1
|
Liu Y, Li Y, Wang R, Chen S, Sun N, Qi X. Development of a chemiluminescent immunoassay based on magnetic solid phase for quantification of homocysteine in human serum. BMC Biotechnol 2024; 24:77. [PMID: 39385151 PMCID: PMC11465875 DOI: 10.1186/s12896-024-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Homocysteine (HCY) is a sulfur-containing amino acid that is an independent or important risk factor for the occurrence of many chronic diseases and is one of the most important indicators for determining health risks. However, existing HCY detection methods do not meet the requirements of clinical diagnosis. Therefore, there is an urgent need to establish new detection methods to meet the needs of clinical detection. RESULTS In this study, we used the principle of competitive method to establish a new method for the determination of HCY in human serum using a chemiluminescent enzyme immunoassay in conjunction with a chemiluminescent assay instrument that uses magnetic microparticles as the solid phase of the immunoreaction. The established method achieved satisfactory results in terms of minimum detection limit, specificity, accuracy, and clinical application. The limit of detection was 0.03 ng/mL. The intra-assay coefficient of variation (CV) was 1.94-5.05%, the inter-assay CV was 2.29-6.88%, and the recovery rate was 88.60-93.27%. Cross-reactivity with L-cysteine ranged from 0.0100 to 0.0200 μmol/L, and cross-reactivity with glutathione ranged from 0.0100 to 0.200 μmol/L, all of which were less than the limit of detection (LoD) of this method. The linear factor R of this method was greater than 0.99. CONCLUSIONS In summary, the developed method showed a good correlation with the product from Abbott. A total of 996 clinical patients with cardiovascular diseases were evaluated using the method developed in this study.
Collapse
Affiliation(s)
- Yankui Liu
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China
| | - Yaru Li
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214122, Jiangsu, China
| | - Rong Wang
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214122, Jiangsu, China
| | - Shuning Chen
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214122, Jiangsu, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China.
| | - Xiaowei Qi
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Wood WN, Rubio MA, Leiva LE, Phillips GJ, Ibba M. Methionyl-tRNA synthetase synthetic and proofreading activities are determinants of antibiotic persistence. Front Microbiol 2024; 15:1384552. [PMID: 38601944 PMCID: PMC11004401 DOI: 10.3389/fmicb.2024.1384552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site of MetRS and the other two mutants changes near the anticodon binding domain. Mutations in metG are of particular interest because MetRS is responsible for aminoacylation both initiator tRNAMet and elongator tRNAMet indicating that these mutants could impact translation initiation and/or translation elongation. We observed that all the metG mutants increased the level of antibiotic persistence as did reduced transcription levels of wild type metG. Although, the MetRS variants did not have an impact on MetRS activity itself, they did reduce translation rates. It was also observed that the MetRS variants affected the proofreading mechanism for homocysteine and that these mutants' growth is hypersensitive to homocysteine. Taken together with previous findings, our data indicate that both reductions in cellular Met-tRNAMet synthetic capacity and reduced proofreading of homocysteine by MetRS variants are positive determinants for bacterial antibiotic persistence.
Collapse
Affiliation(s)
- Whitney N. Wood
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Miguel Angel Rubio
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, IA, United States
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| |
Collapse
|
3
|
Chen SM, Tang XQ. Homocysteinylation and Sulfhydration in Diseases. Curr Neuropharmacol 2022; 20:1726-1735. [PMID: 34951391 PMCID: PMC9881069 DOI: 10.2174/1570159x20666211223125448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.
Collapse
Affiliation(s)
- Si-Min Chen
- Emergency Intensive Care Unit, Department of Emergency, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, P.R. China; ,The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China,Address correspondence to this author at the The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China 69 Chuanshan Road, Hengyang 421001, Hunan Province, P.R. China; E-mails: ;
| |
Collapse
|
4
|
Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev 2019; 99:555-604. [PMID: 30427275 DOI: 10.1152/physrev.00003.2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies established that elevated homocysteine, an important intermediate in folate, vitamin B12, and one carbon metabolism, is associated with poor health, including heart and brain diseases. Earlier studies show that patients with severe hyperhomocysteinemia, first identified in the 1960s, exhibit neurological and cardiovascular abnormalities and premature death due to vascular complications. Although homocysteine is considered to be a nonprotein amino acid, studies over the past 2 decades have led to discoveries of protein-related homocysteine metabolism and mechanisms by which homocysteine can become a component of proteins. Homocysteine-containing proteins lose their biological function and acquire cytotoxic, proinflammatory, proatherothrombotic, and proneuropathic properties, which can account for the various disease phenotypes associated with hyperhomocysteinemia. This review describes mechanisms by which hyperhomocysteinemia affects cellular proteostasis, provides a comprehensive account of the biological chemistry of homocysteine-containing proteins, and discusses pathophysiological consequences and clinical implications of their formation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health , Newark, New Jersey ; and Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
5
|
Borowczyk K, Suliburska J, Jakubowski H. Demethylation of methionine and keratin damage in human hair. Amino Acids 2018; 50:537-546. [PMID: 29480334 PMCID: PMC5917003 DOI: 10.1007/s00726-018-2545-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Abstract
Growing human head hair contains a history of keratin and provides a unique model for studies of protein damage. Here, we examined mechanism of homocysteine (Hcy) accumulation and keratin damage in human hair. We found that the content of Hcy-keratin increased along the hair fiber, with levels 5-10-fold higher levels in older sections at the hair's tip than in younger sections at hair's base. The accumulation of Hcy led to a complete loss of keratin solubility in sodium dodecyl sulfate. The increase in Hcy-keratin was accompanied by a decrease in methionine-keratin. Levels of Hcy-keratin were correlated with hair copper and iron in older hair. These relationships were recapitulated in model experiments in vitro, in which Hcy generation from Met exhibited a similar dependence on copper or iron. Taken together, these findings suggest that Hcy-keratin accumulation is due to copper/iron-catalyzed demethylation of methionine residues and contributes to keratin damage in human hair.
