1
|
Wang C, Zhang L, Ren L, Zhang G, Wan A, Xiong S, Tian H, Peng Z, Zhao T, Gao P, Sun N, Zhang Y, Qi X. A novel pyroptosis-related indicator of immune infiltration features and prognosis in breast cancer. Front Oncol 2022; 12:961500. [PMID: 36158689 PMCID: PMC9491236 DOI: 10.3389/fonc.2022.961500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the most common malignancy in women, and there is evidence for the dual role of cell pyroptosis in tumor development. However, little is known about the relationship between cell pyroptosis and breast cancer and its prognostic value. We aimed to construct a prognostic model using cell-pyroptosis-related genes to provide innovative insights into the prognosis and treatment of breast cancer. We screened candidate genes for pyroptosis using public databases and identified 10 cell pyroptosis signature genes with the random forest method. Finally, a nomogram for predicting 1-, 3-, and 5-year survival probabilities was constructed. The differences in immune cell distributions between survival periods were similar across the breast cancer datasets. The 10 identified key pyroptosis factors showed a significant correlation with Her2, tumor–node–metastasis (TNM) stage, and survival of breast cancer. The risk scores correlated positively with the infiltration features of naive B cells, CD8+ T cells, atpdelnd mast cells, while they correlated negatively with those of M0 macrophages and dendritic cells. In conclusion, our findings confirm that cell pyroptosis is closely associated with breast cancer. Importantly, the prognostic complex values generated from the 10 cell-pyroptosis-related genes based on various clinical features may provide an important basis for future studies on the prognosis of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Na Sun
- *Correspondence: Na Sun, ; Yi Zhang, ; Xiaowei Qi,
| | - Yi Zhang
- *Correspondence: Na Sun, ; Yi Zhang, ; Xiaowei Qi,
| | - Xiaowei Qi
- *Correspondence: Na Sun, ; Yi Zhang, ; Xiaowei Qi,
| |
Collapse
|
2
|
Chen Y, Zhang Y, Wang Z, Wang Y, Luo Y, Sun N, Zheng S, Yan W, Xiao X, Liu S, Li J, Peng H, Xu Y, Hu G, Cheng Z, Zhang G. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk. Cell Death Dis 2022; 13:586. [PMID: 35798703 PMCID: PMC9263130 DOI: 10.1038/s41419-022-05035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Herein, we describe the clinical and hematological features of three genetically related families predisposed to myeloproliferative neoplasms (MPNs). Using whole-exome sequencing, we identified a c.1367delG mutation(p.Arg456fs) in CHST15 (NM_001270764), a gene encoding a type II transmembraneglycoproteinthat acts as a sulfotransferase and participates in the biosynthesis of chondroitin sulfate E, in germline and somatic cells in familial MPN. CHST15defects caused an increased JAK2V617F allele burden and upregulated p-Stat3 activity,leading to an increase in the proliferative and prodifferentiation potential of transgenic HEL cells. We demonstrated that mutant CHST15 is able to coimmmunoprecipitate the JAK2 protein,suggesting the presence of a CHST15-JAK2-Stat3 signaling axis in familial MPN. Gene expression profiling showed that the FREM1, IFI27 and C4B_2 genes are overexpressed in familial MPN, suggesting the activation of an "inflammatory response-extracellular matrix-immune regulation" signaling network in the CHST15 mutation background.We thus concluded that CHST15 is a novel gene that predisposes to familial MPN and increases the probability of disease development or transformation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Nannan Sun
- Department of Hematology, The First affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Zheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Ji Li
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated ZhuZhou Hospital of XiangYa Medical College, Central South University, Zhuzhou, Hunan, China
| | - Zhao Cheng
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| | - Guangsen Zhang
