1
|
Zhang H, Yin L, Song F, Jiang M. SKIP Silencing Decreased Disease Resistance Against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:593267. [PMID: 33381133 PMCID: PMC7767821 DOI: 10.3389/fpls.2020.593267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 05/29/2023]
Abstract
SKIP, a component of the spliceosome, is involved in numerous signaling pathways. However, there is no direct genetic evidence supporting the function of SKIP in defense responses. In this paper, two SKIPs, namely, SlSKIP1a and SlSKIP1b, were analyzed in tomato. qRT-PCR analysis showed that the SlSKIP1b expression was triggered via Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea (B. cinerea), together with the defense-associated signals. In addition, the functions of SlSKIP1a and SlSKIP1b in disease resistance were analyzed in tomato through the virus-induced gene silencing (VIGS) technique. VIGS-mediated SlSKIP1b silencing led to increased accumulation of reactive oxygen species (ROS), along with the decreased expression of defense-related genes (DRGs) after pathogen infection, suggesting that it reduced B. cinerea and Pst DC3000 resistance. There was no significant difference in B. cinerea and Pst DC3000 resistance in TRV-SlSKIP1a-infiltrated plants compared with the TRV-GUS-silencing counterparts. As suggested by the above findings, SlSKIP1b plays a vital role in disease resistance against pathogens possibly by regulating the accumulation of ROS as well as the expression of DRGs.
Collapse
Affiliation(s)
- Huijuan Zhang
- Life Science Collegue, Taizhou University, Taizhou, China
| | - Longfei Yin
- Life Science Collegue, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Life Science Collegue, Taizhou University, Taizhou, China
| |
Collapse
|
2
|
Li Y, Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma L. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:321-335. [PMID: 31209881 DOI: 10.1111/nph.15990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 05/08/2023]
Abstract
Ski-interacting protein (SKIP) is a bifunctional regulator of gene expression that works as a splicing factor as part of the spliceosome and as a transcriptional activator by interacting with EARLY FLOWERING 7 (ELF7). MOS4-Associated Complex 3A (MAC3A) and MAC3B interact physically and genetically with SKIP, mediate the alternative splicing of c. 50% of the expressed genes in the Arabidopsis genome, and are required for the splicing of a similar set of genes to that of SKIP. SKIP interacts physically and genetically with splicing factors and Polymerase-Associated Factor 1 complex (Paf1c) components. However, these splicing factors do not interact either physically or genetically with Paf1c components. The SKIP-spliceosome complex mediates circadian clock function and abiotic stress responses by controlling the alternative splicing of pre-mRNAs encoded by clock- and stress tolerance-related genes. The SKIP-Paf1c complex regulates the floral transition by activating FLOWERING LOCUS C (FLC) transcription. Our data reveal that SKIP regulates floral transition and environmental fitness via its incorporation into two distinct complexes that regulate gene expression transcriptionally and post-transcriptionally, respectively. It will be interesting to discover in future studies whether SKIP is required for integration of environmental fitness and growth by control of the incorporation of SKIP into spliceosome or Paf1c in plants.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jing Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xudong Shang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wenzhu Lv
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Congcong Xia
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jinlin Feng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
3
|
Sicinska W, Gront D, Sicinski K. Mutation goals in the vitamin D receptor predicted by computational methods. J Steroid Biochem Mol Biol 2018; 183:210-220. [PMID: 29966696 DOI: 10.1016/j.jsbmb.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/21/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
The mechanism through which nuclear receptors respond differentially to structurally distinct agonists is a poorly understood process. We present a computational method that identifies nuclear receptor amino acids that are likely involved in biological responses triggered by ligand binding. The method involves tracing how structural changes spread from the ligand binding pocket to the sites on the receptor surface, which makes it a good tool for studying allosteric effects. We employ the method to the vitamin D receptor and verify that the identified amino acids are biologically relevant using a broad range of experimental data and a genome browser. We infer that surface vitamin D receptor residues K141, R252, I260, T280, T287 and L417 are likely involved in cell differentiation and antiproliferation, whereas P122, D149, K321, E353 and Q385 are linked to carcinogenesis.