Collapse
Affiliation(s)
- Kamila Borowczyk
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ, 07103, USA.,Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ, 07103, USA. .,Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland.
| |
Collapse
|
6
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Medvedev DV, Zvyagina VI, Uryasev OM, Belskikh ES, Bulatetskiy SV, Ryabkov AN. [Metabolic changes in pulmonary mitochondria of rats with experimental hyperhomocysteinemia]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:248-254. [PMID: 28781258 DOI: 10.18097/pbmc20176303248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperhomocysteinemia is a risk factor for many human diseases, including pulmonary pathologies. In this context much interest attracts secondary mitochondrial dysfunction, which is an important link in pathogenesis of diseases associated with hyperhomocysteinemia. The study was conducted using male Wistar rats. It was found that under conditions of severe hyperhomocysteinemia caused by administration of methionine, homocysteine was accumulated in lung mitochondria thus suggesting a direct toxic effect on these organelles. However, we have not observed any significant changes in the activity of mitochondrial enzymes involved in tissue respiration (succinate dehydrogenase) and oxidative phosphorylation (H+-ATPase) and of cytoplasmic lactate dehydrogenase. Also there was no accumulation of lactic acid in the cytoplasm. Animals with severe hyperhomocysteinemia had higher levels of lung mitochondrial protein carbonylation, decreased reserve-adaptive capacity, and increased superoxide dismutase activity. These results indicate that severe hyperhomocysteinemia causes development of oxidative stress in lung mitochondria, which is compensated by activation of antioxidant protection. These changes were accompanied by a decrease in the concentration of mitochondrial nitric oxide metabolites. Introduction to animals a nonselective NO-synthase inhibitor L-NAME caused similar enhancement of mitochondrial protein carbonylation. It demonstrates importance of reducing bioavailability of nitric oxide, which is an antioxidant in physiological concentrations, in the development of oxidative stress in lung mitochondria during hyperhomocysteinemia. Key words: hyperhomocysteinemia, nitric oxide, lung, oxidative stress, mitochondria.
Collapse
|
8
|
Jakubowski H. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †. Life (Basel) 2017; 7:life7010006. [PMID: 28208756 PMCID: PMC5370406 DOI: 10.3390/life7010006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan 60-632, Poland.
| |
Collapse
|
9
|
Jakubowski H. The Mechanism and Consequences of Homocysteine Incorporation Into Protein in Humans. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.736104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hieronim Jakubowski
- a Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School , International Center for Public Health , Newark , NJ , USA
- b Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, and Department of Biochemistry and Biotechnology , University of Life Sciences , Poznań , Poland
| |
Collapse
|
10
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gzyl J, Chmielowska-Bąk J. Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:177-84. [PMID: 23266362 DOI: 10.1016/j.plaphy.2012.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/28/2012] [Indexed: 05/03/2023]
Abstract
Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid in the plant response to stress has not been recognized yet. In the presented study, using potato plant (Solanum tuberosum L.) and Phytophthora infestans as a model system, the presence and tissue localization of Hcy in leaves was examined by an immunohistochemical method. The over-production of Hcy was more evidenced in the susceptible than in the resistant genotype of potato starting from 48 hpi. Furthermore, the elevated level of Hcy was correlated in time with the up-regulation of genes engaged in its biosynthesis, e.g. cystathionine β-lyase and S-adenosyl-l-homocysteine hydrolase. The pharmacological approach with exogenous Hcy resulted in significant rise in lipid peroxidation and more potent late blight disease development in leaves of susceptible potato as well. Finally, it has been found that key defense enzymes, i.e. phenylalanine ammonia lyase and β-1,3-glucanase were up-regulated early in the resistant potato genotype, starting from 1st hpi. In turn, in the susceptible potato the time-lag in expression of these enzymes tuned with excess production of Hcy might facilitate leaf tissue colonization by pathogen. Based on obtained results it should be stated that Hcy over-accumulation is engaged in pathophysiological mechanism leading to the abolishment of the resistance and might be an informative disease hallmark both in plant and in animal system.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
11
|
Rebouças JS, James BR. Molecular Recognition Using Ruthenium(II) Porphyrin Thiol Complexes as Probes. Inorg Chem 2013; 52:1084-98. [DOI: 10.1021/ic302401m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Júlio S. Rebouças
- Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58.051-900,
Brazil
| | - Brian R. James
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
12
|
Homocysteinylated protein levels in internal mammary artery (IMA) fragments and its genotype-dependence. S-homocysteine-induced methylation modifications in IMA and aortic fragments. Mol Cell Biochem 2012; 369:235-46. [PMID: 22798153 DOI: 10.1007/s11010-012-1387-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/30/2012] [Indexed: 02/05/2023]
Abstract
The resistance of internal mammary artery (IMA) toward atherosclerosis is not well understood. In plasma, homocysteine (Hcy) occurs in reduced, oxidized, homocysteine thiolactone and a component of proteins as a result of N- or S-homocysteinylation. We evaluated S/N-homocysteinylated protein levels in IMA fragments of patients undergoing coronary artery bypass grafting, and whether they were affected by genetic common variants. We tested whether tHcy, Hcy-S-protein levels, genotypes or Hcy-induced methylation modifications were related to differences in iNOS, Ddah2, and eNOS gene expression between territories. A small percentage of Hcy-S-proteins were found in IMA fragments. The Mthfr C677T (rs1801133) and Pon-1 Leu55Met (rs854560) variants were associated with Hcy-S-proteins. We observed a gradual difference according to Hcy-S-protein levels in the methylation degree of the Ddah2 gene promoter in aortic, but not in IMA, fragments. No correlation between the degree of methylation and the Ddah2 gene expression levels was found in both types of analyzed fragments. Total Hcy but not Hcy-S-proteins correlated with iNOS promoter methylation. Analyzed variants seem to contribute to the in vivo Hcy binding properties to IMA. The contribution of the Hcy-derived methylation modifications to Ddah2 and eNOS gene expression seems to be tissue-specific and independent of the Ddah2/ADMA/eNOS pathway. Hcy-derived methylation modifications to the iNOS gene promoter contribute to a lesser extent to iNOS gene expression.