- Department of Hematology, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Kashem MA, Yuan XY, Li L, Kimani J, Plummer F, Luo M. TILRR (Toll-like Interleukin-1 Receptor Regulator), an Important Modulator of Inflammatory Responsive Genes, is Circulating in the Blood. J Inflamm Res 2021; 14:4927-4943. [PMID: 34594127 PMCID: PMC8478437 DOI: 10.2147/jir.s325553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose TILRR (Toll-like interleukin-1 receptor regulator), a variant of FREM1 (Fras-related extracellular matrix 1), is a modulator of many genes in NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and inflammatory responses. It enhanced the expression of multiple genes in the NF-κB signaling pathway and promoted the production of multiple pro-inflammatory cytokines/chemokines. TILRR is an extracellular matrix protein and expressed in cells and tissues, and has never been considered to exist in the blood. The study aimed to identify circulating TILRR protein in human plasma as a biomarker of systemic inflammation. Methods and Results We developed a multiplex bead array method (Bio-Plex) using 4 monoclonal antibodies targeting different protein domains of FREM1/TILRR to investigate whether TILRR can be detected in blood plasma. The results of the multiplex bead array method were validated by Western blot analysis of affinity-purified TILRR from patient plasma samples. We subsequently analyzed 640 plasma samples from women enrolled in the Pumwani Sex Worker cohort (PSWC) (Nairobi, Kenya). Our study showed that TILRR exists in all patient plasma samples, but its quantities vary greatly among the patients, ranging from 2.38 ng/mL to 5196.79 ng/mL. The plasma TILRR below 2.38 ng/mL can only be detected by affinity purification and Western blot analysis. Conclusion Our in-house developed multiplex bead array method can successfully quantify TILRR protein in plasma samples. Because TILRR is an important modulator of many inflammation-responsive genes, it may be an inflammation biomarker in blood and play a role in modulating systemic inflammation.
Collapse
Affiliation(s)
- Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, Mb, Canada.,Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Lin Li
- JC Wilt Infectious Diseases Research Centre, Winnipeg, Mb, Canada
| | - Joshua Kimani
- Institute for Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Francis Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, Mb, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
4
|
The Potential Role of FREM1 and Its Isoform TILRR in HIV-1 Acquisition through Mediating Inflammation. Int J Mol Sci 2021; 22:ijms22157825. [PMID: 34360591 PMCID: PMC8346017 DOI: 10.3390/ijms22157825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.
Collapse
|
5
|
Xu XY, Guo WJ, Pan SH, Zhang Y, Gao FL, Wang JT, Zhang S, Li HY, Wang R, Zhang X. TILRR (FREM1 isoform 2) is a prognostic biomarker correlated with immune infiltration in breast cancer. Aging (Albany NY) 2020; 12:19335-19351. [PMID: 33031059 PMCID: PMC7732299 DOI: 10.18632/aging.103798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
In atherosclerosis, upregulated TILRR (FREM1 isoform 2) expression increases immune cell infiltration. We hypothesized that TILRR expression is also correlated with cancer progression. By analyzing data from Oncomine and the Tumor Immune Estimation Resource, we found that TILRR mRNA expression was significantly lower in breast cancer tissue than adjacent normal tissue. Kaplan-Meier survival analysis and immunohistochemical staining revealed shortened overall survival and disease-free survival in patients with low TILRR expression. TILRR transcript expression was positively correlated with immune score, immune cell biomarkers and the expression of CXCL10 and CXCL11. TILRR expression was also positively correlated with CD8+ and CD4+ T-cell infiltration. These correlations were verified using the ESTIMATE algorithm, gene set enrichment analysis and Q-PCR. We concluded that impaired TILRR expression is correlated with breast cancer prognosis and immune cell infiltration.
