1
|
Kiani A, Pierotti CL, Schedel F, Kokot T, Weyershaeuser J, Brehm M, Rios P, Fehrenbach K, Warscheid B, Minguet S, Schamel WW, Köhn M. Development of a Peptide Inhibitor Targeting the C-SH2 Domain of the SHP2 Phosphatase. Chembiochem 2025; 26:e202400938. [PMID: 40318117 PMCID: PMC12118337 DOI: 10.1002/cbic.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) mediates important signal transduction upon cell surface receptor stimulation, regulating multiple cellular functions. In addition to the catalytically active phosphotyrosine (pTyr) phosphatase domain, SHP2 contains two regulatory pTyr-binding domains: the N-SH2 and C-SH2 domains. While the role of the N-SH2 domain is well understood, the role of the C-SH2 domain is less clear. To support studies on the involvement of the domains in SHP2 function, herein, the development of a peptide inhibitor containing a nonhydrolysable pTyr mimetic, which selectively binds to the C-SH2 domain of SHP2 and blocks its protein-protein interactions, is described. Incorporation of the pTyr mimetic l-O-malonyltyrosine (l-OMT) results in robust binding affinity to the C-SH2 domain, while the widely used pTyr mimetic phosphonodifluoromethyl phenylalanine (F2Pmp) abolishes binding, showing that this mimetic is not a general binder of SH2 domains, which challenges existing notions. The C-SH2 inhibitor peptide (CSIP) is stable, selective, cell permeable, and noncytotoxic. CSIP enriches the toolbox of inhibitors with different modes of action targeting SHP2, and will support studies to better understand SHP2 regulation and interactions, which can ultimately inform new drug discovery efforts.
Collapse
Affiliation(s)
- Azin Kiani
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Faculty of Chemistry and PharmacyHermann‐Staudinger Graduate SchoolUniversity of FreiburgHebelstraße 2779087Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Catia L. Pierotti
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
- Institute for Cell BiologyDepartment of Molecular Cell BiologyUniversity of BonnKäthe‐Kümmel‐Straße 153115BonnGermany
| | - Franziska Schedel
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Faculty of Chemistry and PharmacyHermann‐Staudinger Graduate SchoolUniversity of FreiburgHebelstraße 2779087Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
- Institute for Cell BiologyDepartment of Molecular Cell BiologyUniversity of BonnKäthe‐Kümmel‐Straße 153115BonnGermany
- Spemann Graduate School of Biology and MedicineUniversity of FreiburgAlbertstraße 19A79104Freiburg im BreisgauGermany
| | - Thomas Kokot
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Judith Weyershaeuser
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Mario Brehm
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Pablo Rios
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Kerstin Fehrenbach
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Biochemistry IITheodor‐Boveri‐InstituteUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
- Centre of Chronic Immunodeficiency CCIUniversity Clinics and Medical FacultyBreisacher Straße 11579106Freiburg im BreisgauGermany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
- Centre of Chronic Immunodeficiency CCIUniversity Clinics and Medical FacultyBreisacher Straße 11579106Freiburg im BreisgauGermany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 1879104Freiburg im BreisgauGermany
- Institute of Biology IIIFaculty of BiologyUniversity of FreiburgSchänzlestraße 179104Freiburg im BreisgauGermany
- Institute for Cell BiologyDepartment of Molecular Cell BiologyUniversity of BonnKäthe‐Kümmel‐Straße 153115BonnGermany
| |
Collapse
|
2
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
3
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
4
|
Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023; 9:e16421. [PMID: 37251450 PMCID: PMC10220380 DOI: 10.1016/j.heliyon.2023.e16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nayoung Kim
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
5
|
Sun G, Ayrapetov MK. Dissection of the catalytic and regulatory structure-function relationships of Csk protein tyrosine kinase. Front Cell Dev Biol 2023; 11:1148352. [PMID: 36936693 PMCID: PMC10016382 DOI: 10.3389/fcell.2023.1148352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Protein tyrosine kinases (PTKs) are a large enzyme family that regulates many cellular processes. The key to their broad role in signaling is their tunable substrate specificity and regulatory mechanisms that allow each to respond to appropriate regulatory signals and phosphorylate the correct physiological protein substrates. Thus, in addition to the general PTK catalytic platform, each PTK acquires unique structural motifs that confer a unique combination of catalytic and regulatory properties. Understanding the structural basis for these properties is essential for understanding and manipulating the PTK-based signaling networks in normal and cancer cells. C-terminal Src kinase (Csk) and its homolog, Csk-homologous kinase (Chk), phosphorylate Src family kinases on a C-terminal Tyr residue and negatively regulate their kinase activity. While this regulatory function is biologically essential, Csk and Chk have also been excellent model PTKs for dissecting the structural basis of PTK catalysis and regulation. In this article, we review the structure-function studies of Csk and Chk that shed light on the regulatory and catalytic mechanisms of protein tyrosine kinases in general.