Collapse
|
13
|
Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem 2011; 55:81-103. [PMID: 22126025 DOI: 10.1016/b978-0-12-387042-1.00005-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-related homocysteine (Hcy) metabolism produces Hcy-thiolactone, N-Hcy-protein, and N epsilon-homocysteinyl-lysine (N epsilon-Hcy-Lys). Hcy-thiolactone is generated in an error-editing reaction in protein biosynthesis when Hcy is erroneously selected in place of methionine by methionyl-tRNA synthetase. Hcy-thiolactone, an intramolecular thioester, is chemically reactive and forms isopeptide bonds with protein lysine residues in a process called N-homocysteinylation, which impairs or alters the protein's biological function. The resulting protein damage is exacerbated by a thiyl radical-mediated oxidation. N-Hcy-proteins undergo structural changes leading to aggregation and amyloid formation. These structural changes generate proteins, which are toxic and which induce an autoimmune response. Proteolytic degradation of N-Hcy-proteins generates N epsilon-Hcy-Lys. Levels of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys increase under pathological conditions in humans and mice and have been linked to cardiovascular and brain disorders. This chapter reviews fundamental biological chemistry of Hcy-thiolactone, N-Hcy-protein, and N epsilon-Hcy-Lys and discusses their clinical significance.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, New Jersey, USA.
| | | |
Collapse
|
14
|
Jakubowski H. Quality control in tRNA charging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:295-310. [PMID: 22095844 DOI: 10.1002/wrna.122] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Faithful translation of the genetic code during protein synthesis is fundamental to the growth, development, and function of living organisms. Aminoacyl-tRNA synthetases (AARSs), which define the genetic code by correctly pairing amino acids with their cognate tRNAs, are responsible for 'quality control' in the flow of information from a gene to a protein. When differences in binding energies of amino acids to an AARS are inadequate, editing is used to achieve high selectivity. Editing occurs at the synthetic active site by hydrolysis of noncognate aminoacyl-adenylates (pretransfer editing) and at a dedicated editing site located in a separate domain by deacylation of mischarged aminoacyl-tRNA (posttransfer editing). Access of nonprotein amino acids, such as homocysteine or ornithine, to the genetic code is prevented by the editing function of AARSs, which functionally partitions amino acids present in living cells into protein and nonprotein amino acids. Continuous editing is part of the tRNA aminoacylation process in living organisms from bacteria to human beings. Preventing mistranslation by the clearance of misactivated amino acids is crucial to cellular homeostasis and has a role in etiology of disease. Although there is a strong selective pressure to minimize mistranslation, some organisms possess error-prone AARSs that cause mistranslation. Elevated levels of mistranslation and the synthesis of statistical proteins can be beneficial for pathogens by increasing phenotypic variation essential for the evasion of host defenses.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.
| |
Collapse
|
15
|
Shinohara Y, Hasegawa H, Hashimoto T, Ichida K. Synthesis of optically active deuterium-labeled homocysteine thiolactone. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. EUKARYOTIC CELL 2010; 9:717-28. [PMID: 20305002 DOI: 10.1128/ec.00044-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In addition to threonine auxotrophy, mutation of the Saccharomyces cerevisiae threonine biosynthetic genes THR1 (encoding homoserine kinase) and THR4 (encoding threonine synthase) results in a plethora of other phenotypes. We investigated the basis for these other phenotypes and found that they are dependent on the toxic biosynthetic intermediate homoserine. Moreover, homoserine is also toxic for Candida albicans thr1Delta mutants. Since increasing levels of threonine, but not other amino acids, overcome the homoserine toxicity of thr1Delta mutants, homoserine may act as a toxic threonine analog. Homoserine-mediated lethality of thr1Delta mutants is blocked by cycloheximide, consistent with a role for protein synthesis in this lethality. We identified various proteasome and ubiquitin pathway components that either when mutated or present in high copy numbers suppressed the thr1Delta mutant homoserine toxicity. Since the doa4Delta and proteasome mutants identified have reduced ubiquitin- and/or proteasome-mediated proteolysis, the degradation of a particular protein or subset of proteins likely contributes to homoserine toxicity.
Collapse
|
17
|
Bradley WG. Possible therapy for ALS based on the cyanobacteria/BMAA hypothesis. ACTA ACUST UNITED AC 2010; 10 Suppl 2:118-23. [PMID: 19929743 DOI: 10.3109/17482960903285951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the cyanobacteria/BMAA hypothesis of the cause of ALS and other age-related neurodegenerative diseases remains to be proven, it is not too early to ask whether treatment would be possible if the hypothesis were correct. This paper reviews the possible ways that chronic BMAA neurotoxicity could be prevented or treated.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, 1120 NW 14 Street, Miami, Florida 33136, USA.
| |
Collapse
|
18
|
Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli. MICROBIOLOGY-SGM 2009; 155:1858-1865. [PMID: 19383686 DOI: 10.1099/mic.0.026609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli homocysteine (Hcy) is metabolically converted to the thioester Hcy-thiolactone in ATP-consuming reactions catalysed by methionyl-, isoleucyl- and leucyl-tRNA synthetases. Here we show that growth inhibition caused by supplementation of E. coli cultures with Hcy is accompanied by greatly increased accumulation of Hcy-thiolactone. Energy dissipation for Hcy editing increases 100-fold in the presence of exogenous Hcy and reaches one mole of ATP unproductively dissipated for Hcy-thiolactone synthesis per each mole of ATP that is consumed for methionine activation. Inhibiting Hcy-thiolactone synthesis with isoleucine, leucine or methionine accelerates bacterial growth in Hcy-supplemented cultures. Growth rates in Hcy-inhibited cultures are inversely related to the accumulation of Hcy-thiolactone. We also show that the levels of protein N-linked Hcy modestly increase in E. coli cells in Hcy-supplemented cultures. The results suggest that Hcy editing restrains bacterial growth.
Collapse
Affiliation(s)
- Marta Sikora
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA
| | - Hieronim Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA
| |
Collapse
|
19
|
Quercetin up-regulates paraoxonase 1 gene expression with concomitant protection against LDL oxidation. Biochem Biophys Res Commun 2009; 379:1001-4. [PMID: 19141295 DOI: 10.1016/j.bbrc.2009.01.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/04/2009] [Indexed: 01/19/2023]
Abstract
Paraoxonase 1 (PON1) protects the oxidative modification of low-density lipoprotein (LDL) and is a major anti-atherosclerotic protein component of high-density lipoprotein (HDL). Quercetin, a ubiquitous plant flavonoid, has been shown to have a number of bioactivities and may offer a variety of potential therapeutic uses. We explored the roles of quercetin in the regulation of PON1 expression, serum and liver activity and protective capacity of HDL against LDL oxidation in rats. Compared to the pair-fed control group, feeding quercetin (10 mg/L) in the liquid diet for 4 weeks increased (a) hepatic expression of PON1 by 35% (p<0.01), (b) serum and liver PON1 activities by 29% (p<0.05) and 57% (p<0.01), respectively, and (c) serum homocysteine thiolactonase (HCTL) activity by 23% (p<0.05). Correspondingly, the lag time of low-density lipoprotein (LDL) oxidation was increased by >3-fold (p<0.001) with plasma HDL from quercetin-fed group compared to the HDL from control group. Our data suggest that quercetin has antiatherogenic effect by up regulating PON1 gene expression and its protective capacity against LDL oxidation.
