1
|
McBride N, Fernández-Sanlés A, Al Arab M, Bond TA, Zheng J, Magnus MC, Corfield EC, Clayton GL, Hwang LD, Beaumont RN, Evans DM, Freathy RM, Gaunt TR, Lawlor DA, Borges MC. Effects of the maternal and fetal proteome on birth weight: a Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.10.20.23297135. [PMID: 37904919 PMCID: PMC10615012 DOI: 10.1101/2023.10.20.23297135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background Fetal growth is an important indicator of survival, regulated by maternal and fetal genetic and environmental factors. However, little is known about the underlying molecular mechanisms. Proteins play a major role in a wide range of biological processes and could provide key insights into maternal and fetal molecular mechanisms regulating fetal growth. Method We used intergenerational two-sample Mendelian randomization to explore the effects of 1,139 maternal and fetal genetically-instrumented plasma proteins on birth weight. We used genome-wide association summary data from the Early Growth Genetics (EGG) consortium (n=406,063 with maternal and/or fetal genotype), with independent replication in the Norwegian Mother, Father and Child Cohort Study (MoBa; n=74,932 mothers and n=62,108 offspring). Maternal and fetal data were adjusted for the correlation between fetal and maternal genotype, to distinguish their independent genetic effects. Results We found that higher genetically-predicted maternal levels of NEC1 increased birth weight (mean-difference: 12g (95% CI [6g, 18g]) per 1 standard deviation protein level) as did PRS57 (20g [10g, 31g]) and ULK3 (140g [81g, 199g]). Higher maternal levels of Galectin_4 decreased birth weight (-206g [-299g, -113g]). In contrast, in the offspring, higher genetically-predicted offspring levels of NEC1 decreased birth weight (-10g [-16g, -5g]), alongside sLeptin_R (-8g [-12g, -4g]), and UBS3B (-78g [-116g, -41g]). Higher fetal levels of Galectin_4 increased birth weight (174g [89g, 258g]). We replicated these results in MoBa, and found supportive evidence for shared causal variants from genetic colocalization analyses and protein-protein network associations. Conclusions We find strong evidence for causal effects, sometimes in opposing directions, of maternal and fetal genetically-instrumented proteins on birth weight. These provide new insights into maternal and fetal molecular mechanisms regulating fetal growth, involving glucose metabolism, energy balance, and vascular function that could be used to identify new intervention targets to reduce the risk of fetal growth disorders, and their associated adverse maternal and fetal outcomes.
Collapse
|
2
|
Guh CL, Lei KH, Chen YA, Jiang YZ, Chang HY, Liaw H, Li HW, Yen HY, Chi P. RAD51 paralogs synergize with RAD51 to protect reversed forks from cellular nucleases. Nucleic Acids Res 2023; 51:11717-11731. [PMID: 37843130 PMCID: PMC10681713 DOI: 10.1093/nar/gkad856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023] Open
Abstract
Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.
Collapse
Affiliation(s)
- Chia-Lun Guh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yung Yen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Anwaar A, Varma AK, Baruah R. In Silico-Based Structural Evaluation to Categorize the Pathogenicity of Mutations Identified in the RAD Class of Proteins. ACS OMEGA 2023; 8:10266-10277. [PMID: 36969410 PMCID: PMC10034773 DOI: 10.1021/acsomega.2c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
RAD genes, known as double-strand break repair proteins, play a major role in maintaining the genomic integrity of a cell by carrying out essential DNA repair functions via double-strand break repair pathways. Mutations in the RAD class of proteins show high susceptibility to breast and ovarian cancers; however, adequate research on the mutations identified in these genes has not been extensively reported for their deleterious effects. Changes in the folding pattern of RAD proteins play an important role in protein-protein interactions and also functions. Missense mutations identified from four cancer databases, cBioPortal, COSMIC, ClinVar, and gnomAD, cause aberrant conformations, which may lead to faulty DNA repair mechanisms. It is therefore necessary to evaluate the effects of pathogenic mutations of RAD proteins and their subsequent role in breast and ovarian cancers. In this study, we have used eight computational prediction servers to analyze pathogenic mutations and understand their effects on the protein structure and function. A total of 5122 missense mutations were identified from four different cancer databases, of which 1165 were predicted to be pathogenic using at least five pathogenicity prediction servers. These mutations were characterized as high-risk mutations based on their location in the conserved domains and subsequently subjected to structural stability characterization. The mutations included in the present study were selected from clinically relevant mutants in breast cancer pedigrees. Comparative folding patterns and intra-atomic interaction results showed alterations in the structural behavior of RAD proteins, specifically RAD51C triggered by mutations G125V and L138F and RAD51D triggered by mutations S207L and E233G.