Collapse
Affiliation(s)
- Wanda Sicinska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dominik Gront
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706, United States
| |
Collapse
|
4
|
Sato N, Maeda M, Sugiyama M, Ito S, Hyodo T, Masuda A, Tsunoda N, Kokuryo T, Hamaguchi M, Nagino M, Senga T. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells. Cancer Med 2014; 4:268-77. [PMID: 25450007 PMCID: PMC4329010 DOI: 10.1002/cam4.366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various tumor cell lines. In this report, we demonstrate that depletion of SNW1, a component of the spliceosome, induces apoptosis in breast cancer cells. Proteomics and biochemical analyses revealed that SNW1 directly associates with other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 as well as two independent regions in the C-terminus of SNRNP200. Similar to SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic cells. Furthermore, we demonstrate that exogenous expression of either the SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly promoted cellular apoptosis. Our results suggest that the inhibition of SNW1 or its associating proteins may be a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kostrouch D, Kostrouchová M, Yilma P, Chughtai AA, Novotný JP, Novák P, Kostrouchová V, Kostrouchová M, Kostrouch Z. SKIP and BIR-1/Survivin have potential to integrate proteome status with gene expression. J Proteomics 2014; 110:93-106. [PMID: 25088050 DOI: 10.1016/j.jprot.2014.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED SKIP and BIR are evolutionarily conserved proteins; SKIP (SKP-1) is a known transcription and splicing cofactor while BIR-1/Survivin regulates cell division, gene expression and development. Their loss of function induces overlapping developmental phenotypes. We searched for SKP-1 and BIR-1 interaction on protein level using yeast two-hybrid screens and identified partially overlapping categories of proteins as SKIP-1 and BIR-1 interactors. The interacting proteins included ribosomal proteins, transcription factors, translation factors and cytoskeletal and motor proteins suggesting involvement in multiple protein complexes. To visualize the effect of BIR-1 on the proteome in Caenorhabditis elegans we induced a short time pulse BIR-1 overexpression in synchronized L1 larvae. This led to a dramatic alteration of the whole proteome pattern indicating that BIR-1 alone has the capacity to alter the chromatographic profile of many target proteins including proteins found to be interactors in yeast two hybrid screens. The results were validated for ribosomal proteins RPS3 and RPL5, non-muscle myosin and TAC-1, a transcription cofactor and a centrosome associated protein. Together, these results suggest that SKP-1 and BIR-1 are multifunctional proteins that form multiple protein complexes in both shared and distinct pathways and have the potential to connect proteome signals with the regulation of gene expression. BIOLOGICAL SIGNIFICANCE The genomic organization of the genes encoding BIR-1 and SKIP (SKP-1) in C. elegans have suggested that these two factors, each evolutionarily conserved, have related functions. However, these functional connections have remained elusive and underappreciated in light of limited information from C. elegans and other biological systems. Our results provide further evidence for a functional link between these two factors and suggest they may transmit proteome signals towards the regulation of gene expression.
Collapse
Affiliation(s)
- David Kostrouch
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Markéta Kostrouchová
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Yilma
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Ahmed Ali Chughtai
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Philipp Novotný
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structure Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Veronika Kostrouchová
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marta Kostrouchová
- Laboratory of Molecular Biology and Genetics, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Zdeněk Kostrouch
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| |
Collapse
|
6
|
Melling MA, Friendship CRC, Shepherd TG, Drysdale TA. Expression of Ski can act as a negative feedback mechanism on retinoic acid signaling. Dev Dyn 2013; 242:604-13. [PMID: 23441061 DOI: 10.1002/dvdy.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-β) signaling but has also been implicated in the repression of retinoic acid signaling. RESULTS We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. CONCLUSIONS Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling.
Collapse
|
7
|
Abankwa D, Millard SM, Martel N, Choong CS, Yang M, Butler LM, Buchanan G, Tilley WD, Ueki N, Hayman MJ, Leong GM. Ski-interacting protein (SKIP) interacts with androgen receptor in the nucleus and modulates androgen-dependent transcription. BMC BIOCHEMISTRY 2013; 14:10. [PMID: 23566155 PMCID: PMC3668167 DOI: 10.1186/1471-2091-14-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
Background The androgen receptor (AR) is a member of the nuclear receptor (NR) superfamily of ligand-inducible DNA transcription factors, and is the major mediator of male sexual development, prostate growth and the pathogenesis of prostate cancer. Cell and gene specific regulation by the AR is determined by availability of and interaction with sets of key accessory cofactors. Ski-interacting protein (SKIP; SNW1, NCOA62) is a cofactor shown to interact with several NRs and a diverse range of other transcription factors. Interestingly, SKIP as part of the spliceosome is thought to link mRNA splicing with transcription. SKIP has not been previously shown to interact with the AR. Results The aim of this study was to investigate whether SKIP interacts with the AR and modulates AR-dependent transcription. Here, we show by co-immunoprecipitation experiments that SKIP is in a complex with the AR. Moreover, SKIP increased 5α-dihydrotestosterone (DHT) induced N-terminal/C-terminal AR interaction from 12-fold to almost 300-fold in a two-hybrid assay, and enhanced AR ligand-independent AF-1 transactivation. SKIP augmented ligand- and AR-dependent transactivation in PC3 prostate cancer cells. Live-cell imaging revealed a fast (half-time=129 s) translocation of AR from the cytoplasm to the nucleus upon DHT-stimulation. Förster resonance energy transfer (FRET) experiments suggest a direct AR-SKIP interaction in the nucleus upon translocation. Conclusions Our results suggest that SKIP interacts with AR in the nucleus and enhances AR-dependent transactivation and N/C-interaction supporting a role for SKIP as an AR co-factor.