Collapse
|
6
|
Dias RVR, Ferreira CTA, Jennings PA, Whitford PC, Oliveira LCD. Csk αC Helix: A Computational Analysis of an Essential Region for Conformational Transitions. J Phys Chem B 2022; 126:10587-10596. [PMID: 36512419 DOI: 10.1021/acs.jpcb.2c05408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformational changes are an essential feature for the function of some dynamic proteins. Understanding the mechanism of such motions may allow us to identify important properties, which may be directly related to the regulatory function of a protein. Also, this knowledge may be employed for a rational design of drugs that can shift the balance between active and inactive conformations, as well as affect the kinetics of the activation process. Here, the conformational changes in carboxyl-terminal Src kinase, the major catalytic repressor to the Src family of kinases, was investigated, and it was proposed as a functionally related hypothesis. A Cα Structure-Based Model (Cα-SBM) was applied to provide a description of the overall conformational landscape and further analysis complemented by detailed molecular dynamics simulations. As a first approach to Cα-SBM simulations, reversible transitions between active (closed) and inactive (open) forms were modeled as fluctuations between these two energetic basins. It was found that, in addition to the interdomain Carboxyl-terminal SRC Kinase (Csk) correlated motions, a conformational change in the αC helix is required for a complete conformational transition. The result reveals this as an important region of transition control and domain coordination. Restrictions in the αC helix region of the Csk protein were performed, and the analyses showed a direct correlation with the global conformational changes, with this location being propitious for future studies of ligands. Also, the Src Homology 3 (SH3) and SH3 plus Src Homology 2 (SH2) domains were excluded for a direct comparison with experimental results previously published. Simulations where the SH3 was deleted presented a reduction of the transitions during the simulations, while the SH3-SH2 deletion vanishes the Csk transitions, corroborating the experimental results mentioned and linking the conformational changes with the catalytic functionality of Csk. The study was complemented by the introduction of a known kinase inhibitor close to the Csk αC helix region where its consequences for the kinetic behavior and domain displacement of Csk were verified through detailed molecular dynamics. The findings describe the mechanisms involving the Csk αC helix for the transitions and also support the dynamic correlation between SH3 and SH2 domains against the Csk lobes and how local energetic restrictions or interactions in the Csk αC helix can play an important role for long-range motions. The results also allow speculation if the Csk activity is restricted to one specific conformation or a consequence of a state transition, this point being a target for future studies. However, the αC helix is revealed as a potential region for rational drug design.
Collapse
Affiliation(s)
- Raphael Vinicius Rodrigues Dias
- São Paulo State University (Unesp), Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo15054-000, Brazil
| | - Carolina Tatiani Alves Ferreira
- São Paulo State University (Unesp), Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo15054-000, Brazil
| | - Patricia Ann Jennings
- University of California, San Diego, 9500 Gilman Drive, Natural Science Building #3110, La Jolla, California92093, United States
| | - Paul Charles Whitford
- Northeastern University, Department of Physics and Center for Theoretical Biological Physics, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Leandro Cristante de Oliveira
- São Paulo State University (Unesp), Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo15054-000, Brazil
| |
Collapse
|
7
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
8
|
Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, Reimers M, Kim EH, Thakur MK, Saeed MA, Pachynski RK, Seeliger MA, Miller WT, Feng FY, Mahajan NP. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun 2022; 13:6929. [PMID: 36376335 PMCID: PMC9663509 DOI: 10.1038/s41467-022-34724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
- Anatomic and Clinical Pathology, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Shambhavi Bhagwat
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Melissa Reimers
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Eric H Kim
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Muhammad A Saeed
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Russell K Pachynski
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. SCIENCE ADVANCES 2022; 8:eabq0084. [PMID: 35857476 PMCID: PMC9269885 DOI: 10.1126/sciadv.abq0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs. We further show that LYN activity is controlled by the upstream kinase C-terminal Src kinase (CSK), whose activity, in turn, is controlled by the adaptor protein SPOP, which serves as molecular bridge to recruit CSK into the TLR signaling complex and to activate CSK catalytic activity. Consistently, deletion of SPOP or CSK results in increased LYN activity, LYN-directed IRF degradation, and inhibition of IRF transcriptional activity. Together, the data reveal a key regulatory mechanism for IRF family members controlling TLR biology.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vanessa Redecke
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeeba Kuriakose
- Children’s GMP, LLC., St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jill J. Bouchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian K. Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hans Häcker
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Brian BF, Sjaastad FV, Freedman TS. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci Rep 2022; 12:5875. [PMID: 35393453 PMCID: PMC8989918 DOI: 10.1038/s41598-022-09589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, e.g., Lck, Fyn, Lyn, Hck, Fgr, Blk, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that mediates autoinhibition. Csk also binds phosphatases, including PTPN12 (PTP-PEST) and immune-cell PTPN22 (LYP/Pep), which dephosphorylate the SFK activation loop to promote autoinhibition. Csk-binding proteins (e.g., CBP/PAG1) oligomerize within membrane microdomains, and high local concentration promotes Csk function. Purified Csk homodimerizes in solution through an interface that overlaps the phosphatase binding footprint. Here we demonstrate that Csk can homodimerize in Jurkat T cells, in competition with PTPN22 binding. We designed SH3-domain mutations in Csk that selectively impair homodimerization (H21I) or PTPN22 binding (K43D) and verified their kinase activity in solution. Disruption of either interaction in cells, however, decreased the negative-regulatory function of Csk. Csk W47A, a substitution previously reported to block PTPN22 binding, had a secondary effect of impairing homodimerization. Csk H21I and K43D will be useful tools for dissecting the protein-specific drivers of autoimmunity mediated by the human polymorphism PTPN22 R620W, which impairs interaction with Csk and with the E3 ubiquitin ligase TRAF3. Future investigations of Csk homodimer activity and phosphatase interactions may reveal new facets of SFK regulation in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- Ben F Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN, 55455, USA.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94170, USA