Collapse
Affiliation(s)
- Xiao-Yi Xu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wen-Jing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi-Hua Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Feng-Lin Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Jiang-Tao Wang
- Department of Pathology, First People Hospital, Changde 415003, Hunan, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - He-Ying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ren Wang
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, Guangdong, China
| |
Collapse
|
6
|
Kashem MA, Ren X, Li H, Liang B, Li L, Lin F, Plummer FA, Luo M. TILRR Promotes Migration of Immune Cells Through Induction of Soluble Inflammatory Mediators. Front Cell Dev Biol 2020; 8:563. [PMID: 32719797 PMCID: PMC7348050 DOI: 10.3389/fcell.2020.00563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
TILRR has been identified as an important modulator of inflammatory responses. It is associated with NF-κB activation, and inflammation. Our previous study showed that TILRR significantly increased the expression of many innate immune responsive genes and increased the production of several pro-inflammatory cytokines/chemokines by cervical epithelial cells. In this study, we evaluated the effect of TILRR-induced pro-inflammatory cytokines/chemokines on the migration of immune cells. The effect of culture supernatants of TILRR-overexpressed cervical epithelial cells on the migration of THP-1 monocytes and MOLT-4 T-lymphocytes was evaluated using Transwell assay and a novel microfluidic device. We showed that the culture supernatants of TILRR-overexpressed HeLa cells attracted significantly more THP-1 cells (11–40%, p = 0.0004–0.0373) and MOLT-4 cells (14–17%, p = 0.0010–0.0225) than that of controls. The microfluidic device-recorded image analysis showed that significantly higher amount with longer mean cell migration distance of THP-1 (p < 0.0001–0.0180) and MOLT-4 (p < 0.0001–0.0025) cells was observed toward the supernatants of TILRR-overexpressed cervical epithelial cells compared to that of the controls. Thus, the cytokines/chemokines secreted by the TILRR-overexpressed cervical epithelial cells attracted immune cells, such as monocytes and T cells, and may potentially influence immune cell infiltration in tissues.
Collapse
Affiliation(s)
- Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xiaoou Ren
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Binhua Liang
- JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Li
- JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Francis Lin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Lu X, He Y, Tang C, Wang X, Que L, Zhu G, Liu L, Ha T, Chen Q, Li C, Xu Y, Li J, Li Y. Triad3A attenuates pathological cardiac hypertrophy involving the augmentation of ubiquitination-mediated degradation of TLR4 and TLR9. Basic Res Cardiol 2020; 115:19. [PMID: 32008145 DOI: 10.1007/s00395-020-0779-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Activation of TLRs mediated the NF-κB signaling pathway plays an important pathophysiological role in cardiac hypertrophy. Triad3A, a ubiquitin E3 ligase, has been reported to negatively regulate NF-κB activation pathway via promoting ubiquitination and degradation of TLR4 and TLR9 in innate immune cells. The role of Triad3A in cardiac hypertrophic development remains unknown. The present study investigated whether there is a link between Triad3A and TLR4 and TLR9 in pressure overload induced cardiac hypertrophy. We observed that Triad3A levels were markedly reduced following transverse aortic constriction (TAC) induced cardiac hypertrophy. Similarly, stimulation of neonatal rat cardiac myocytes (NRCMs) with angiotensin-II (Ang II) significantly decreased Triad3A expression. To determine the role of Triad3A in TAC-induced cardiac hypertrophy, we transduced the myocardium with adenovirus expressing Triad3A followed by induction of TAC. We observed that increased expression of Triad3A significantly attenuated cardiac hypertrophy and improved cardiac function. To investigate the mechanisms by which Triad3A attenuated cardiac hypertrophy, we examined the Triad3A E3 ubiquitination on TLR4 and TLR9. We found that Triad3A promoted TLR4 and TLR9 degradation through ubiquitination. Triad3A mediated TLR4 and TLR9 degradation resulted in suppression of NF-κB activation. Our data suggest that Triad3A plays a protective role in the development of cardiac hypertrophy, at least through catalyzing ubiquitination-mediated degradation of TLR4 and TLR9, thus negatively regulating NF-κB activation.
