946 PMCID: PMC7806809 DOI: 10.1016/j.ebiom.2020.103200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal diseases (IRDs) were first classified clinically by history, ophthalmoscopic appearance, type of visual field defects, and electroretinography (ERG). ERGs isolating the two major photoreceptor types (rods and cones) showed some IRDs with greater cone than rod retinal dysfunction; others were the opposite. Within the cone-rod diseases, there can be phenotypic variability, which can be attributed to genetic heterogeneity and the variety of visual function mechanisms that are disrupted. Most cause symptoms from childhood or adolescence, although others can manifest later in life. Among the causative genes for cone-rod dystrophy (CORD) are those encoding molecules in phototransduction cascade activation and recovery processes, photoreceptor outer segment structure, the visual cycle and photoreceptor development. We review 11 genes known to cause cone-rod disease in the context of their roles in normal visual function and retinal structure. Knowledge of the pathobiology of these genetic diseases is beginning to pave paths to therapy.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
26
|
Chen C, Chen J, Wang Y, Liu Z, Wu Y. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J Biol Chem 2020; 296:100187. [PMID: 33334878 PMCID: PMC7948481 DOI: 10.1074/jbc.ra120.015779] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
The death of photoreceptor cells in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1) is closely associated with disruption in all-trans-retinal (atRAL) clearance in neural retina. In this study, we reveal that the overload of atRAL leads to photoreceptor degeneration through activating ferroptosis, a nonapoptotic form of cell death. Ferroptosis of photoreceptor cells induced by atRAL resulted from increased ferrous ion (Fe2+), elevated ACSL4 expression, system Xc- inhibition, and mitochondrial destruction. Fe2+ overload, tripeptide glutathione (GSH) depletion, and damaged mitochondria in photoreceptor cells exposed to atRAL provoked reactive oxygen species (ROS) production, which, together with ACSL4 activation, promoted lipid peroxidation and thereby evoked ferroptotic cell death. Moreover, exposure of photoreceptor cells to atRAL activated COX2, a well-accepted biomarker for ferroptosis onset. In addition to GSH supplement, inhibiting either Fe2+ by deferoxamine mesylate salt (DFO) or lipid peroxidation with ferrostatin-1 (Fer-1) protected photoreceptor cells from ferroptosis caused by atRAL. Abca4-/-Rdh8-/- mice exhibiting defects in atRAL clearance is an animal model for dry AMD and STGD1. We observed that ferroptosis was indeed present in neural retina of Abca4-/-Rdh8-/- mice after light exposure. More importantly, photoreceptor atrophy and ferroptosis in light-exposed Abca4-/-Rdh8-/- mice were effectively alleviated by intraperitoneally injected Fer-1, a selective inhibitor of ferroptosis. Our study suggests that ferroptosis is one of the important pathways of photoreceptor cell death in retinopathies arising from excess atRAL accumulation and should be pursued as a novel target for protection against dry AMD and STGD1.
Collapse
Affiliation(s)
- Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Yan Wang
- Department of Ophthalmology, Shenzhen Hospital, Southern Medical University, Shenzhen City, Guangdong, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China; Xiamen Eye Center of Xiamen University, Xiamen City, Fujian, China; Shenzhen Research Institute of Xiamen University, Shenzhen City, Guangdong, China.
| |
Collapse
|
27
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Cioffi CL, Muthuraman P, Raja A, Varadi A, Racz B, Petrukhin K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J Med Chem 2020; 63:11054-11084. [DOI: 10.1021/acs.jmedchem.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
29
|
Ng FJ, Mackey DA, O'Sullivan TA, Oddy WH, Yazar S. Is Dietary Vitamin A Associated with Myopia from Adolescence to Young Adulthood? Transl Vis Sci Technol 2020; 9:29. [PMID: 32821526 PMCID: PMC7408804 DOI: 10.1167/tvst.9.6.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Potential links may exist between vitamin A intake and myopia via various pathways. In this study, we examined the association between dietary vitamin A intake during adolescence and myopia in early adulthood. Methods We performed a prospective analysis utilizing data collected from participants of the Raine Study Gen2. Dietary vitamin A intake, determined via food frequency questionnaires completed at ages 14, 17, and 20 years, was compared with ophthalmic measurements collected at year 20. Low vitamin A levels were defined as <600 µg/day. Regression models were used to adjust for ocular sun exposure level, educational level, and parental myopia as potential confounders. Results A total of 642 subjects were analyzed. Although those with adequate vitamin A intakes were less likely to be myopic (P = 0.03), this association became insignificant when adjusted for potential confounding factors in logistic regression modeling (odds ratio, 0.59; 95% confidence interval, 0.98–2.52; P = 0.06). Conclusions There were no significant associations between total vitamin A intakes during adolescence and year 20 refractive errors after adjustment for confounders. Replication of this finding and further investigations are essential to rule out the suggestion that sufficient vitamin A intake during adolescence is associated with lower risk of myopia in early adulthood. Translational Relevance Our findings are not definitive that ingesting foods high in vitamin A during childhood and adolescence does not have a role for preventing myopia in early adulthood.