| | - Frances V Sjaastad
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Cardiac Rhythm Management, Medtronic, Mounds View, MN, 55112, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM. Biosensors based on peptide exposure show single molecule conformations in live cells. Cell 2021; 184:5670-5685.e23. [PMID: 34637702 PMCID: PMC8556369 DOI: 10.1016/j.cell.2021.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orrin J Stone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onur Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan B Grimm
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Brian BF, Guerrero CR, Freedman TS. Immunopharmacology and Quantitative Analysis of Tyrosine Kinase Signaling. ACTA ACUST UNITED AC 2021; 130:e104. [PMID: 32931655 PMCID: PMC7583487 DOI: 10.1002/cpim.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this article we describe the use of pharmacological and genetic tools coupled with immunoblotting (Western blotting) and targeted mass spectrometry to quantify immune signaling and cell activation mediated by tyrosine kinases. Transfer of the ATP γ phosphate to a protein tyrosine residue activates signaling cascades regulating the differentiation, survival, and effector functions of all cells, with unique roles in immune antigen receptor, polarization, and other signaling pathways. Defining the substrates and scaffolding interactions of tyrosine kinases is critical for revealing and therapeutically manipulating mechanisms of immune regulation. Quantitative analysis of the amplitude and kinetics of these effects is becoming ever more accessible experimentally and increasingly important for predicting complex downstream effects of therapeutics and for building computational models. Secondarily, quantitative analysis is increasingly expected by reviewers and journal editors, and statistical analysis of biological replicates can bolster claims of experimental rigor and reproducibility. Here we outline methods for perturbing tyrosine kinase activity in cells and quantifying protein phosphorylation in lysates and immunoprecipitates. The immunoblotting techniques are a guide to probing the dynamics of protein abundance, protein–protein interactions, and changes in post‐translational modification. Immunoprecipitated protein complexes can also be subjected to targeted mass spectrometry to probe novel sites of modification and multiply modified or understudied proteins that cannot be resolved by immunoblotting. Together, these protocols form a framework for identifying the unique contributions of tyrosine kinases to cell activation and elucidating the mechanisms governing immune cell regulation in health and disease. © 2020 The Authors. Basic Protocol 1: Quantifying protein phosphorylation via immunoblotting and near‐infrared imaging Alternate Protocol: Visualizing immunoblots using chemiluminescence Basic Protocol 2: Enriching target proteins and isolation of protein complexes by immunoprecipitation Support Protocol: Covalent conjugation of antibodies to functionalized beads Basic Protocol 3: Quantifying proteins and post‐translational modifications by targeted mass spectrometry
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, Minnesota
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota.,Center for Immunology, Masonic Cancer Center, Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Domain Organization in Plant Blue-Light Receptor Phototropin2 of Arabidopsis thaliana Studied by Small-Angle X-ray Scattering. Int J Mol Sci 2020; 21:ijms21186638. [PMID: 32927860 PMCID: PMC7555306 DOI: 10.3390/ijms21186638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Phototropin2 (phot2) is a blue-light (BL) receptor protein that regulates the BL-dependent activities of plants for efficient photosynthesis. Phot2 is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) to absorb BL, and a kinase domain. Photo-activated LOV domains, especially LOV2, play a major role in photo-dependent increase in the phosphorylation activity of the kinase domain. The atomic details of the overall structure of phot2 and the intramolecular mechanism to convert BL energy to a phosphorylation signal remain unknown. We performed structural studies on the LOV fragments LOV1, LOV2, LOV2-linker, and LOV2-kinase, and full-length phot2, using small-angle X-ray scattering (SAXS). The aim of the study was to understand structural changes under BL irradiation and discuss the molecular mechanism that enhance the phosphorylation activity under BL. SAXS is a suitable technique for visualizing molecular structures of proteins in solution at low resolution and is advantageous for monitoring their structural changes in the presence of external physical and/or chemical stimuli. Structural parameters and molecular models of the recombinant specimens were obtained from SAXS profiles in the dark, under BL irradiation, and after dark reversion. LOV1, LOV2, and LOV2-linker fragments displayed minimal structural changes. However, BL-induced rearrangements of functional domains were noted for LOV2-kinase and full-length phot2. Based on the molecular model together with the absorption measurements and biochemical assays, we discuss the intramolecular interactions and domain motions necessary for BL-enhanced phosphorylation activity of phot2.
Collapse
|
15
|
Btk SH2-kinase interface is critical for allosteric kinase activation and its targeting inhibits B-cell neoplasms. Nat Commun 2020; 11:2319. [PMID: 32385234 PMCID: PMC7210950 DOI: 10.1038/s41467-020-16128-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Bruton’s tyrosine kinase (Btk) is critical for B-cell maturation and activation. Btk loss-of-function mutations cause human X-linked agammaglobulinemia (XLA). In contrast, Btk signaling sustains growth of several B-cell neoplasms which may be treated with tyrosine kinase inhibitors (TKIs). Here, we uncovered the structural mechanism by which certain XLA mutations in the SH2 domain strongly perturb Btk activation. Using a combination of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS), we discovered an allosteric interface between the SH2 and kinase domain required for Btk activation and to which multiple XLA mutations map. As allosteric interactions provide unique targeting opportunities, we developed an engineered repebody protein binding to the SH2 domain and able to disrupt the SH2-kinase interaction. The repebody prevents activation of wild-type and TKI-resistant Btk, inhibiting Btk-dependent signaling and proliferation of malignant B-cells. Therefore, the SH2-kinase interface is critical for Btk activation and a targetable site for allosteric inhibition. Constitutive Btk signaling drives several B-cell cancers. Here the authors demonstrate key allosteric intramolecular interactions between the SH2 domain and the kinase domain of Btk, and propose an alternative approach for inhibition of both wild-type and tyrosine kinase inhibitor-resistant Btk.