Collapse
Affiliation(s)
- Xia Lu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yijie He
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyang Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN, 37614-0575, USA
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN, 37614-0575, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center For Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Identification of new putative driver mutations and predictors of disease evolution in chronic lymphocytic leukemia. Blood Cancer J 2019; 9:78. [PMID: 31570692 PMCID: PMC6769000 DOI: 10.1038/s41408-019-0243-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
|
9
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
10
|
Kashem MA, Li H, Toledo NP, Omange RW, Liang B, Liu LR, Li L, Yang X, Yuan XY, Kindrachuk J, Plummer FA, Luo M. Toll-like Interleukin 1 Receptor Regulator Is an Important Modulator of Inflammation Responsive Genes. Front Immunol 2019; 10:272. [PMID: 30873160 PMCID: PMC6403165 DOI: 10.3389/fimmu.2019.00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 01/30/2023] Open
Abstract
TILRR (Toll-like interleukin-1 receptor regulator), a transcript variant of FREM1, is a novel regulatory component, which stimulates innate immune responses through binding to IL-1R1 (Interleukin-1 receptor, type 1) and TLR (Toll-like receptor) complex. However, it is not known whether TILRR expression influences other genes in the NFκB signal transduction and pro-inflammatory responses. Our previous study identified FREM1 as a novel candidate gene in HIV-1 resistance/susceptibility in the Pumwani Sex worker cohort. In this study, we investigated the effect of TILRR overexpression on expression of genes in the NFκB signaling pathway in vitro. The effect of TILRR on mRNA expression of 84 genes related to NFκB signal transduction pathway was investigated by qRT-PCR. Overexpression of TILRR on pro-inflammatory cytokine/chemokine(s) secretion in cell culture supernatants was analyzed using Bioplex multiplex bead assay. We found that TILRR overexpression significantly influenced expression of many genes in HeLa and VK2/E6E7 cells. Several cytokine/chemokine(s), including IL-6, IL-8 (CXCL8), IP-10, MCP-1, MIP-1β, and RANTES (CCL5) were significantly increased in the cell culture supernatants following TILRR overexpression. Although how TILRR influences the expression of these genes needs to be further studied, we are the first to show the influence of TILRR on many genes in the NFκB inflammatory pathways. The NFκB inflammatory response pathways are extremely important in microbial infection and pathogenesis, including HIV-1 transmission. Further study of the role of TILRR may identify the novel intervention targets and strategies against HIV infection.
Collapse
Affiliation(s)
- Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Nikki Pauline Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Robert Were Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Binhua Liang
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Lewis Ruxi Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Lin Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Xuefen Yang
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Abstract
The extracellular forms of the IL-1 cytokines are active through binding to specific receptors on the surface of target cells. IL-1 ligands bind to the extracellular portion of their ligand-binding receptor chain. For signaling to take place, a non-binding accessory chain is recruited into a heterotrimeric complex. The intracellular approximation of the Toll-IL-1-receptor (TIR) domains of the 2 receptor chains is the event that initiates signaling. The family of IL-1 receptors (IL-1R) includes 10 structurally related members, and the distantly related soluble protein IL-18BP that acts as inhibitor of the cytokine IL-18. Over the years the receptors of the IL-1 family have been known with many different names, with significant confusion. Thus, we will use here a recently proposed unifying nomenclature. The family includes several ligand-binding chains (IL-1R1, IL-1R2, IL-1R4, IL-1R5, and IL-1R6), 2 types of accessory chains (IL-1R3, IL-1R7), molecules that act as inhibitors of signaling (IL-1R2, IL-1R8, IL-18BP), and 2 orphan receptors (IL-1R9, IL-1R10). In this review, we will examine how the receptors of the IL-1 family regulate the inflammatory and anti-inflammatory functions of the IL-1 cytokines and are, more at large, involved in modulating defensive and pathological innate immunity and inflammation. Regulation of the IL-1/IL-1R system in the brain will be also described, as an example of the peculiarities of organ-specific modulation of inflammation.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Sabrina Weil
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Michael U Martin
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| |
Collapse
|
12
|
The IL-1RI Co-Receptor TILRR ( FREM1 Isoform 2) Controls Aberrant Inflammatory Responses and Development of Vascular Disease. JACC Basic Transl Sci 2017; 2:398-414. [PMID: 28920098 PMCID: PMC5582195 DOI: 10.1016/j.jacbts.2017.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
The IL-1RI co-receptor, TILRR, is a potent amplifier of IL-1–induced responses. Blocking TILRR inhibits IL-1 receptor function and activation of inflammatory genes. TILRR expression is high in atherosclerotic lesions but low in healthy tissue, allowing distinct inhibition at sites of inflammation. Genetic deletion of TILRR and antibody blocking of TILRR function reduce plaque development and progression of atherosclerosis. Lesions exhibit low levels of macrophages and increased levels of smooth muscle cells and collagen, characteristics of stable plaques.