Collapse
Affiliation(s)
- Daniel Abankwa
- University of Queensland, Obesity Research Centre, Institute for Molecular Bioscience, St,Lucia, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Quantitative real-time PCR as a sensitive protein–protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system. Methods 2012; 58:376-84. [DOI: 10.1016/j.ymeth.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
|
10
|
Iglesias-Gato D, Zheng S, Flanagan JN, Jiang L, Kittaka A, Sakaki T, Yamamoto K, Itoh T, Lebrasseur NK, Norstedt G, Chen TC. Substitution at carbon 2 of 19-nor-1α,25-dihydroxyvitamin D3 with 3-hydroxypropyl group generates an analogue with enhanced chemotherapeutic potency in PC-3 prostate cancer cells. J Steroid Biochem Mol Biol 2011; 127:269-75. [PMID: 21911059 DOI: 10.1016/j.jsbmb.2011.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 12/11/2022]
Abstract
The active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3)(1α,25(OH)(2)D(3)), has anti-proliferative and anti-invasive activities in prostate cancer cells. Because of 1α,25(OH)(2)D(3) therapeutic potential in treating cancers, numerous analogues have been synthesized with an attempt to increase anti-proliferative and/or decrease calcemic properties. Among these analogues, 19-nor-1α,25(OH)(2)D(2) while being less calcemic has equivalent potency as 1α,25(OH)(2)D(3) in several in vitro and in vivo systems. We recently showed that 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (MART-10) was at least 500-fold and 10-fold more active than 1α,25(OH)(2)D(3) in inhibiting the proliferation of an immortalized normal prostate PZ-HPV-7 cells and the invasion of androgen insensitive PC-3 prostate cancer cells, respectively. In this study, we further investigated the effects of MART-10 and 1α,25(OH)(2)D(3) on the dose- and time-dependent induction of CYP24A1 gene expression in PC-3 prostate cancer cells. We found that MART-10 induced CYP24A1 gene expression at a lower concentration with a longer duration compared to 1α,25(OH)(2)D(3), suggesting that MART-10 is less susceptible to CYP24A1 degradation. Molecular docking model of human CYP24A1 and MART-10 indicates that its side chain is far away from the heme ion and is less likely to be hydroxylated by the enzyme. Furthermore, MART-10 was a more potent inhibitor of PC-3 cell proliferation and invasion compared to 1α,25(OH)(2)D(3). In addition, MART-10 down-regulated matrix metalloproteinase-9 (MMP-9) expression which could be one mechanism whereby MART-10 influences cancer cell invasion. Finally, we observed that subcutaneous administration of MART-10 up-regulated the CYP24A1 mRNA expression in rat kidneys without affecting their plasma calcium levels. Thus, our findings demonstrate that MART-10 is biologically active in vivo and may be an effective vitamin D analogue for clinical trials to treat prostate cancer.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sicinska W, Kurcinski M. MSITE: a new computational tool for comparison of homological proteins in holo form. J Steroid Biochem Mol Biol 2010; 121:34-42. [PMID: 20399855 DOI: 10.1016/j.jsbmb.2010.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/02/2010] [Accepted: 04/10/2010] [Indexed: 10/19/2022]
Abstract
The mechanism by which nuclear receptors respond differentially to structurally distinct agonists is not a well understood process. However, it is now obvious that transcriptional activity of nuclear receptors is a function of their interactions with co-activators. Recently, we released a new computational tool, CCOMP, for comparing side chain conformations in crystal structures of homologous protein complexes. Application of the CCOMP program revealed that 20-epi-1alpha,25-(OH)2D3 changes the side chain conformation of vitamin D receptor amino acids residing mostly far away from the ligand-receptor contacts. This strongly suggests that the ligand-co-activator signaling pathway involves indirect interactions between amino acids lining the binding pocket and outer surface residues that could attract co-activators. To facilitate identification of amino acids transmitting the subtle receptor changes upon ligand/modulator binding we developed another simple tool, MSITE. The program automatically lists the nearest neighbors of a given amino acid (for example neighbors of residues that are in contact with a ligand or reorient their side chains in the presence of a co-factor) in an arbitrary number of compared complexes. Comparison of seven binary vitamin D receptor complexes holding as ligands the analogs of 1alpha,25-(OH)2D3 with inverted configuration at carbon 14 or 20, or with incorporated oxolane ring bridging carbons 20 and 23, is reported.