Collapse
|
16
|
Leroux AE, Biondi RM. Renaissance of Allostery to Disrupt Protein Kinase Interactions. Trends Biochem Sci 2019; 45:27-41. [PMID: 31690482 DOI: 10.1016/j.tibs.2019.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions often regulate the activity of protein kinases by allosterically modulating the conformation of the ATP-binding site. Bidirectional allostery implies that reverse modulation (i.e., from the ATP-binding site to the interaction and regulatory sites) must also be possible. Here, we review both the allosteric regulation of protein kinases and recent work describing how compounds binding at the ATP-binding site can promote or inhibit protein kinase interactions at regulatory sites via the reverse mechanism. Notably, the pharmaceutical industry has been developing compounds that bind to the ATP-binding site of protein kinases and potently disrupt protein-protein interactions between target protein kinases and their regulatory interacting partners. Learning to modulate allosteric processes will facilitate the development of protein-protein interaction modulators.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Department of Internal Medicine I, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; DKTK German Cancer Consortium (DKTK), Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Dynamic regulatory features of the protein tyrosine kinases. Biochem Soc Trans 2019; 47:1101-1116. [PMID: 31395755 DOI: 10.1042/bst20180590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
The SRC, Abelson murine leukemia viral oncogene homolog 1, TEC and C-terminal SRC Kinase families of non-receptor tyrosine kinases (collectively the Src module kinases) mediate an array of cellular signaling processes and are therapeutic targets in many disease states. Crystal structures of Src modules kinases provide valuable insights into the regulatory mechanisms that control activation and generate a framework from which drug discovery can advance. The conformational ensembles visited by these multidomain kinases in solution are also key features of the regulatory machinery controlling catalytic activity. Measurement of dynamic motions within kinases substantially augments information derived from crystal structures. In this review, we focus on a body of work that has transformed our understanding of non-receptor tyrosine kinase regulation from a static view to one that incorporates how fluctuations in conformational ensembles and dynamic motions influence activation status. Regulatory dynamic networks are often shared across and between kinase families while specific dynamic behavior distinguishes unique regulatory mechanisms for select kinases. Moreover, intrinsically dynamic regions of kinases likely play important regulatory roles that have only been partially explored. Since there is clear precedence that kinase inhibitors can exploit specific dynamic features, continued efforts to define conformational ensembles and dynamic allostery will be key to combating drug resistance and devising alternate treatments for kinase-associated diseases.
Collapse
|
18
|
Bhattacharya A, Paul A, Chakrabarti D, DasGupta M. Gatekeeper-Activation Loop Cross-Talk Determines Distinct Autoactivation States of Symbiosis Receptor Kinase. Biochemistry 2019; 58:2419-2431. [PMID: 31021099 DOI: 10.1021/acs.biochem.9b00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant receptor-like kinases (RLKs) have a Tyr in the "gatekeeper" position adjacent to the hinge region. The gatekeeper is phosphorylated in several RLKs, including symbiosis receptor kinase (SYMRK), but the significance of this remains unknown. Gatekeeper substitution did not inactivate Arachis hypogaea SYMRK but affected autophosphorylation at selected sites. Herein, we show that nonphosphorylatable gatekeepers (Y670F and Y670A) restrict SYMRK to be a Ser/Thr kinase with a basal level of phosphorylation (∼5 P/polypeptide, termed state I) whereas phosphorylatable gatekeepers (Y670 and Y670T) allowed SYMRK to be dual specific (Ser/Thr/Tyr) with a maximal level of phosphorylation (∼10 P/polypeptide, termed state II). State II SYMRKs were phosphorylated on gatekeeper residues, and the phosphocode in their activation segment was distinct from state I. The kcat/ Km for substrate phosphorylation was ∼10-fold higher for state II, though for autophosphorylation, it was comparable with those of state I SYMRKs. To identify other determinants of state I features, we mutagenized all nine sites where phosphorylation was affected by nonphosphorylatable gatekeepers (Y670F and Y670A). Only two such mutants, S754A and S757A, located on the activation loop failed to phosphorylate gatekeeper Tyr and restricted SYMRK in state I. Double mutants like Y670F/S754A retained the features of state I, but Y670F/S757A was significantly inactivated, indicating a nonphosphorylatable gatekeeper can bypass phosphorylation of S754 but not S757 in the activation segment. We propose a working model for the hierarchical phosphorylation of SYMRK on gatekeeper and activation segments for its pS757-mediated activation as a Ser/Thr kinase in selfie mode (autophosphorylation) to a pS754/pY670-mediated activation as a Ser/Thr/Tyr kinase that functions in dual mode (both autophosphorylation and substrate phosphorylation).