Collapse
Affiliation(s)
- Aaliya Anwaar
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Reshita Baruah
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| |
Collapse
|
5
|
Prakash R, Rawal Y, Sullivan MR, Grundy MK, Bret H, Mihalevic MJ, Rein HL, Baird JM, Darrah K, Zhang F, Wang R, Traina TA, Radke MR, Kaufmann SH, Swisher EM, Guérois R, Modesti M, Sung P, Jasin M, Bernstein KA. Homologous recombination-deficient mutation cluster in tumor suppressor RAD51C identified by comprehensive analysis of cancer variants. Proc Natl Acad Sci U S A 2022; 119:e2202727119. [PMID: 36099300 PMCID: PMC9499524 DOI: 10.1073/pnas.2202727119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023] Open
Abstract
Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Meghan R. Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - McKenzie K. Grundy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hélène Bret
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Michael J. Mihalevic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hayley L. Rein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jared M. Baird
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kristie Darrah
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Fang Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiffany A. Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marc R. Radke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Scott H. Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, 13273 France
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
6
|
Rein HL, Bernstein KA, Baldock RA. RAD51 paralog function in replicative DNA damage and tolerance. Curr Opin Genet Dev 2021; 71:86-91. [PMID: 34311385 DOI: 10.1016/j.gde.2021.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
RAD51 paralog gene mutations are observed in both hereditary breast and ovarian cancers. Classically, defects in RAD51 paralog function are associated with homologous recombination (HR) deficiency and increased genomic instability. Several recent investigative advances have enabled characterization of non-canonical RAD51 paralog function during DNA replication. Here we discuss the role of the RAD51 paralogs and their associated complexes in integrating a robust response to DNA replication stress. We highlight recent discoveries suggesting that the RAD51 paralogs complexes mediate lesion-specific tolerance of replicative stress following exposure to alkylating agents and the requirement for the Shu complex in fork restart upon fork stalling by dNTP depletion. In addition, we describe the role of the BCDX2 complex in restraining and promoting fork remodeling in response to fluctuating dNTP pools. Finally, we highlight recent work demonstrating a requirement for RAD51C in recognizing and tolerating methyl-adducts. In each scenario, RAD51 paralog complexes play a central role in lesion recognition and bypass in a replicative context. Future studies will determine how these critical functions for RAD51 paralog complexes contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Robert A Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK.
| |
Collapse
|
7
|
Argunhan B, Iwasaki H, Tsubouchi H. Post-translational modification of factors involved in homologous recombination. DNA Repair (Amst) 2021; 104:103114. [PMID: 34111757 DOI: 10.1016/j.dnarep.2021.103114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
DNA is the molecule that stores the chemical instructions necessary for life and its stability is therefore of the utmost importance. Despite this, DNA is damaged by both exogenous and endogenous factors at an alarming frequency. The most severe type of DNA damage is a double-strand break (DSB), in which a scission occurs in both strands of the double helix, effectively dividing a single normal chromosome into two pathological chromosomes. Homologous recombination (HR) is a universal DSB repair mechanism that solves this problem by identifying another region of the genome that shares high sequence similarity with the DSB site and using it as a template for repair. Rad51 possess the enzymatic activity that is essential for this repair but several auxiliary factors are required for Rad51 to fulfil its function. It is becoming increasingly clear that many HR factors are subjected to post-translational modification. Here, we review what is known about how these modifications affect HR. We first focus on cases where there is experimental evidence to support a function for the modification, then discuss speculative cases where a function can be inferred. Finally, we contemplate why such modifications might be necessary.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
8
|