Collapse
Affiliation(s)
- Wanda Sicinska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | |
Collapse
|
12
|
Arriagada G, Henriquez B, Moena D, Merino P, Ruiz-Tagle C, Lian JB, Stein GS, Stein JL, Montecino M. Recruitment and subnuclear distribution of the regulatory machinery during 1alpha,25-dihydroxy vitamin D3-mediated transcriptional upregulation in osteoblasts. J Steroid Biochem Mol Biol 2010; 121:156-8. [PMID: 20171279 PMCID: PMC2906675 DOI: 10.1016/j.jsbmb.2010.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/12/2010] [Indexed: 01/13/2023]
Abstract
The architectural organization of the genome and regulatory proteins within the nucleus supports gene expression in a physiologically regulated manner. In osteoblastic cells ligand activation induces a nuclear punctate distribution of the 1alpha,25-dihydroxy vitamin D3 (1alpha,25(OH)2D3) receptor (VDR) and promotes its interaction with transcriptional coactivators such as SRC-1, NCoA-62/Skip, and DRIP205. Here, we discuss evidence demonstrating that in osteoblastic cells VDR binds to the nuclear matrix fraction in a 1alpha,25(OH)2D3-dependent manner. This interaction occurs rapidly after exposure to 1alpha,25(OH)2D3 and does not require a functional VDR DNA binding domain. The nuclear matrix-bound VDR molecules colocalize with the also nuclear matrix-associated coactivator DRIP205. We propose a model where the rapid association of VDR with the nuclear matrix fraction represents an event that follows 1alpha,25(OH)2D3-dependent nuclear localization of VDR, but that precedes 1alpha,25(OH)2D3-dependent transcriptional upregulation at target genes.
Collapse
Affiliation(s)
- Gloria Arriagada
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Berta Henriquez
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Daniel Moena
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Paola Merino
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Cinthya Ruiz-Tagle
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Jane B. Lian
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gary S. Stein
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Janet L. Stein
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Martin Montecino
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
- To whom correspondence should be addressed: Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile. , Phone: 56-41-2203815, Fax: 56-41-2239687
| |
Collapse
|
13
|
A role for the phosphatidylinositol 3-kinase – protein kinase C zeta – Sp1 pathway in the 1,25-dihydroxyvitamin D3 induction of the 25-hydroxyvitamin D3 24-hydroxylase gene in human kidney cells. Cell Signal 2010; 22:543-52. [DOI: 10.1016/j.cellsig.2009.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 10/09/2009] [Accepted: 11/10/2009] [Indexed: 11/18/2022]
|
14
|
Arriagada G, Paredes R, van Wijnen AJ, Lian JB, van Zundert B, Stein GS, Stein JL, Montecino M. 1alpha,25-dihydroxy vitamin D(3) induces nuclear matrix association of the 1alpha,25-dihydroxy vitamin D(3) receptor in osteoblasts independently of its ability to bind DNA. J Cell Physiol 2009; 222:336-46. [PMID: 19885846 DOI: 10.1002/jcp.21958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1alpha,25-dihydroxy vitamin D(3) (vitamin D(3)) has an important role during osteoblast differentiation as it directly modulates the expression of key bone-related genes. Vitamin D(3) binds to the vitamin D(3) receptor (VDR), a member of the superfamily of nuclear receptors, which in turn interacts with transcriptional activators to target this regulatory complex to specific sequence elements within gene promoters. Increasing evidence demonstrates that the architectural organization of the genome and regulatory proteins within the eukaryotic nucleus support gene expression in a physiological manner. Previous reports indicated that the VDR exhibits a punctate nuclear distribution that is significantly enhanced in cells grown in the presence of vitamin D(3). Here, we demonstrate that in osteoblastic cells, the VDR binds to the nuclear matrix in a vitamin D(3)-dependent manner. This interaction of VDR with the nuclear matrix occurs rapidly after vitamin D(3) addition and does not require a functional VDR DNA-binding domain. Importantly, nuclear matrix-bound VDR colocalizes with its transcriptional coactivator DRIP205/TRAP220/MED1 which is also matrix bound. Together these results indicate that after ligand stimulation the VDR rapidly enters the nucleus and associates with the nuclear matrix preceding vitamin D(3)-transcriptional upregulation.
Collapse
Affiliation(s)
- Gloria Arriagada
- Facultad de Ciencias Biologicas, Departamento de Bioquimica y Biologia Molecular, Universidad de Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sicinska W, Rotkiewicz P. Structural changes of vitamin D receptor induced by 20-epi-1alpha,25-(OH)2D3: an insight from a computational analysis. J Steroid Biochem Mol Biol 2009; 113:253-8. [PMID: 19429430 DOI: 10.1016/j.jsbmb.2009.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/16/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
We employ a new computational tool CCOMP for the comparison of side chain (SC) conformations between crystal structures of homologous protein complexes. The program is applied to the vitamin D receptor (VDR) liganded with 1alpha,25-(OH)(2)D(3) (in 1DB1) or its 20-epi (in 1IE9) analog with an inverted C-20 configuration. This modification yields no detectable changes in the backbone configuration or ligand topology in the receptor binding cavity, yet it dramatically increases transcription, differentiation and antiproliferation activity of the VDR. We applied very stringent criteria during the comparison process. To eliminate errors arising from the different packing of investigated crystals and the thermal flexibility of atoms, we studied complexes belonging to the same space group, having a low R value (0.2) and a B-factor below 40 for compared residues. We find that 20-epi-1alpha,25-(OH)(2)D(3) changes side chain conformation of amino acids residing far away from direct ligand-VDR contacts. We further verify that a number of the reoriented residues were identified in mutational experiments as important for interaction with SRC-1, GRIP, TAFs co-activators and VDR-RXR heterodimerization. Thus, CCOMP analysis of protein complexes may be used for identifying amino acids that could serve as targets for genetic engineering, such as mutagenesis.