Expression of the interleukin-1 receptor type I (IL-1RI) co-receptor Toll-like and interleukin-1 receptor regulator (TILRR) is significantly increased in blood monocytes following myocardial infarction and in the atherosclerotic plaque, whereas levels in healthy tissue are low. TILRR association with IL-1RI at these sites causes aberrant activation of inflammatory genes, which underlie progression of cardiovascular disease. The authors show that genetic deletion of TILRR or antibody blocking of TILRR function reduces development of atherosclerotic plaques. Lesions exhibit decreased levels of monocytes, with increases in collagen and smooth muscle cells, characteristic features of stable plaques. The results suggest that TILRR may constitute a rational target for site- and signal-specific inhibition of vascular disease.
Collapse
Key Words
- ApoE, apolipoprotein E
- DK, double knockout
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- IL, interleukin
- IL-1RI
- IL-1RI, interleukin-1 receptor type I
- IgG, immunoglobulin G
- IκBα, inhibitor kappa B alpha
- KO, knockout
- LDLR–/–, low-density lipoprotein receptor–/–
- LPS, lipopolysaccharide
- NF-κB
- NF-κB, nuclear factor-kappa B
- NSTEMI, non–ST-segment elevation myocardial infarction
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SDS, sodium dodecyl sulfate
- STEMI, ST-segment elevation myocardial infarction
- TILRR
- TILRR, toll-like and interleukin-1 receptor regulator
- heparan sulfate proteoglycan
- iBALT, inducible bronchus-associated lymphoid tissue
- interleukin-1 receptor
- qPCR, quantitative polymerase chain reaction
Collapse
|
13
|
|
14
|
Williams RA, Timmis J, Qwarnstrom EE. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems. PLoS One 2016; 11:e0160834. [PMID: 27571414 PMCID: PMC5003378 DOI: 10.1371/journal.pone.0160834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.
Collapse
Affiliation(s)
- Richard A. Williams
- Department of Computer Science, University of York, York, United Kingdom
- York Computational Immunology Laboratory, University of York, York, United Kingdom
- * E-mail:
| | - Jon Timmis
- York Computational Immunology Laboratory, University of York, York, United Kingdom
- Department of Electronics, University of York, York, United Kingdom
| | - Eva E. Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Affiliated, Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Radons J, Falk W, Dove S. Identification of critical regions within the TIR domain of IL-1 receptor type I. Int J Biochem Cell Biol 2015; 68:15-20. [PMID: 26279140 DOI: 10.1016/j.biocel.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Interleukin-1 receptor type I (IL-1RI) belongs to a superfamily of proteins characterized by an intracellular Toll/IL-1 receptor (TIR) domain. This domain harbors three conserved regions called boxes 1-3 that play crucial roles in mediating IL-1 responses. Boxes 1 and 2 are considered to be involved in binding of adapter molecules. Amino acids possibly crucial for IL-1RI signaling were predicted via homology models of the IL-1RI TIR domain based on the crystal structure of IL-1RAPL. The role of ten of these residues was investigated by site-directed mutagenesis and a functional luciferase assay reflecting NF-κB activity in transiently transfected Jurkat cells. In particular, the mutants E437K/D438K, E472A/E473A and S465A/S470A/S471A/E472A/E473A showed decreased and the mutant E437A/D438A increased IL-1 responsiveness compared to the mouse IL-1RI wild type. In conclusion, the αC' helix (Q469-E473 in mouse IL-1RI) is probably involved in heterotypic interactions of IL-1RI with IL-1RAcP or MyD88.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Internal Medicine I, University Clinic Regensburg, D-93042 Regensburg, Germany.