Collapse
|
20
|
Green LS, Bullard JM, Ribble W, Dean F, Ayers DF, Ochsner UA, Janjic N, Jarvis TC. Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity. Antimicrob Agents Chemother 2009; 53:86-94. [PMID: 19015366 PMCID: PMC2612134 DOI: 10.1128/aac.00275-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/09/2008] [Accepted: 10/22/2008] [Indexed: 11/20/2022] Open
Abstract
REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (K(i)) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels would actually facilitate optimal binding of the inhibitor. While many gram-positive bacteria, such as Staphylococcus aureus, express exclusively the MetRS1 subtype, many gram-negative bacteria express an alternative homolog called MetRS2. Some gram-positive bacteria, such as Streptococcus pneumoniae and Bacillus anthracis, express both MetRS1 and MetRS2. MetRS2 orthologs were considerably less susceptible to REP8839 inhibition. REP8839 inhibition of human mitochondrial MetRS was 1,000-fold weaker than inhibition of Staphylococcus aureus MetRS; inhibition of human cytoplasmic MetRS was not detectable, corresponding to >1,000,000-fold selectivity for the bacterial target relative to its cytoplasmic counterpart. Mutations in MetRS that confer reduced susceptibility to REP8839 were examined. The mutant MetRS enzymes generally exhibited substantially impaired catalytic activity, particularly in aminoacylation turnover rates. REP8839 K(i) values ranged from 4- to 190,000-fold higher for the mutant enzymes than for wild-type MetRS. These observations provide a potential mechanistic explanation for the reduced growth fitness observed with MetRS mutant strains relative to that with wild-type Staphylococcus aureus.
Collapse
|
21
|
Perła-Kaján J, Stanger O, Łuczak M, Ziółkowska A, Malendowicz LK, Twardowski T, Lhotak Š, Austin RC, Jakubowski H. Immunohistochemical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother 2008; 62:473-9. [DOI: 10.1016/j.biopha.2008.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022] Open
|
22
|
Jakubowski H. New method for the determination of protein N-linked homocysteine. Anal Biochem 2008; 380:257-61. [DOI: 10.1016/j.ab.2008.05.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/26/2022]
|
23
|
Jakubowski H. The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med 2008; 45:1704-16. [PMID: 17937605 DOI: 10.1515/cclm.2007.338] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that a metabolite of homocysteine (Hcy), the thioester Hcy-thiolactone, plays an important role in atherogenesis and thrombosis. Hcy-thiolactone levels are elevated in hyperhomocysteinemic humans and mice. The thioester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues, which impairs or alters the protein's function. Protein targets for the modification by Hcy-thiolactone in human blood include fibrinogen, low-density lipoprotein, and high-density lipoprotein. Protein N-homocysteinylation leads to pathophysiological responses, including increased susceptibility to thrombogenesis caused by N-Hcy-fibrinogen, and an autoimmune response elicited by N-Hcy-proteins. Chronic activation of these responses in hyperhomocysteinemia over many years could lead to vascular disease. This article reviews recent evidence supporting the hypothesis that Hcy-thiolactone contributes to pathophysiological effects of Hcy on the vascular system.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101-1709, USA.
| |
Collapse
|
24
|
Jakubowski H. Facile syntheses of [35S]homocysteine-thiolactone, [35S]homocystine, [35S]homocysteine, and [S-nitroso-35S]homocysteine. Anal Biochem 2007; 370:124-6. [PMID: 17624291 DOI: 10.1016/j.ab.2007.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/31/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA.
| |
Collapse
|
25
|
Hong L, Fast W. Inhibition of human dimethylarginine dimethylaminohydrolase-1 by S-nitroso-L-homocysteine and hydrogen peroxide. Analysis, quantification, and implications for hyperhomocysteinemia. J Biol Chem 2007; 282:34684-92. [PMID: 17895252 DOI: 10.1074/jbc.m707231200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The plasma concentrations of two cardiovascular risk factors, total homocysteine (tHcy) and asymmetric dimethylarginine (ADMA), correlate with decreased levels of endothelium-derived nitric oxide and subsequent endothelial dysfunction. Homocysteine has been proposed to inhibit the catabolic enzyme of ADMA, dimethylarginine dimethylaminohydrolase (DDAH), but the mechanism of this inhibition has not been fully elucidated. Here, the human DDAH isoform-1 (DDAH-1) is heterologously expressed and purified. Cys(274) and His(173) are identified as active site residues and the pH rate dependence is described. Because oxidation of the active site Cys has been suggested as an inhibitory mechanism in patients with hyperhomocysteinemia, the sensitivity of DDAH-1 to inhibition by L-homocysteine, H(2)O(2), and S-nitroso-L-homocysteine is quantified. DDAH-1 is surprisingly insensitive to inactivation by the powerful oxidant, H(2)O(2) (0.088 M(-1) s(-1)), possibly because of a substrate-assisted mechanism that allows the active site cysteine to remain predominantly protonated and less reactive in the resting enzyme. In contrast, DDAH-1 is sensitive to inactivation by S-nitroso-L-homocysteine (3.79 M(-1) s(-1)). This work illustrates how a particular catalytic mechanism can result in selective redox regulation and has possible implications for hyperhomocysteinemia.