Collapse
Affiliation(s)
- Avisek Bhattacharya
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | - Anindita Paul
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | | | - Maitrayee DasGupta
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| |
Collapse
|
19
|
Leroux AE, Gross LZF, Sacerdoti M, Biondi RM. Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:279-311. [PMID: 31707708 DOI: 10.1007/978-981-13-8719-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
21
|
von Raußendorf F, de Ruiter A, Leonard TA. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. Sci Rep 2017; 7:17405. [PMID: 29234112 PMCID: PMC5727165 DOI: 10.1038/s41598-017-17703-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.
Collapse
Affiliation(s)
- Freia von Raußendorf
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Anita de Ruiter
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Joseph RE, Wales TE, Fulton DB, Engen JR, Andreotti AH. Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts. Structure 2017; 25:1481-1494.e4. [PMID: 28867612 DOI: 10.1016/j.str.2017.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 01/27/2023]
Abstract
Capturing the functionally relevant forms of dynamic, multidomain proteins is extremely challenging. Bruton's tyrosine kinase (BTK), a kinase essential for B and mast cell function, has stubbornly resisted crystallization in its full-length form. Here, nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry show that BTK adopts a closed conformation in dynamic equilibrium with open, active conformations. BTK lacks the phosphotyrosine regulatory tail of the SRC kinases, yet nevertheless achieves a phosphotyrosine-independent C-terminal latch. The unique proline-rich region is an internal "on" switch pushing the autoinhibited kinase toward its active state. Newly identified autoinhibitory contacts in the BTK pleckstrin homology domain are sensitive to phospholipid binding, which induces large-scale allosteric changes. The multiplicity of these regulatory contacts suggests a clear mechanism for gradual or "analog" kinase activation as opposed to a binary "on/off" switch. The findings illustrate how previously modeled information for recalcitrant full-length proteins can be expanded and validated with a convergent multidisciplinary experimental approach.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Liu D, Yuan Y, Xu R, Cowburn D. Domain interactions of C-terminal Src Kinase determined through NMR spectroscopy with segmental isotope labeling. Protein Cell 2017; 8:67-71. [PMID: 27815825 PMCID: PMC5233614 DOI: 10.1007/s13238-016-0333-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201210, China
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ya Yuan
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Rong Xu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
24
|
Plani-Lam JHC, Slavova-Azmanova NS, Kucera N, Louw A, Satiaputra J, Singer P, Lam KP, Hibbs ML, Ingley E. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity. Exp Hematol 2016; 46:70-82.e10. [PMID: 27751872 DOI: 10.1016/j.exphem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is controlled principally through erythropoietin (Epo) receptor signaling, which involves Janus kinase 2 (JAK2) and Lyn tyrosine kinase, both of which are important for regulating red blood cell (RBC) development. Negative regulation of Lyn involves C-Src kinase (Csk)-mediated phosphorylation of its C-terminal tyrosine, which is facilitated by the transmembrane adaptor Csk-binding protein (Cbp). Although Cbp has significant functions in controlling Lyn levels and activity in erythroid cells in vitro, its importance to primary erythroid cell development and signaling has remained unclear. To address this, we assessed the consequence of loss of Cbp on the erythroid compartment in vivo and whether Epo-responsive cells isolated from Cbp-knockout mice exhibited altered signaling. Our data show that male Cbp-/- mice display a modest but significant alteration to late erythroid development in bone marrow with evidence of increased erythrocytes in the spleen, whereas female Cbp-/- mice exhibit a moderate elevation in early erythroid progenitors (not seen in male mice) that does not influence the later steps in RBC development. In isolated primary erythroid cells and cell lines generated from Cbp-/- mice, survival signaling through Lyn/Akt/FoxO3 was elevated, resulting in sustained viability during differentiation. The high Akt activity disrupted GAB2/SHP-2 feedback inhibition of Lyn; however, the elevated Lyn activity also increased inhibitory signaling via SHP-1 to restrict the Erk1/2 pathway. Interestingly, whereas loss of Cbp led to mild changes to late RBC development in male mice, this was not apparent in female Cbp-/- mice, possibly due to their elevated estrogen, which is known to facilitate early progenitor self-renewal.
Collapse
Affiliation(s)
- Janice H C Plani-Lam
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Neli S Slavova-Azmanova
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Nicole Kucera
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Alison Louw
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiulia Satiaputra
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Peter Singer
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
25
|
Dos Santos HG, Siltberg-Liberles J. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family. Genome Biol Evol 2016; 8:2806-25. [PMID: 27519537 PMCID: PMC5630953 DOI: 10.1093/gbe/evw194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/21/2022] Open
Abstract
One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted.
Collapse
Affiliation(s)
- Helena G Dos Santos
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University
| | - Jessica Siltberg-Liberles
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University
| |
Collapse
|
26
|
Liu D, Cowburn D. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase. BIOPHYSICS REPORTS 2016; 2:33-43. [PMID: 27819029 PMCID: PMC5071372 DOI: 10.1007/s41048-016-0025-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.