Collapse
Affiliation(s)
- Fletcher J Ng
- Department of Genetics and Epidemiology, Lions Eye Institute, Perth, Western Australia, Australia
| | - David A Mackey
- Department of Genetics and Epidemiology, Lions Eye Institute, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Therese A O'Sullivan
- School of Medical and Health Science, Edith Cowan University, Perth, Western Australia, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Seyhan Yazar
- Department of Genetics and Epidemiology, Lions Eye Institute, Perth, Western Australia, Australia.,Garvan Institute of Medical Research, Sydney, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Kenna PF, Humphries MM, Kiang AS, Brabet P, Guillou L, Ozaki E, Campbell M, Farrar GJ, Koenekoop R, Humphries P. Advanced late-onset retinitis pigmentosa with dominant-acting D477G RPE65 mutation is responsive to oral synthetic retinoid therapy. BMJ Open Ophthalmol 2020; 5:e000462. [PMID: 32426524 PMCID: PMC7228561 DOI: 10.1136/bmjophth-2020-000462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
Objectives No therapeutic interventions are currently available for autosomal dominant retinitis pigmentosa (adRP). An RPE65 Asp477Gly transition associates with late-onset adRP, reduced RPE65 enzymatic activity being one feature associated with this dominant variant. Our objective: to assess whether in a proof-of-concept study, oral synthetic 9 cis-retinyl acetate therapy improves vision in such advanced disease. Methods and analysis A phase 1b proof-of-concept clinical trial was conducted involving five patients with advanced disease, aged 41-68 years. Goldmann visual fields (GVF) and visual acuities (VA) were assessed for 6-12 months after 7-day treatment, patients receiving consecutive oral doses (40 mg/m2) of 9-cis-retinyl acetate, a synthetic retinoid replacement. Results Pathological effects of D477G variant were preliminarily assessed by electroretinography in mice expressing AAV-delivered D477G RPE65, by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme- thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays on RPE viability and enzyme activity in cultured cells. In addition to a mild dominant effect reflected in reduced electroretinographics in mice, and reduced cellular function in vitro, D477G exhibited reduced enzymatic RPE65 activity in vitro. In patients, significant improvements were observed in GVF from baseline ranging from 70% to 200% in three of five subjects aged 67-68 years, with largest improvements at 7-10 months. Of two GVF non-responders, one had significant visual acuity improvement (5-15 letters) from baseline after 6 months. Conclusion Families with D477G variant have been identified in Ireland, the UK, France, the USA and Canada. Effects of single 7-day oral retinoid supplementation lasted at least 6 months, possibly giving visual benefit throughout remaining life in patients with advanced disease, where gene therapy is unlikely to prove beneficial.
Collapse
Affiliation(s)
- Paul F Kenna
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Marian M Humphries
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Anna-Sophia Kiang
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Philippe Brabet
- Neurosciences, Institute for Neurosciences of Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Laurent Guillou
- Neurosciences, Institute for Neurosciences of Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Ema Ozaki
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Matthew Campbell
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - G Jane Farrar
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Robert Koenekoop
- Departments of Ophthalmology, Human Genetics, and Paediatric Surgery, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Pete Humphries
- Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
31
|
Abstract
Vitamin A and derivatives, the natural retinoids, underpin signaling pathways of cellular differentiation, and are key chromophores in vision. These functions depend on transfer across membranes, and carrier proteins to shuttle retinoids to specific cell compartments. Natural retinoids, ultimately derived from plant carotenoids by metabolism to all-trans retinol, are lipophilic and consist of a cyclohexenyl (β-ionone) moiety linked to a polyene chain. This structure constrains the orientation of retinoids within lipid membranes. Cis-trans isomerization at double bonds of the polyene chain and s-cis/s-trans rotational isomerization at single bonds define the functional dichotomy of retinoids (signaling/vision) and specificities of interactions with specific carrier proteins and receptors. Metabolism of all-trans retinol to 11-cis retinal, transfer to photoreceptors, and removal and recycling of all-trans retinal generated by photoreceptor irradiation, is the key process underlying vision. All-trans retinol transferred into cells is metabolized to all-trans retinoic acid and shuttled to the cell nucleus to regulate gene expression controlling organ, tissue and cell differentiation, and cellular homeostasis. Research methods need to address the potential of photoisomerization in vitro to confound research results, and data should be interpreted in the context of membrane-association properties of retinoids and physiological concentrations in vivo. Despite a century of research, there are many fundamental questions of retinoid cellular biochemistry and molecular biology still to be answered. Computational modeling techniques will have an important role for understanding the nuances of vitamin A signaling and function.
Collapse
Affiliation(s)
- Chris P F Redfern
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
32
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|