Collapse
Affiliation(s)
- Lin Hong
- Division of Medicinal Chemistry, College of Pharmacy, and Texas Institute for Drug and Diagnostic Development, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
26
|
Jiang X, Yang F, Brailoiu E, Jakubowski H, Dun NJ, Schafer AI, Yang X, Durante W, Wang H. Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27:1976-83. [PMID: 17715404 PMCID: PMC5539765 DOI: 10.1161/atvbaha.107.148544] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE We previously reported that homocysteine (Hcy) inhibits endothelial cell (EC) growth and promotes vascular smooth muscle cell (VSMC) proliferation. This study characterized and directly compared Hcy transport in cultured human aortic ECs (HAECs) and smooth muscle cells (HASMCs). METHODS AND RESULTS Hcy (10 micromol/L) was transported into both cell types in a time-dependent fashion but was approximately 4-fold greater in HASMCs, and is nonstereoenantiomer specific. Hcy transport in HAECs had a Michaelis-Menten constant (Km) of 39 micromol/L and a maximal transport velocity (Vmax) of 873 pmol/mg protein/min. In contrast, Hcy transport in HASMCs had a lower affinity (Km = 106 micromol/L) but a higher transport capacity (Vmax = 4192 pmol/mg protein/min). Competition studies revealed that the small neutral amino acids tyrosine, cysteine, glycine, serine, alanine, methionine, and leucine inhibited Hcy uptake in both cell types, but the inhibition was greater for tyrosine, serine, glycine, and alanine in HAECs. Sodium-depletion reduced Hcy transport to 16% in HAECs and 56% in HASMCs. Increases in pH from 6.5 to 8.2 or lysosomal inhibitors blocked Hcy uptake only in HAECs. In addition, Hcy shares carrier systems with cysteine, in a preferable order of alanine-serine-cysteine (ASC) > aspartate and glutamate (X(AG)) = large branched-chain neutral amino acids (L) transporter systems in HAECs and ASC > L > X(AG) in HASMCs. The sodium-dependent system ASC plays a predominant role for Hcy transport in vascular cells. CONCLUSIONS Transport system ASC predominantly mediates Hcy transport in EC and is lysosomal dependent.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Temple University School of Medicine, Department of Pharmacology, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu YH, You Y, Song T, Wu SJ, Liu LY. Impairment of Endothelium-Dependent Relaxation of Rat Aortas by Homocysteine Thiolactone and Attenuation by Captopril. J Cardiovasc Pharmacol 2007; 50:155-61. [PMID: 17703131 DOI: 10.1097/fjc.0b013e31805c9410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To explore the effects of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction induced by homocysteine thiolactone (HTL). Both endothelium-dependent relaxation and nondependent relaxation of thoracic aortic rings in rats induced by acetylcholine (Ach) or sodium nitroprusside (SNP) and biochemical parameters including malondialdehyde (MDA) and nitric oxide (NO) were measured in rat isolated aorta. Exposure of aortic rings to HTL (3 to 30 mM) for 90 minutes made a significant inhibition of endothelium-dependent relaxation induced by Ach, decreased contents of NO, and increased MDA concentration in aortic tissue. After incubation of aortic rings with captopril (0.003 to 0.03 mM) attenuated the inhibition of endothelium-dependent relaxation (EDR) and significantly resisted the decrease of NO content and elevation of MDA concentration caused by HTL (30 mmol/L) in aortic tissues, a similarly protective effect was observed when the aortic rings were incubated with both N-acetylcysteine (0.05 mM). Treatment with enalaprilat (0.003 to 0.01 mM) made no significant difference with the HTL (30 mM) group regarding EDR, but enalaprilat (0.03 mM) and losartan (0.03 mM) could partly restore the EDR in response to HTL (30 mM). Captopril was more effective than enalaprilat and losartan in attenuation of the inhibition of on acetylcholine-stimulated aortic relaxation by HTL in the same concentration. Moreover, superoxide dismutase (SOD, 200 U/mL), which is a scavenger of superoxide anions, apocynin (0.03 mM), which is an inhibitor of NADPH oxidase, and l-Arginine (3 mmol/L), a precursor of nitric oxide (NO), could reduce HTL (30 mM)-induced inhibition of EDR. After pretreatment with not only the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester (L-NAME, 0.01 mM) but also the free sulfhydryl group blocking agent p-hydroxymercurybenzoate (PHMB, 0.05 mM) could abolish the protection of captopril and N-acetylcysteine, respectively. These results suggest that mechanisms of endothelial dysfunction induced by HTL may include the decrease of NO and the generation of oxygen free radicals and that captopril can restore the inhibition of EDR induced by HTL in isolated rat aorta, which may be related to scavenging oxygen free radicals and may be sulfhydryl-dependent.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, Hunan, PR China.
| | | | | | | | | |
Collapse
|
28
|
Perez FP, Ilie JI, Zhou X, Feinstein D, Jurivich DA. Pathomolecular effects of homocysteine on the aging process: A new theory of aging. Med Hypotheses 2007; 69:149-60. [PMID: 17208383 DOI: 10.1016/j.mehy.2006.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Homocysteine has been associated with the most common age-related diseases but never associated with the acceleration of the aging process. This theoretical paper will try to demonstrate the pro-aging effects of homocysteine at the molecular, cellular, and organ level. High homocysteine levels in homocystinuria are associated with premature disease of the cardiovascular, skeletal, neurological, and other systems. These observations are similar to those noted in the aging process and should be considered as a progeroid syndrome. There is enough scientific evidence to support that homocysteine accelerates the aging process at the cellular and at the organism level. Most importantly, decreasing homocysteine levels by dietary or pharmacological interventions could prolong maximum life span in humans and/or delay the onset of the most common age-related diseases.
Collapse
Affiliation(s)
- Felipe P Perez
- Geriatric Medicine Section, Department of Medicine, University of Illinois, College of Medicine, M/C 717, 840 South Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
29
|
Fraser KR, Tuite NL, Bhagwat A, O'Byrne CP. Global effects of homocysteine on transcription in Escherichia coli: induction of the gene for the major cold-shock protein, CspA. MICROBIOLOGY-SGM 2006; 152:2221-2231. [PMID: 16849789 DOI: 10.1099/mic.0.28804-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homocysteine (Hcy) is a thiol-containing amino acid that is considered to be medically important because it is linked to the development of several life-threatening diseases in humans, including cardiovascular disease and stroke. It inhibits the growth of Escherichia coli when supplied in the growth medium. Growth inhibition is believed to arise as a result of partial starvation for isoleucine, which occurs because Hcy perturbs the biosynthesis of this amino acid. This study attempted to further elucidate the inhibitory mode of action of Hcy by examining the impact of exogenously supplied Hcy on the transcriptome. Using gene macroarrays the transcript levels corresponding to 68 genes were found to be reproducibly altered in the presence of 0.5 mM Hcy. Of these genes, the biggest functional groups affected were those involved in translation (25 genes) and in amino acid metabolism (19 genes). Genes involved in protection against oxidative stress were repressed in Hcy-treated cells and this correlated with a decrease in catalase activity. The gene showing the strongest induction by Hcy was cspA, which encodes the major cold-shock protein CspA. RT-PCR and reporter fusion experiments confirmed that cspA was induced by Hcy. Induction of cspA by Hcy was not caused by nutritional upshift, a stimulus known to induce CspA expression, nor was it dependent on the presence of a functional CspA protein. The induction of cspA by Hcy was suppressed when isoleucine was included in the growth medium. These data suggest that the induction of CspA expression in the presence of Hcy occurs because of a limitation for isoleucine. The possibility that Hcy-induced cspA expression is triggered by translational stalling that occurs when the cells are limited for isoleucine is discussed.