Collapse
Affiliation(s)
- Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201203 China ; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
27
|
Chopra N, Wales TE, Joseph RE, Boyken SE, Engen JR, Jernigan RL, Andreotti AH. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases. PLoS Comput Biol 2016; 12:e1004826. [PMID: 27010561 PMCID: PMC4807093 DOI: 10.1371/journal.pcbi.1004826] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site. Bruton’s tyrosine kinase (Btk) belongs to the Tec family of protein tyrosine kinases, and plays a crucial role in the signaling pathway in B-cells. Alteration of Btk activity results in the serious immunological disorder, X-linked agammaglobulinemia. Btk is a multi-domain protein and the activity of the kinase domain is regulated by the adjacent non-catalytic domains, which mediate their effect by means of a conserved tryptophan residue. In this work, we have investigated the mechanism of regulation by this tryptophan residue, W395, in the linker preceding the Btk kinase domain. Using hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations we identify structural elements within the kinase domain that are required for function by transmitting the allosteric effects of W395. Molecular Dynamics simulations further guided us to delineate the kinase domain into dynamically correlated sets of residues using community analysis, thereby identifying the important communication nodes that connect the various elements of the kinase domain required for function. The analyses performed indicate clearly how the W395A mutant changes the communication pathway required for function.
Collapse
Affiliation(s)
- Nikita Chopra
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Raji E. Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Scott E. Boyken
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Robert L. Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation. PLoS One 2015; 10:e0127724. [PMID: 26030592 PMCID: PMC4452171 DOI: 10.1371/journal.pone.0127724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD) simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS) and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.
Collapse
|
29
|
Advani G, Chueh AC, Lim YC, Dhillon A, Cheng HC. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression. FRONTIERS IN BIOLOGY 2015; 10:195-202. [DOI: 10.1007/s11515-015-1352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
|
30
|
The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase. mBio 2014; 5:e01178-14. [PMID: 24902122 PMCID: PMC4030455 DOI: 10.1128/mbio.01178-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response.
Collapse
|
31
|
Primary structural features of SR-like protein acinusS govern the phosphorylation mechanism by SRPK2. Biochem J 2014; 459:181-91. [PMID: 24444330 DOI: 10.1042/bj20131091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SRPKs (serine/arginine protein kinases) are highly specific kinases that recognize and phosphorylate RS (Arg-Ser) dipeptide repeats. It has been shown previously that SRPK1 phosphorylates the RS domain of SRSF1 (serine/arginine splicing factor 1) at multiple sites using a directional and processive mechanism. Such ability to processively phosphorylate substrates is proposed to be an inherent characteristic of SRPKs. SRPK2 is highly related to SRPK1 in sequence and in vitro properties, yet it has been shown to have distinct substrate specificity and physiological function in vivo. To study the molecular basis for substrate specificity of SRPK2, we investigated the roles of the non-kinase regions and a conserved docking groove of SRPK2 in the recognition and phosphorylation of different substrates: SRSF1 and acinusS. Our results reveal that a conserved electronegative docking groove in SRPK2, but not its non-kinase regions, is responsible for substrate binding regardless of their identities. Although SRPK2 phosphorylates SRSF1 in a processive manner as predicted, an electronegative region on acinusS restricts SRPK2 phosphorylation to a single specific site despite the presence of multiple RS dipeptides. These results suggest that primary structural elements on the substrates serve as key regulatory roles in determining the phosphorylation mechanism of SRPK2.
Collapse
|
32
|
Schultheiss KP, Craddock BP, Suga H, Miller WT. Regulation of Src and Csk nonreceptor tyrosine kinases in the filasterean Ministeria vibrans. Biochemistry 2014; 53:1320-9. [PMID: 24520931 PMCID: PMC4033911 DOI: 10.1021/bi4016499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of the phosphotyrosine-based signaling system predated the evolution of multicellular animals. Single-celled choanoflagellates, the closest living relatives to metazoans, possess numerous tyrosine kinases, including Src family nonreceptor tyrosine kinases. Choanoflagellates also have Csk (C-terminal Src kinase), the enzyme that regulates Src in metazoans; however, choanoflagellate Csk kinases fail to repress the cognate Src. Here, we have cloned and characterized Src and Csk kinases from Ministeria vibrans, a filasterean (the sister group to metazoans and choanoflagellates). The two Src kinases (MvSrc1 and MvSrc2) are enzymatically active Src kinases, although they have low activity toward mammalian cellular proteins. Unexpectedly, MvSrc2 has significant Ser/Thr kinase activity. The Csk homologue (MvCsk) is enzymatically inactive and fails to repress MvSrc activity. We suggest that the low activity of MvCsk is due to sequences in the SH2-kinase interface, and we show that a point mutation in this region partially restores MvCsk activity. The inactivity of filasterean Csk kinases is consistent with a model in which the stringent regulation of Src family kinases arose more recently in evolution, after the split between choanoflagellates and multicellular animals.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University , Stony Brook, New York 11794, United States
| | | | | | | |
Collapse
|
33
|
Koike R, Ota M, Kidera A. Hierarchical Description and Extensive Classification of Protein Structural Changes by Motion Tree. J Mol Biol 2014; 426:752-62. [DOI: 10.1016/j.jmb.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
34
|
Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5:a008987. [PMID: 24296166 DOI: 10.1101/cshperspect.a008987] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Collapse
|
35
|
Barkho S, Pierce LCT, McGlone ML, Li S, Woods VL, Walker RC, Adams JA, Jennings PA. Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLoS Comput Biol 2013; 9:e1003188. [PMID: 24039559 PMCID: PMC3764022 DOI: 10.1371/journal.pcbi.1003188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022] Open
Abstract
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.