Collapse
Affiliation(s)
- Wanda Sicinska
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
16
|
Hu R, Niles EG, LoVerde PT. DNA binding and transactivation properties of the Schistosoma mansoni constitutive androstane receptor homologue. Mol Biochem Parasitol 2006; 150:174-85. [PMID: 16962182 DOI: 10.1016/j.molbiopara.2006.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 11/21/2022]
Abstract
SmCAR (Schistosoma mansoni constitutive androstane receptor) is a schistosome homologue of the CAR/PXR/VDR group of nuclear receptors. The P box sequence in the DNA binding domain (DBD) of SmCAR, which is essential in determining the DNA binding specificity of nuclear receptors, is different from its vertebrate homologues. Previous data demonstrates that SmCAR binds to a hormone response element containing a single half site AGTGCA as a monomer. SmRXR1 and SmRXR2 are two S. mansoni homologues of vertebrate retinoid X receptors (RXRs). RXRs usually heterodimerize with various nuclear receptors. Yeast-two hybrid analyses, in vitro pull-down and co-immunoprecipitation assays demonstrated that SmCAR interacts with SmRXR1 but not SmRXR2. Using chimeras consisting of the DBD of SmCAR and the ligand binding domain (LBD) of mouse (m) CAR, we show that despite a different P box, SmCAR DBD shares DNA binding specificity with mCAR. However, the SmCAR DBD does exhibit some of the DNA binding properties specific to SmCAR. Studies of the chimeras also demonstrated that the SmCAR DBD is able to heterodimerize with the DBD of human RXR, allowing high affinity DNA binding. Based on this study and previous results, we conclude that SmCAR may recognize its cognate hormone response element via two mechanisms: binding to DNA monomerically or heterodimerizing with SmRXR1. We also demonstrate that a transcription activation function-1 (AF-1) is located in the SmCAR A/B domain.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
17
|
Hatchell EC, Colley SM, Beveridge DJ, Epis MR, Stuart LM, Giles KM, Redfern AD, Miles LEC, Barker A, MacDonald LM, Arthur PG, Lui JCK, Golding JL, McCulloch RK, Metcalf CB, Wilce JA, Wilce MCJ, Lanz RB, O'Malley BW, Leedman PJ. SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol Cell 2006; 22:657-68. [PMID: 16762838 DOI: 10.1016/j.molcel.2006.05.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 03/21/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.
Collapse
Affiliation(s)
- Esme C Hatchell
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Western Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hittmeier LJ, Grapes L, Lensing RL, Rothschild MF, Stahl CH. Genetic background influences metabolic response to dietary phosphorus restriction. J Nutr Biochem 2006; 17:385-95. [PMID: 16311027 DOI: 10.1016/j.jnutbio.2005.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 11/24/2022]
Abstract
Dietary phosphorus (P) is essential to bone growth and turnover; however, little research has focused on the genetic mechanisms controlling P utilization. Understanding the interactions between genetics and dietary P that optimize bone integrity could provide novel interventions for osteoporosis. Thirty-six pigs from two sire lines known to differ in bone structure [heavier boned (HB) and lighter boned (LB)] were assigned to one of the three diets (P adequate, P repletion or P deficient). After 14 days, bone marrow and intact radial bones were collected. Differences between these lines in growth rate, bone integrity and gene expression within bone marrow were observed. In HB, but not LB, pigs, the P-deficient diet decreased weight gain (P<.01). For both lines, P deficiency caused a reduction in radial bone strength (P<.01), but HB P-deficient animals had greater (P<.10) bone integrity than P-deficient LB pigs. In HB, but not LB, pigs, dietary treatment affected the expression of CALCR (calcitonin receptor) (P<.05), VDR (vitamin D receptor) (P<.04) and IGFBP3 (insulin-like growth factor binding protein 3) (P<.06). There was also a trend of increased IL6 (interleukin-6), TFIIB (transcription initiation factor IIB) and SOX9 (sex determining region Y-box 9) expression with P deficiency in HB, but not LB, pigs. Both genetic backgrounds responded similarly to P deficiency with an increase in the expression of OXTR (oxytocin receptor) and IGF1 (insulin-like growth factor 1). Differences in growth rate, bone integrity and gene expression within the bone marrow suggest a difference in the homeorhetic control of P utilization between these genetic lines. Understanding these differences could lead to novel treatments for osteoporosis and aid in the development of tests for identifying those at risk for this disease.