Collapse
Affiliation(s)
- Katy R Fraser
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Nina L Tuite
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Arvind Bhagwat
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705-2350, USA
| | - Conor P O'Byrne
- Department of Microbiology, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
30
|
Lakshman MR, Gottipati CS, Narasimhan SJ, Munoz J, Marmillot P, Nylen ES. Inverse correlation of serum paraoxonase and homocysteine thiolactonase activities and antioxidant capacity of high-density lipoprotein with the severity of cardiovascular disease in persons with type 2 diabetes mellitus. Metabolism 2006; 55:1201-6. [PMID: 16919539 DOI: 10.1016/j.metabol.2006.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/11/2006] [Indexed: 01/04/2023]
Abstract
Atherosclerotic risk is increased in diabetes partly because of increased plasma levels of the oxidized low-density lipoprotein and homocysteine, 2 independent and important cardiovascular disease (CVD) risk factors. Paraoxonase (PON) is a multifunctional antioxidant enzyme component of high-density lipoprotein (HDL), which can protect against low-density lipoprotein (LDL) oxidation. It also exhibits homocysteine thiolactonase (HCTL) activity that detoxifies homocysteine thiolactone, which can damage proteins by homocysteinylation of the lysine residues, thus leading to atherosclerosis. We conducted a cross-sectional study to correlate PON-1, HCTL activities, and the lag time of LDL oxidation in 15 healthy control subjects and in 55 subjects with type 2 diabetes mellitus with different degrees of CVD. Compared with healthy controls and diabetic subjects without evidence of overt CVD, we not only found 47% (P < .005) decrease in PON-1 activity, but also for the first time, 30% (P = .019) decrease in HCTL activity in subjects with a prior coronary artery bypass surgery. There was corresponding decreased effectiveness of HDLs from diabetic groups (with and without CVD) in protecting against LDL oxidation. Moreover, the PON-1 activity was significantly inversely correlated to the extent of intracoronary lesions determined at catheterization (ie, a high Gensini score). These decreases in PON-1 and HCTL activity were not due to any bias in preferential distribution of low-activity QQ homozygotes in the diabetic groups compared with the control group because QQ allele was equally distributed in all the experimental groups, whereas RR allele tended to increase in the diabetic subjects with coronary artery bypass surgery compared with the other groups. Therefore, clinical intervention to restore the impaired antiatherogenic activities of HDL should be considered an important goal in the treatment of persons with diabetes.
Collapse
Affiliation(s)
- M Raj Lakshman
- Lipid Research Laboratory, Veterans Affairs Medical Center, Washington, DC 20422, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Taurog RE, Jakubowski H, Matthews RG. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Biochemistry 2006; 45:5083-91. [PMID: 16618097 PMCID: PMC2041902 DOI: 10.1021/bi060051u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.
Collapse
Affiliation(s)
| | | | - Rowena G. Matthews
- * To whom correspondence should be addressed. E-mail: . Fax: (734) 763-6492. Phone: (734) 764-9459
| |
Collapse
|
32
|
Perna AF, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo NG. Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int 2006; 69:869-76. [PMID: 16395265 DOI: 10.1038/sj.ki.5000070] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperhomocysteinemia, an independent cardiovascular risk factor, is present in the majority of hemodialysis patients. Among the postulated mechanisms of toxicity, protein homocysteinylation is potentially able to cause significant alterations in protein function. Protein homocysteinylation occurs through various mechanisms, among which is the post-translational acylation of free amino groups (protein-N-homocysteinylation, mediated by homocysteine (Hcy) thiolactone). Another type of protein homocysteinylation occurs through the formation of a covalent -S-S- bond, found primarily with cysteine residues (protein-S-homocysteinylation). Scant data are available in the literature regarding the extent to which alterations in protein homocysteinylation are present in uremic patients on hemodialysis, and the effects of folate treatment are not known. Protein homocysteinylation was measured in a group of hemodialysis patients (n=28) compared to controls (n=14), with a new method combining protein reduction, gel filtration and Hcy derivatization. Chemical hydrolysis was performed, followed by high-pressure liquid chromatography separation. The effects of folate treatment on protein homocysteinylation, as well as in vitro binding characteristics were evaluated. Plasma Hcy, protein-N-homocysteinylation and protein-S-homocysteinylation were significantly higher in patients vs controls. Plasma Hcy and protein-S-homocysteinylation were significantly correlated. After 2 months of oral folate treatment, protein-N-homocysteinylation was normalized, and protein-S-homocysteinylation was significantly reduced. Studies on albumin-binding capacity after in vitro homocysteinylation show that homocysteinylated albumin is significantly altered at the diazepam-binding site. In conclusion, increased protein homocysteinylation is present in hemodialysis patients, with possible consequences in terms of protein function. This alteration can be partially reversed after folate treatment.
Collapse
Affiliation(s)
- A F Perna
- Division of Nephrology, Department of Biochemistry and Biophysics, F Cedrangolo and Cardiovascular Research Center, School of Medicine, Second University of Naples, Via Pansini 5, Ed. 17, 80131 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Tuite NL, Fraser KR, O'Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 2005; 187:4362-71. [PMID: 15968045 PMCID: PMC1151774 DOI: 10.1128/jb.187.13.4362-4371.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.
Collapse
Affiliation(s)
- Nina L. Tuite
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Katy R. Fraser
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Conor P. O'Byrne
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
- Corresponding author. Mailing address: Department of Microbiology, National University of Ireland-Galway, Galway, Ireland. Phone: (353) 91-512342. Fax: (353) 91-525700. E-mail:
| |
Collapse
|
34
|
Glowacki R, Jakubowski H. Cross-talk between Cys34 and Lysine Residues in Human Serum Albumin Revealed by N-Homocysteinylation. J Biol Chem 2004; 279:10864-71. [PMID: 14701829 DOI: 10.1074/jbc.m313268200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein N-homocysteinylation involves a post-translational modification by homocysteine (Hcy)-thiolactone. In humans, about 70% of circulating Hcy is N-linked to blood proteins, mostly to hemoglobin and albumin. It was unclear what protein site(s) were prone to Hcy attachment and how N-linked Hcy affected protein function. Here we show that Lys(525) is a predominant site of N-homocysteinylation in human serum albumin in vitro and in vivo. We also show that the reactivity of albumin lysine residues, including Lys(525), is affected by the status of Cys(34). The disulfide forms of circulating albumin, albumin-Cys(34)-S-S-Cys and albumin-Cys(34)-S-S-Hcy, are N-homocysteinylated faster than albumin-Cys(34)-SH. Although N-homocysteinylations of albumin-Cys(34)-SH and albumin-Cys(34)-S-S-Cys yield different primary products, subsequent thiol-disulfide exchange reactions result in the formation of a single product, N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH. We also show that N-homocysteinylation affects the susceptibility of albumin to oxidation and proteolysis. The data suggest that a disulfide at Cys(34) of albumin promotes conversion of N-(Hcy-SH)-albumin-Cys(34)-SH to a proteolytically sensitive form N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH, which would facilitate clearance of the N-homocysteinylated form of mercaptoalbumin.