Collapse
Affiliation(s)
- Sulyman Barkho
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Levi C. T. Pierce
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Maria L. McGlone
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Virgil L. Woods
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Ross C. Walker
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, California, United States of America
| | - Joseph A. Adams
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Joseph RE, Kleino I, Wales TE, Xie Q, Fulton DB, Engen JR, Berg LJ, Andreotti AH. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific tec kinases. Sci Signal 2013; 6:ra76. [PMID: 23982207 DOI: 10.1126/scisignal.2004298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Itk (interleukin-2-inducible T cell kinase) and Btk (Bruton's tyrosine kinase) are nonreceptor tyrosine kinases of the Tec family that signal downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively. Despite their high sequence similarity and related signaling roles, Btk is a substantially more active kinase than Itk. We showed that substitution of 6 of the 619 amino acid residues of Itk with the corresponding residues of Btk (and vice versa) was sufficient to completely switch the activities of Itk and Btk. The substitutions responsible for the swap in activity are all localized to the activation segment of the kinase domain. Nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses revealed that Itk and Btk had distinct protein dynamics in this region, which could explain the differences in catalytic efficiency between these kinases. Introducing Itk with enhanced activity into T cells led to enhanced and prolonged TCR signaling compared to that in cells with wild-type Itk. These findings imply that evolutionary pressures have led to Tec kinases having distinct enzymatic properties, depending on the cellular context. We suggest that the weaker catalytic activities of T cell-specific kinases serve to regulate cellular activation and prevent aberrant immune responses.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.
Collapse
Affiliation(s)
- Philip J Hogg
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
38
|
Abstract
Protein action in nature is largely controlled by the level of expression and by post-translational modifications. Post-translational modifications result in a proteome that is at least two orders of magnitude more diverse than the genome. There are three basic types of post-translational modifications: covalent modification of an amino acid side chain, hydrolytic cleavage or isomerization of a peptide bond, and reductive cleavage of a disulfide bond. This review addresses the modification of disulfide bonds. Protein disulfide bonds perform either a structural or a functional role, and there are two types of functional disulfide: the catalytic and allosteric bonds. The allosteric disulfide bonds control the function of the mature protein in which they reside by triggering a change when they are cleaved. The change can be in ligand binding, substrate hydrolysis, proteolysis, or oligomer formation. The allosteric disulfides are cleaved by oxidoreductases or by thiol/disulfide exchange, and the configurations of the disulfides and the secondary structures that they link share some recurring features. How these bonds are being identified using bioinformatics and experimental screens and what the future holds for this field of research are also discussed.
Collapse
Affiliation(s)
- Kristina M Cook
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW2052, Australia
| | | |
Collapse
|
39
|
Tanaka H, Akagi KI, Oneyama C, Tanaka M, Sasaki Y, Kanou T, Lee YH, Yokogawa D, Dobenecker MW, Nakagawa A, Okada M, Ikegami T. Identification of a new interaction mode between the Src homology 2 domain of C-terminal Src kinase (Csk) and Csk-binding protein/phosphoprotein associated with glycosphingolipid microdomains. J Biol Chem 2013; 288:15240-54. [PMID: 23548896 DOI: 10.1074/jbc.m112.439075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8:1385-97. [PMID: 23139636 PMCID: PMC3492796 DOI: 10.7150/ijbs.5141] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.
Collapse
Affiliation(s)
- Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, JAPAN.
| |
Collapse
|
41
|
Hantschel O, Grebien F, Superti-Furga G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res 2012; 72:4890-5. [PMID: 23002203 DOI: 10.1158/0008-5472.can-12-1276] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The BCR-ABL fusion kinase is the driving mutation of chronic myelogenous leukemias and is also expressed in a subset of acute lymphoblastic leukemias. Recent advances in elucidating the structure, regulation, and signaling of BCR-ABL have led to the identification of allosteric sites that are distant from the ATP-binding pocket and are critical for BCR-ABL-dependent oncogenic transformation. Here, we review the available data regarding the molecular mechanism of action and the specificity of ATP-competitive tyrosine kinase inhibitors targeting BCR-ABL. In addition, we discuss how targeting of allosteric sites could provide new opportunities to inhibit resistant BCR-ABL mutants, either alone or in combination with conventional ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Oliver Hantschel
- École Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | | | |
Collapse
|
42
|
Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Jennings PA. Substrate-specific reorganization of the conformational ensemble of CSK implicates novel modes of kinase function. PLoS Comput Biol 2012; 8:e1002695. [PMID: 23028292 PMCID: PMC3447962 DOI: 10.1371/journal.pcbi.1002695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/05/2012] [Indexed: 01/12/2023] Open
Abstract
Protein kinases use ATP as a phosphoryl donor for the posttranslational modification of signaling targets. It is generally thought that the binding of this nucleotide induces conformational changes leading to closed, more compact forms of the kinase domain that ideally orient active-site residues for efficient catalysis. The kinase domain is oftentimes flanked by additional ligand binding domains that up- or down-regulate catalytic function. C-terminal Src kinase (Csk) is a multidomain tyrosine kinase that is up-regulated by N-terminal SH2 and SH3 domains. Although the X-ray structure of Csk suggests the enzyme is compact, X-ray scattering studies indicate that the enzyme possesses both compact and open conformational forms in solution. Here, we investigated whether interactions with the ATP analog AMP-PNP and ADP can shift the conformational ensemble of Csk in solution using a combination of small angle x-ray scattering and molecular dynamics simulations. We find that binding of AMP-PNP shifts the ensemble towards more extended rather than more compact conformations. Binding of ADP further shifts the ensemble towards extended conformations, including highly extended conformations not adopted by the apo protein, nor by the AMP-PNP bound protein. These ensembles indicate that any compaction of the kinase domain induced by nucleotide binding does not extend to the overall multi-domain architecture. Instead, assembly of an ATP-bound kinase domain generates further extended forms of Csk that may have relevance for kinase scaffolding and Src regulation in the cell. The Src protein kinases are integral members of numerous signaling pathways involved in cellular growth and differentiation. The master regulator of the Src family is the protein kinase Csk, which adds a phosphate to the C-terminal tail, inhibiting Src Kinase function. Proper regulation of these signaling pathways by Csk is essential as unregulated activity in these pathways is correlated with the development of various cancers and autoimmune diseases. Understanding the nature of the mechanism and structure of Csk may lead to therapeutics and a better understanding of Src signaling pathways. Conformational changes associated with nucleotide binding and release have been shown to regulate the efficiency of Src down-regulation by Csk. To obtain insights into the nature of these nucleotide-induced structural changes, we examined the conformation of Csk in solution while bound to the ATP analog AMP-PNP and product ADP using a combination of small angle x-ray scattering and molecular dynamics. Surprisingly, both nucleotides induce extended conformations of Csk compared to the apo-enzyme, suggesting a novel mode of function. Further understanding of this mode of function may aid in the design of cancer therapeutics that act by regulating Src signaling pathways by modulating the function of Csk.