| | - Werner Falk
- Department of Internal Medicine I, University Clinic Regensburg, D-93042 Regensburg, Germany
| | - Stefan Dove
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
16
|
Rhodes DM, Smith SA, Holcombe M, Qwarnstrom EE. Computational Modelling of NF-κB Activation by IL-1RI and Its Co-Receptor TILRR, Predicts a Role for Cytoskeletal Sequestration of IκBα in Inflammatory Signalling. PLoS One 2015; 10:e0129888. [PMID: 26110282 PMCID: PMC4482363 DOI: 10.1371/journal.pone.0129888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB (nuclear factor kappa B) is activated by Toll-like receptors and controlled by mechanotransduction and changes in the cytoskeleton. In this study we combine 3-D predictive protein modelling and in vitro experiments with in silico simulations to determine the role of the cytoskeleton in regulation of NF-κB. Simulations used a comprehensive agent-based model of the NF-κB pathway, which includes the type 1 IL-1 receptor (IL-1R1) complex and signalling intermediates, as well as cytoskeletal components. Agent based modelling relies on in silico reproductions of systems through the interactions of its components, and provides a reliable tool in investigations of biological processes, which require spatial considerations and involve complex formation and translocation of regulatory components. We show that our model faithfully reproduces the multiple steps comprising the NF-κB pathway, and provides a framework from which we can explore novel aspects of the system. The analysis, using 3-D predictive protein modelling and in vitro assays, demonstrated that the NF-κB inhibitor, IκBα is sequestered to the actin/spectrin complex within the cytoskeleton of the resting cell, and released during IL-1 stimulation, through a process controlled by the IL-1RI co-receptor TILRR (Toll-like and IL-1 receptor regulator). In silico simulations using the agent-based model predict that the cytoskeletal pool of IκBα is released to adjust signal amplification in relation to input levels. The results suggest that the process provides a mechanism for signal calibration and enables efficient, activation-sensitive regulation of NF-κB and inflammatory responses.
Collapse
Affiliation(s)
- David M. Rhodes
- Department of Cardiovascular Science, Medical School, University of Sheffield, United Kingdom
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah A. Smith
- Department of Cardiovascular Science, Medical School, University of Sheffield, United Kingdom
| | - Mike Holcombe
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Eva E. Qwarnstrom
- Department of Cardiovascular Science, Medical School, University of Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Yuan XY, Liu LR, Krawchenko A, Sainsbury J, Zhao L, Plummer F, Yang X, Luo M. Development of monoclonal antibodies to interrogate functional domains and isoforms of FREM1 protein. Monoclon Antib Immunodiagn Immunother 2014; 33:129-40. [PMID: 24746155 DOI: 10.1089/mab.2013.0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
FREM1 was first identified as an extracellular matrix protein that is essential for the formation of the epithelial basement membrane during embryonic development. Recent studies have shown that FREM1 also modulates innate immunity through its isoform 2 splice variant protein, known as Toll-like/interleukin-1 receptor regulator (TILRR). TILRR is a co-receptor that enhances pro-inflammatory IL-1R1 signal transduction. Our previous study identified the minor allele of a SNP, rs1552896, in the intronic region of FREM1 gene to be associated with natural resistance to HIV-1 infection in a subgroup of Kenyan sex workers in the Pumwani cohort. To study the role of FREM1 and its variants in differential susceptibility to HIV-1 infection, we generated a panel of 17 monoclonal antibodies against two recombinant proteins of FREM1, rspD and rspF. Epitope mapping using overlapping pin peptides showed that the monoclonal antibody (MAb) panel interrogated seven unique regions across five different domains, including the C-type lectin domain disulfide bond and the TILRR GAG serine attachment site. Utility of three selected FREM1 MAbs were demonstrated by FACS and immunohistochemical detection of FREM1 in 293F kidney embryonic cells, HeLa 229 cervical cells, and Sup-T1 cells. Thus, these monoclonal antibodies could be used to study the functional domains of FREM1 and its isoforms.