Collapse
Affiliation(s)
- Rafal Glowacki
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, International Center for Public Health, Newark, New Jersey 07103, USA
| | | |
Collapse
|
35
|
Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med 2004; 41:1462-6. [PMID: 14656026 DOI: 10.1515/cclm.2003.224] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Indirect pathways, involving homocysteine (Hcy)-thiolactone and S-nitroso-Hcy, allow incorporation of Hcy into protein. Hcy-thiolactone, synthesized by methionyl-tRNA synthetase in all organisms investigated, including human, modifies proteins post-translationally by forming adducts in which Hcy is linked by amide bonds to epsilon-amino group of protein lysine residues. S-Nitroso-Hcy, synthesized in human vascular endothelial cells, is incorporated translationally into peptide bonds in protein at positions normally occupied by methionine. Hcy-N-hemoglobin and Hcy-N-albumin constitute a major pool of Hcy in human blood. Hcy-thiolactone is present in human plasma. Modification with Hcy-thiolactone leads to protein damage. Hcy-thiolactone is detoxified by Hcy-thiolactonase/paraoxonase present in a subset of high-density lipoprotein particles in humans.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark 07101-1709, USA.
| |
Collapse
|
36
|
Láng A, György K, Csizmadia IG, Perczel A. A conformational comparison of N- and C-protected methionine and N- and C-protected homocysteine. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Sass JO, Nakanishi T, Sato T, Sperl W, Shimizu A. S-Homocysteinylation of transthyretin is detected in plasma and serum of humans with different types of hyperhomocysteinemia. Biochem Biophys Res Commun 2003; 310:242-6. [PMID: 14511677 DOI: 10.1016/j.bbrc.2003.08.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While the association of homocystinuria with disease is known for more than four decades, mild hyperhomocysteinemia has been detected more recently as a risk factor for a number of diseases. However, the mechanism which apparently renders (even mild) hyperhomocystenemia harmful is not known. Following reports on N-homocysteinylation of proteins by the homocysteine derivative homocysteine thiolactone, it has been suggested that homocysteinylation of proteins may contribute to the induction of biological effects by homocysteine. This has prompted us to study by electrospray ionization mass spectrometry homocysteinylation of transthyretin (TTR) in plasma and serum of humans with different types of hyperhomocysteinemia. We did not detect any N-homocysteinylation, but found pronounced S-homocysteinylation of TTR, if the concentration of total homocysteine was high. Our findings support a possible role of S-homocysteinylation of proteins in the mediation of detrimental effects of hyperhomocysteinemia. Careful study of posttranslational modifications of individual proteins may contribute to a better understanding of diseases associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Jörn Oliver Sass
- Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Mathildenstr. 1, D-79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Editing of the amino acid homocysteine (Hcy) by certain aminoacyl-tRNA synthetases results in the formation of an intramolecular thioester, Hcy-thiolactone. Here we show that the plant yellow lupin, Lupinus luteus, has the ability to synthesize Hcy-thiolactone. The inhibition of methylation of Hcy to methionine by the anitifolate drug aminopterin results in greatly enhanced synthesis of Hcy-thiolactone by L. luteus plants. Methionine inhibits the synthesis of Hcy-thiolactone in L. luteus, suggesting involvement of methionyl-tRNA synthetase. Consistent with this suggestion is our finding that the plant Oryza sativa methionyl-tRNA synthetase, expressed in Escherichia coli, catalyzes conversion of Hcy to Hcy-thiolactone. We also show that Hcy is a component of L. luteus proteins, most likely due to facile reaction of Hcy-thiolactone with protein amino groups. In addition, L. luteus possesses constitutively expressed, highly specific Hcy-thiolactone-hydrolyzing enzyme. Thus, Hcy-thiolactone and Hcy bound to protein by an amide (or peptide) linkage (Hcy-N-protein) are significant components of plant Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, International Center for Public Health, Newark, New Jersey 07101, USA.
| | | |
Collapse
|
39
|
Sheraly AR, Chang RV, Chass GA. Multidimensional conformational analysis of the sidechain conformers of the fully extended backbone (βL) of N-Ac-Homocysteine-NHMe; an ab initio exploratory study. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00310-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Abstract
Homocysteine-thiolactone, a cyclic thioester of homocysteine, is synthesized by methionyl-tRNA synthetase in all cell types. A new assay for the determination of homocysteine-thiolactone in biological samples is described. The assay involves separation of homocysteine-thiolactone from macromolecules by ultrafiltration. Homocysteine-thiolactone is further purified and quantified by high-pressure liquid chromatography either on a reverse phase or a cation exchange micro-bore column. The detection and quantitation are obtained by monitoring the absorbance at 240 nm, a maximum in a UV spectrum of homocysteine-thiolactone. The sensitivity of detection is 5 pmol. This assay has been applied to bacteria (Escherichia coli and Mycobacterium smegmatis), the yeast Saccharomyces cerevisiae, cultured human vascular endothelial cells, and human plasma. The data support the conclusion that homocysteine-thiolactone is a ubiquitous metabolite whose levels are directly related to homocysteine levels.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark 07101, USA.
| |
Collapse
|
41
|
Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 2002; 277:30425-8. [PMID: 12093791 DOI: 10.1074/jbc.c200267200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homocysteine is thought to be a non-protein amino acid. However, in vitro studies suggest that homocysteine is likely to be incorporated by indirect mechanisms into proteins in living organisms. Here I show that homocysteine is a protein amino acid in humans. Homocysteine bound by amide or peptide linkages (Hcy-N-protein) is present in human hemoglobin, serum albumin, and gamma-globulins. 1 molecule of homocysteine per 1000 or 1670 molecules of methionine was present in hemoglobin or albumin, respectively. Other proteins, such as low density lipoprotein, high density lipoprotein, transferrin, antitrypsin, and fibrinogen, contained lower amounts of Hcy-N-protein. In human plasma, levels of Hcy-N-protein represented from 0.3 to 23% of total homocysteine. Thus, Hcy-N-protein is a significant component of homocysteine metabolism in humans, possibly contributing to adverse effects of homocysteine on human cells.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA.