Collapse
Affiliation(s)
- Laura J Hittmeier
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
19
|
Nutchey B, Kaplan J, Dwivedi P, Omdahl J, Ferrante A, May B, Hii C. Molecular action of 1,25-dihydroxyvitamin D3 and phorbol ester on the activation of the rat cytochrome P450C24 (CYP24) promoter: role of MAP kinase activities and identification of an important transcription factor binding site. Biochem J 2005; 389:753-62. [PMID: 15836435 PMCID: PMC1180726 DOI: 10.1042/bj20041947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although investigations of the transcriptional regulation of the rat cytochrome P450C24 [CYP24 (25-hydroxyvitamin D3 24-hydroxylase)] gene by 1,25D (1,25-dihydroxyvitamin D3) at either the genomic, or more recently at the non-genomic, level have provided insight into the mechanism of control of 1,25D levels, this regulation is still poorly characterized. Using HEK-293T cells (human embryonic kidney 293T cells), we reported that 1,25D induction of CYP24 requires JNK (c-Jun N-terminal kinase) but not the ERK1/2 (extracellular-signal-regulated kinase 1/2). The phenomenon of synergistic up-regulation of CYP24 expression by PMA and 1,25D is well known and was found to be protein kinase C-dependent. Whereas ERK1/2 was not activated by 1,25D alone, its activation by PMA was potentiated by 1,25D also. The importance of ERK1/2 for transcriptional synergy was demonstrated by transfection of a dominant-negative ERK1(K71R) mutant (where K71R stands for Lys71-->Arg), which resulted in a reduced level of synergy on a CYP24 promoter-luciferase construct. JNK was also shown to be required for synergy. We report, in the present study, the identification of a site located at -171/-163, about 30 bp upstream of the vitamin D response element-1 in the CYP24 proximal promoter. This sequence, 5'-TGTCGGTCA-3', is critical for 1,25D induction of CYP24 and is therefore termed the vitamin D stimulatory element. The vitamin D stimulatory element, a target for the JNK module, and an Ets-1 binding site were shown to be vital for synergy between PMA and 1,25D. This is the first report to identify the DNA binding sequences required for the synergy between PMA and 1,25D and a role for JNK on the CYP24 gene promoter.
Collapse
Affiliation(s)
- Barbara K. Nutchey
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Josef S. Kaplan
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Prem P. Dwivedi
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - John L. Omdahl
- †Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131-5221, U.S.A
| | - Antonio Ferrante
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- ∥School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Brian K. May
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Charles S. T. Hii
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Abstract
Binding sites in the full-length, ligand-binding domain of rat vitamin D receptor (LBD-rVDR) for an active hormone derived from vitamin D (1alpha,25-dihydroxyvitamin D(3)) and three of its C-2 substituted analogs were compared by nuclear magnetic resonance (NMR) spectroscopy. Specific residue labeled with [UL]-(15)N(2) Trp allowed assignment of the side-chain H(epsilon1) and N(epsilon1) resonances of the single tryptophan residue at position 282 in LBD-rVDR. Comparison of (1)H[(15)N] Heteronuclear Single Quantum Correlation (HSQC) spectra of apo and holo LBD-rVDR revealed that the position of the Trp282 H(epsilon1) and N(epsilon1) signals are sensitive to the presence of the ligand in the receptor cavity. Binding of the ligands to LBD-rVDR results in a shift of both Trp H(epsilon1) and N(epsilon1) resonances to lower frequencies. The results indicate that the interaction between the ligands and Trp282 is not responsible for differences in calcemic activity observed in vitamin D analogs.
Collapse
Affiliation(s)
- Wanda Sicinska
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
21
|
Abstract
1alpha,25-Dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the active metabolite of vitamin D(3), is known for the maintenance of mineral homeostasis and normal skeletal architecture. However, apart from these traditional calcium-related actions, 1,25-(OH)(2)D(3) and its synthetic analogs are being increasingly recognized for their potent antiproliferative, prodifferentiative, and immunomodulatory activities. These actions of 1,25-(OH)(2)D(3) are mediated through vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors. Physiological and pharmacological actions of 1,25-(OH)(2)D(3) in various systems, along with the detection of VDR in target cells, have indicated potential therapeutic applications of VDR ligands in inflammation (rheumatoid arthritis, psoriatic arthritis), dermatological indications (psoriasis, actinic keratosis, seborrheic dermatitis, photoaging), osteoporosis (postmenopausal and steroid-induced osteoporosis), cancers (prostate, colon, breast, myelodysplasia, leukemia, head and neck squamous cell carcinoma, and basal cell carcinoma), secondary hyperparathyroidism, and autoimmune diseases (systemic lupus erythematosus, type I diabetes, multiple sclerosis, and organ transplantation). As a result, VDR ligands have been developed for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. Furthermore, encouraging results have been obtained with VDR ligands in clinical trials of prostate cancer and hepatocellular carcinoma. This review deals with the molecular aspects of noncalcemic actions of vitamin D analogs that account for the efficacy of VDR ligands in the above-mentioned indications.