Collapse
Affiliation(s)
- Xin Yong Yuan
- 1 National Microbiology Laboratory , Public Health Agency of Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Myeloid Differentiation Factor 88 Promotes Cisplatin Chemoresistance in Ovarian Cancer. Cell Biochem Biophys 2014; 71:963-9. [DOI: 10.1007/s12013-014-0294-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Beck TF, Veenma D, Shchelochkov OA, Yu Z, Kim BJ, Zaveri HP, van Bever Y, Choi S, Douben H, Bertin TK, Patel PI, Lee B, Tibboel D, de Klein A, Stockton DW, Justice MJ, Scott DA. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet 2012; 22:1026-38. [PMID: 23221805 DOI: 10.1093/hmg/dds507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common life-threatening birth defect. Recessive mutations in the FRAS1-related extracellular matrix 1 (FREM1) gene have been shown to cause bifid nose with or without anorectal and renal anomalies (BNAR) syndrome and Manitoba oculotrichoanal (MOTA) syndrome, but have not been previously implicated in the development of CDH. We have identified a female child with an isolated left-sided posterolateral CDH covered by a membranous sac who had no features suggestive of BNAR or MOTA syndromes. This child carries a maternally-inherited ~86 kb FREM1 deletion that affects the expression of FREM1's full-length transcripts and a paternally-inherited splice site mutation that causes activation of a cryptic splice site, leading to a shift in the reading frame and premature termination of all forms of the FREM1 protein. This suggests that recessive FREM1 mutations can cause isolated CDH in humans. Further evidence for the role of FREM1 in the development of CDH comes from an N-ethyl-N-nitrosourea -derived mouse strain, eyes2, which has a homozygous truncating mutation in Frem1. Frem1(eyes2) mice have eye defects, renal agenesis and develop retrosternal diaphragmatic hernias which are covered by a membranous sac. We confirmed that Frem1 is expressed in the anterior portion of the developing diaphragm and found that Frem1(eyes2) embryos had decreased levels of cell proliferation in their developing diaphragms when compared to wild-type embryos. We conclude that FREM1 plays a critical role in the development of the diaphragm and that FREM1 deficiency can cause CDH in both humans and mice.
Collapse
Affiliation(s)
- Tyler F Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hudson RC, Gray C, Kiss-Toth E, Chico TJA, Qwarnstrom EE. Bioinformatics Analysis of the FREM1 Gene-Evolutionary Development of the IL-1R1 Co-Receptor, TILRR. BIOLOGY 2012; 1:484-94. [PMID: 24832504 PMCID: PMC4009816 DOI: 10.3390/biology1030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/28/2012] [Accepted: 09/03/2012] [Indexed: 11/17/2022]
Abstract
The TLRs and IL-1 receptors have evolved to coordinate the innate immune response following pathogen invasion. Receptors and signalling intermediates of these systems are generally characterised by a high level of evolutionary conservation. The recently described IL-1R1 co-receptor TILRR is a transcriptional variant of the FREM1 gene. Here we investigate whether innate co-receptor differences between teleosts and mammals extend to the expression of the TILRR isoform of FREM1. Bioinformatic and phylogenetic approaches were used to analyse the genome sequences of FREM1 from eukaryotic organisms including 37 tetrapods and five teleost fish. The TILRR consensus peptide sequence was present in the FREM1 gene of the tetrapods, but not in fish orthologs of FREM1, and neither FREM1 nor TILRR were present in invertebrates. The TILRR gene appears to have arisen via incorporation of adjacent non-coding DNA with a contiguous exonic sequence after the teleost divergence. Comparing co-receptors in other systems, points to their origin during the same stages of evolution. Our results show that modern teleost fish do not possess the IL-1RI co-receptor TILRR, but that this is maintained in tetrapods as early as amphibians. Further, they are consistent with data showing that co-receptors are recent additions to these regulatory systems and suggest this may underlie differences in innate immune responses between mammals and fish.
Collapse
Affiliation(s)
- Richard C Hudson
- Department of Cardiovascular Sciences, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Caroline Gray
- Department of Cardiovascular Sciences, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Endre Kiss-Toth
- Department of Cardiovascular Sciences, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Timothy J A Chico
- Department of Cardiovascular Sciences, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Eva E Qwarnstrom
- Department of Cardiovascular Sciences, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|