| |
Collapse
|
42
|
Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr 2001; 131:2983S-7S. [PMID: 11694633 DOI: 10.1093/jn/131.11.2983s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases establish the rules of the genetic code by matching amino acids (AA) with their cognate tRNA. When differences in binding energies of AA to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of the enzyme selectivity. Metabolic conversion of the nonprotein AA homocysteine (Hcy) to the thioester Hcy thiolactone by methionyl-, isoleucyl-, and leucyl-tRNA synthetases in vivo shows that continuous editing of incorrect AA is part of the process of tRNA aminoacylation in living organisms, including humans. Reversible S-nitrosylation of Hcy prevents its editing by methionyl-tRNA synthetase and allows incorporation of Hcy into proteins at positions specified by methionine codons. This illustrates how the genetic code can be expanded by invasion of the methionine-coding pathway by Hcy. Translational (nitric oxide-mediated) and post-translational (thiolactone-mediated) incorporation of Hcy into protein provide plausible chemical mechanisms by which elevated levels of Hcy may contribute to the pathology of human cardiovascular diseases.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
43
|
Abstract
Elevated levels of homocysteine (Hcy) are associated with various human pathologies, including cardiovascular disease. However, it is not exactly known why Hcy is harmful. A plausible hypothesis is that the indirect incorporation of Hcy into protein, referred to as protein N-homocysteinylation, leads to cell damage. A translational pathway involves: 1) reversible S-nitrosylation of Hcy with nitric oxide produced by nitric oxide synthase; 2) aminoacylation of tRNAMet with S-nitroso-Hcy catalyzed by MetRS; and 3) transfer of S-nitroso-Hcy from S-nitroso-Hcy-tRNAMet into growing polypeptide chains at positions normally occupied by methionine. Subsequent transnitrosylation leaves Hcy in the protein chain. A post-translational pathway involves: 1) metabolic conversion of Hcy to thiolactone by methionyl-tRNAsynthetase (MetRS), and 2) acylation of protein lysine residues by Hcy thiolactone. The levels of Hcy thiolactone and N-homocysteinylated protein in human vascular endothelial cells depend on the ratio of Hcy/Met, levels of folic acid, and HDL, factors linked to cardiovascular disease. HDL-associated human serum Hcy thiolactonase/paraoxonase hydrolyzes thiolactone to Hcy, thereby minimizing protein N-homocysteinylation. Variations in Hcy thiolactonase may play an important role in Hcy-associated human cardiovascular disease.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| |
Collapse
|
44
|
Senger B, Despons L, Walter P, Jakubowski H, Fasiolo F. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. J Mol Biol 2001; 311:205-16. [PMID: 11469869 DOI: 10.1006/jmbi.2001.4844] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae possesses two methionyl-tRNA synthetases (MetRS), one in the cytoplasm and the other in mitochondria. The cytoplasmic MetRS has a zinc-finger motif of the type Cys-X(2)-Cys-X(9)-Cys-X(2)-Cys in an insertion domain that divides the nucleotide-binding fold into two halves, whereas no such motif is present in the mitochondrial MetRS. Here, we show that tightly bound zinc atom is present in the cytoplasmic MetRS but not in the mitochondrial MetRS. To test whether the presence of a zinc-binding site is required for cytoplasmic functions of MetRS, we constructed a yeast strain in which cytoplasmic MetRS gene was inactivated and the mitochondrial MetRS gene was expressed in the cytoplasm. Provided that methionine-accepting tRNA is overexpressed, this strain was viable, indicating that mitochondrial MetRS was able to aminoacylate tRNA(Met) in the cytoplasm. Site-directed mutagenesis demonstrated that the zinc domain was required for the stability and consequently for the activity of cytoplasmic MetRS. Mitochondrial MetRS, like cytoplasmic MetRS, supported homocysteine editing in vivo in the yeast cytoplasm. Both MetRSs catalyzed homocysteine editing and aminoacylation of coenzyme A in vitro. Thus, identical synthetic and editing functions can be carried out in different structural frameworks of cytoplasmic and mitochondrial MetRSs.
Collapse
Affiliation(s)
- B Senger
- UPR n degrees 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | | | | | | | |
Collapse
|
45
|
Kiick KL, Weberskirch R, Tirrell DA. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 2001; 502:25-30. [PMID: 11478942 DOI: 10.1016/s0014-5793(01)02657-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amino acid incorporation into proteins in vivo is controlled most stringently by the aminoacyl-tRNA synthetases. Here we report the incorporation of several new methionine analogues into protein by increasing the rate of their activation by the methionyl-tRNA synthetase (MetRS) of Escherichia coli. cis-Crotylglycine (4), 2-aminoheptanoic acid (7), norvaline (8), 2-butynylglycine (11), and allylglycine (12) will each support protein synthesis in methionine-depleted cultures of E. coli when MetRS is overexpressed and the medium is supplemented with the analogue at millimolar concentrations. These investigations suggest important opportunities for protein engineering, as expansion of the translational apparatus toward other amino acid analogues by similar strategies should also be possible.
Collapse
Affiliation(s)
- K L Kiick
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
46
|
Medina M, Urdiales JL, Amores-Sánchez MI. Roles of homocysteine in cell metabolism: old and new functions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3871-82. [PMID: 11453979 DOI: 10.1046/j.1432-1327.2001.02278.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild hyperhomocysteinemia has been suggested as a new, independent risk factor for cardiovascular disease. This fact has produced a new, increased interest in the study of homocysteine metabolism and its relation to pathogenesis. This emergent area of biomedical research is reviewed here, stressing the biochemical and metabolic basis of the pathogenicity of increased levels of homocysteine.
Collapse
Affiliation(s)
- M Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | |
Collapse
|
47
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) are at the center of the question of the origin of life. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. AARSs arose early in evolution and are believed to be a group of ancient proteins. They are responsible for attaching amino acid residues to their cognate tRNA molecules, which is the first step in the protein synthesis. The role they play in a living cell is essential for the precise deciphering of the genetic code. The analysis of AARSs evolutionary history was not possible for a long time due to a lack of a sufficiently large number of their amino acid sequences. The emerging picture of synthetases' evolution is a result of recent achievements in genomics [Woese,C., Olsen,G.J., Ibba,M. and Söll,D. (2000) Microbiol. Mol. Biol. Rev., 64, 202-236]. In this paper we present a short introduction to the AARSs database. The updated database contains 1047 AARS primary structures from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. It is the compilation of amino acid sequences of all AARSs known to date, which are available as separate entries via the WWW at http://biobases.ibch.poznan.pl/aars/.
Collapse
Affiliation(s)
- M Szymanski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | |
Collapse
|