Collapse
Affiliation(s)
- Sunil Nagpal
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
22
|
Brès V, Gomes N, Pickle L, Jones KA. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 2005; 19:1211-26. [PMID: 15905409 PMCID: PMC1132007 DOI: 10.1101/gad.1291705] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HIV-1 Tat binds human CyclinT1 and recruits the CDK9/P-TEFb complex to the viral TAR RNA in a step that links RNA polymerase II (RNAPII) C-terminal domain (CTD) Ser 2 phosphorylation with transcription elongation. Previous studies have suggested a connection between Tat and pre-mRNA splicing factors. Here we show that the splicing-associated c-Ski-interacting protein, SKIP, is required for Tat transactivation in vivo and stimulates HIV-1 transcription elongation, but not initiation, in vitro. SKIP associates with CycT1:CDK9/P-TEFb and Tat:P-TEFb complexes in nuclear extracts and interacts with recombinant Tat:P-TEFb:TAR RNA complexes in vitro, indicating that it may act through nascent RNA to overcome pausing by RNAPII. SKIP also associates with U5snRNP proteins and tri-snRNP110K in nuclear extracts, and facilitates recognition of an alternative Tat-specific splice site in vivo. The effects of SKIP on transcription elongation, binding to P-TEFb, and splicing are mediated through the SNW domain. HIV-1 Tat transactivation is accompanied by the recruitment of P-TEFb, SKIP, and tri-snRNP110K to the integrated HIV-1 promoter in vivo, whereas the U5snRNPs associate only with the transcribed coding region. These findings suggest that SKIP plays independent roles in transcription elongation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Pre-messenger RNA (pre-mRNA) splicing is a central step in gene expression. Lying between transcription and protein synthesis, pre-mRNA splicing removes sequences (introns) that would otherwise disrupt the coding potential of intron-containing transcripts. This process takes place in the nucleus, catalyzed by a large RNA-protein complex called the spliceosome. Prp8p, one of the largest and most highly conserved of nuclear proteins, occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there. Recently, Prp8p has also come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa.Prp8 is unique, having no obvious homology to other proteins; however, using bioinformatical analysis we reveal the presence of a conserved RNA recognition motif (RRM), an MPN/JAB domain and a putative nuclear localization signal (NLS). Here, we review biochemical and genetical data, mostly related to the human and yeast proteins, that describe Prp8's central role within the spliceosome and its molecular interactions during spliceosome formation, as splicing proceeds, and in post-splicing complexes.
Collapse
Affiliation(s)
- Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
24
|
Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2005; 16:509-20. [PMID: 15546612 DOI: 10.1016/j.molcel.2004.10.014] [Citation(s) in RCA: 463] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 09/02/2004] [Accepted: 09/03/2004] [Indexed: 12/16/2022]
Abstract
Notch signaling releases the Notch receptor intracellular domain (ICD), which complexes with CBF1 and Mastermind (MAM) to activate responsive genes. We previously reported that MAM interacts with CBP/p300 and promotes hyperphosphorylation and degradation of the Notch ICD in vivo. Here we show that CycC:CDK8 and CycT1:CDK9/P-TEFb are recruited with Notch and associated coactivators (MAM, SKIP) to the HES1 promoter in signaling cells. MAM interacts directly with CDK8 and can cause it to localize to subnuclear foci. Purified recombinant CycC:CDK8 phosphorylates the Notch ICD within the TAD and PEST domains, and expression of CycC:CDK8 strongly enhances Notch ICD hyperphosphorylation and PEST-dependent degradation by the Fbw7/Sel10 ubiquitin ligase in vivo. Point mutations affecting conserved Ser residues within the ICD PEST motif prevent hyperphosphorylation by CycC:CDK8 and stabilize the ICD in vivo. These findings suggest a role for MAM and CycC:CDK8 in the turnover of the Notch enhancer complex at target genes.