Collapse
Affiliation(s)
- Michael A. Jamros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro C. Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE/CNPEM, Campinas, São Paulo, Brazil
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Joseph A. Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Whitford PC, Sanbonmatsu KY, Onuchic JN. Biomolecular dynamics: order-disorder transitions and energy landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076601. [PMID: 22790780 PMCID: PMC3695400 DOI: 10.1088/0034-4885/75/7/076601] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.
Collapse
Affiliation(s)
- Paul C Whitford
- Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA
| | | | | |
Collapse
|
44
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
45
|
Mehra R, Serebriiskii IG, Dunbrack RL, Robinson MK, Burtness B, Golemis EA. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer. Drug Resist Updat 2011; 14:260-79. [PMID: 21920801 PMCID: PMC3195944 DOI: 10.1016/j.drup.2011.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023]
Abstract
Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors.
Collapse
Affiliation(s)
- Ranee Mehra
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Matthew K. Robinson
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Barbara Burtness
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
46
|
Place AT, Chen Z, Bakhshi FR, Liu G, O'Bryan JP, Minshall RD. Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol Pharmacol 2011; 80:665-72. [PMID: 21778303 PMCID: PMC3187524 DOI: 10.1124/mol.111.073957] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/21/2011] [Indexed: 01/19/2023] Open
Abstract
In the present study, we assessed the cooperative roles of C-terminal Src kinase (Csk) binding protein (Cbp) and Caveolin-1 (Cav-1) in the mechanism of Src family tyrosine kinase (SFK) inhibition by Csk. SFKs are inactivated by phosphorylation of their C-terminal tyrosine by Csk. Whereas SFKs are membrane-associated, Csk is a cytoplasmic protein and therefore requires membrane adaptors such as Cbp or Cav-1 for recruitment to the plasma membrane to mediate SFK inhibition. To determine the specific role of Cav-1 and Cbp in SFK inhibition, we measured c-Src activity in the absence of each membrane adaptor. It is noteworthy that in lungs and fibroblasts from Cav-1(-/-) mice, we observed increased expression of Cbp compared with wild-type (WT) controls. However, both c-Src activity and Csk localization at the membrane were similar between Cav-1(-/-) fibroblasts and WT cells. Likewise, Cbp depletion by small interfering RNA (siRNA) treatment of WT cells had no effect on basal c-Src activity, but it increased the phosphorylation state of Cav-1. Immunoprecipitation then confirmed increased association of Csk with phosphomimicking Cav-1. Knockdown of Cbp by siRNA in Cav-1(-/-) cells revealed increased basal c-Src activity, and re-expression of WT Cav-1 in the same cells reduced basal c-Src activity. Taken together, these results indicate that Cav-1 and Cbp cooperatively regulate c-Src activity by recruiting Csk to the membrane where it phosphorylates c-Src inhibitory tyrosine 529. Furthermore, when either Cav-1 or Cbp expression is reduced or absent, there is a compensatory increase in the phosphorylation state or expression level of the other membrane-associated Csk adaptor to maintain SFK inhibition.
Collapse
Affiliation(s)
- Aaron T Place
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
47
|
Adén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M. Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1880-90. [PMID: 21798375 DOI: 10.1016/j.bbapap.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
Collapse
Affiliation(s)
- Jörgen Adén
- Department of Chemistry, Umea University, Umea, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
49
|
Gunn NJ, Gorman MA, Dobson RCJ, Parker MW, Mulhern TD. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:336-9. [PMID: 21393838 PMCID: PMC3053158 DOI: 10.1107/s1744309110053728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 12/22/2010] [Indexed: 11/10/2022]
Abstract
The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.
Collapse
Affiliation(s)
- Natalie J. Gunn
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Michael A. Gorman
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- The Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
50
|
Regulation of ack-family nonreceptor tyrosine kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:742372. [PMID: 21637378 PMCID: PMC3101793 DOI: 10.1155/2011/742372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 01/17/2023]
Abstract
Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
Collapse
|