Collapse
Affiliation(s)
- Christy J Fryer
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
25
|
Figueroa JD, Hayman MJ. Differential effects of the Ski-interacting protein (SKIP) on differentiation induced by transforming growth factor-β1 and bone morphogenetic protein-2 in C2C12 cells. Exp Cell Res 2004; 296:163-72. [PMID: 15149847 DOI: 10.1016/j.yexcr.2004.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/23/2004] [Indexed: 11/28/2022]
Abstract
The transforming growth factor-beta (TGF-beta) and bone morphogenetic proteins (BMP) are key regulatory factors that affect many critical cellular events in growth and development. Recently, we have shown that the Ski-interacting protein (SKIP) can augment TGF-beta signals. Here, we extended these studies by examining the biologic consequences of SKIP overexpression on TGF-beta1 and BMP-2 signals in C2C12 cells. C2C12 myoblasts differentiate into myotubes when the media is depleted of mitogenic factors, and TGF-beta1 inhibits this myotube formation. BMP-2 not only inhibits the myotube formation, but also induces C2C12 cells to differentiate into osteoblasts. Here, we show that SKIP-overexpressing C2C12 cells treated with TGF-beta1 or BMP-2 displayed no differences in comparison to vector control cells in their ability to form myotubes or in the expression of the myogenic markers myosin heavy chain-1 and myogenin. Unexpectedly, SKIP-overexpressing C2C12 cells treated with BMP-2 displayed suppressed expression of the induced osteoblast markers alkaline phosphatase, osteocalcin, and the transcription factor Runx2. Lastly, SKIP could repress transcription induced by BMP-2 in luciferase reporter assays done in C2C12 cells. These data show that SKIP has specific inhibitory effects on BMP-2-induced differentiation and implicate SKIP to be a novel regulator of the differentiation programming induced by TGF-beta signals.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
26
|
Nagai K, Yamaguchi T, Takami T, Kawasumi A, Aizawa M, Masuda N, Shimizu M, Tominaga S, Ito T, Tsukamoto T, Osumi T. SKIP modifies gene expression by affecting both transcription and splicing. Biochem Biophys Res Commun 2004; 316:512-7. [PMID: 15020246 DOI: 10.1016/j.bbrc.2004.02.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 11/29/2022]
Abstract
SKIP has been described as a transcriptional coregulator as well as a spliceosome component, but the relationship between these functions is not clear. We found that SKIP activated reporter gene expression from the basal promoters of viral origin. SKIP exhibited more prominent effect on the promoters with stronger activities, in an experiment employing a series of reporter constructs carrying different numbers of GC boxes. We also found that SKIP suppressed aberrant splicing at a cryptic splice donor site in the luciferase reporter gene. In addition, SKIP suppressed splicing of an extra intron created by a beta-thalassemia mutation in the human beta-globin gene. In the transfection experiment, an intronless reporter exhibited a higher level of expression, but was less significantly activated by SKIP, than the intron-containing reporter. These results indicate that SKIP affects gene expression by both transcriptional activation and regulation of pre-mRNA splicing.
Collapse
Affiliation(s)
- Keisuke Nagai
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Leong GM, Subramaniam N, Issa LL, Barry JB, Kino T, Driggers PH, Hayman MJ, Eisman JA, Gardiner EM. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem Biophys Res Commun 2004; 315:1070-6. [PMID: 14985122 DOI: 10.1016/j.bbrc.2004.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/27/2022]
Abstract
Ski-interacting protein (SKIP), a vitamin D receptor (VDR) coactivator, also functions as a repressor in Notch signalling in association with the corepressor SMRT. Here we show that SKIP bifunctionally modulates (activates or represses) Retinoid-X receptor (RXR)- and VDR-dependent gene transcription in a cell line-specific manner, with activation in CV-1 and repression in P19 cells. The coactivator function of SKIP in these cells appeared to correlate with the relative level and ratio of expression of N-CoR and p300, with greater SKIP activation in higher p300-expressing and lower N-CoR-expressing cell-lines. C-terminal deletion of SKIP (delta334-536 aa) was associated with strong activation in both CV-1 and P19 cells. The corepressors N-CoR and SMRT and the coregulator p300 interacted with SKIP through the same N-terminal region (1-200 aa). Overall these results suggest that transcriptional action of SKIP may depend on distinct functional domains and cell line-specific interactions with both corepressors and coactivators.
Collapse
Affiliation(s)
- Gary M Leong
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J Biol Chem 2003; 278:35325-36. [PMID: 12840015 DOI: 10.1074/jbc.m305191200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear coactivator-62 kDa/Ski-interacting protein (NCoA62/SKIP) is a putative vitamin D receptor (VDR) and nuclear receptor coactivator protein that is unrelated to other VDR coactivators such as those in the steroid receptor coactivator (SRC) family. The mechanism through which NCoA62/SKIP functions in VDR-activated transcription is unknown. In the present study, we identified a nuclear localization sequence in the COOH terminus of NCoA62/SKIP and showed that NCoA62/SKIP was targeted to nuclear matrix subdomains. Chromatin immunoprecipitation studies revealed that endogenous NCoA62/SKIP associated in a 1,25-dihydroxyvitamin D3-dependent manner with VDR target genes in ROS17/2.8 osteosarcoma cells. A cyclic pattern of promoter occupancy by VDR, SRC-1, and NCoA62/SKIP was observed, with NCoA62/SKIP entering these promoter complexes after SRC-1. These studies provide strong support for the proposed role of NCoA62/SKIP as a VDR transcriptional coactivator, and they indicate that key mechanistic differences probably exist between NCoA62/SKIP and SRC coactivators. To explore potential mechanisms, NCoA62/SKIP-interacting proteins were purified from HeLa cell nuclear extracts and identified by mass spectrometry. The identified proteins represent components of the spliceosome as well as other nuclear matrix-associated proteins. Here, we show that a dominant negative inhibitor of NCoA62/SKIP (dnNCoA62/SKIP) interfered with appropriate splicing of transcripts derived from 1,25-dihydroxyvitamin D3-induced expression of a growth hormone minigene cassette. Taken together, these data show that NCoA62/SKIP has properties that are consistent with those of nuclear receptor coactivators and with RNA spliceosome components, thus suggesting a potential role for NCoA62/SKIP in coupling VDR-mediated transcription to RNA splicing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|