Sun Y, McCorvie TJ, Yates LA, Zhang X. Structural basis of homologous recombination. Cell Mol Life Sci 2020; 77:3-18. [PMID: 31748913 PMCID: PMC6957567 DOI: 10.1007/s00018-019-03365-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR) is a pathway to faithfully repair DNA double-strand breaks (DSBs). At the core of this pathway is a DNA recombinase, which, as a nucleoprotein filament on ssDNA, pairs with homologous DNA as a template to repair the damaged site. In eukaryotes Rad51 is the recombinase capable of carrying out essential steps including strand invasion, homology search on the sister chromatid and strand exchange. Importantly, a tightly regulated process involving many protein factors has evolved to ensure proper localisation of this DNA repair machinery and its correct timing within the cell cycle. Dysregulation of any of the proteins involved can result in unchecked DNA damage, leading to uncontrolled cell division and cancer. Indeed, many are tumour suppressors and are key targets in the development of new cancer therapies. Over the past 40 years, our structural and mechanistic understanding of homologous recombination has steadily increased with notable recent advancements due to the advances in single particle cryo electron microscopy. These have resulted in higher resolution structural models of the signalling proteins ATM (ataxia telangiectasia mutated), and ATR (ataxia telangiectasia and Rad3-related protein), along with various structures of Rad51. However, structural information of the other major players involved, such as BRCA1 (breast cancer type 1 susceptibility protein) and BRCA2 (breast cancer type 2 susceptibility protein), has been limited to crystal structures of isolated domains and low-resolution electron microscopy reconstructions of the full-length proteins. Here we summarise the current structural understanding of homologous recombination, focusing on key proteins in recruitment and signalling events as well as the mediators for the Rad51 recombinase.
Collapse
Affiliation(s)
- Yueru Sun
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Thomas J McCorvie
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Luke A Yates
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Mohan M, Akula D, Dhillon A, Goyal A, Anindya R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res 2019; 47:11729-11745. [PMID: 31642493 PMCID: PMC7145530 DOI: 10.1093/nar/gkz938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.
Collapse
Affiliation(s)
- Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
10
|
ZmRAD51C is Essential for Double-Strand Break Repair and Homologous Recombination in Maize Meiosis. Int J Mol Sci 2019; 20:ijms20215513. [PMID: 31694261 PMCID: PMC6861927 DOI: 10.3390/ijms20215513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Radiation sensitive 51 (RAD51) recombinases play crucial roles in meiotic double-strand break (DSB) repair mediated by homologous recombination (HR) to ensure the correct segregation of homologous chromosomes. In this study, we identified the meiotic functions of ZmRAD51C, the maize homolog of Arabidopsis and rice RAD51C. The Zmrad51c mutants exhibited regular vegetative growth but complete sterility for both male and female inflorescence. However, the mutants showed hypersensitivity to DNA damage by mitomycin C. Cytological analysis indicated that homologous chromosome pairing and synapsis were rigorously inhibited, and meiotic chromosomes were often entangled from diplotene to metaphase I, leading to chromosome fragmentation at anaphase I. Immunofluorescence analysis showed that although the signals of the axial element absence of first division (AFD1) and asynaptic1 (ASY1) were normal, the assembly of the central element zipper1 (ZYP1) was severely disrupted. The DSB formation was normal in Zmrad51c meiocytes, symbolized by the regular occurrence of γH2AX signals. However, RAD51 and disrupted meiotic cDNA 1 (DMC1) signals were never detected at the early stage of prophase I in the mutant. Taken together, our results indicate that ZmRAD51C functions crucially for both meiotic DSB repair and homologous recombination in maize.
Collapse
|
11
|
Garcin EB, Gon S, Sullivan MR, Brunette GJ, Cian AD, Concordet JP, Giovannangeli C, Dirks WG, Eberth S, Bernstein KA, Prakash R, Jasin M, Modesti M. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet 2019; 15:e1008355. [PMID: 31584931 PMCID: PMC6795472 DOI: 10.1371/journal.pgen.1008355] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/16/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.
Collapse
Affiliation(s)
- Edwige B. Garcin
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Stéphanie Gon
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Meghan R. Sullivan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Anne De Cian
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Wilhelm G. Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kara A. Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mauro Modesti
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination. DNA Repair (Amst) 2019; 76:99-107. [PMID: 30836272 DOI: 10.1016/j.dnarep.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
Collapse
|
13
|
Abstract
XRCC2 is one of five somatic RAD51 paralogs, all of which have Walker A and B ATPase motifs. Each of the paralogs, including XRCC2, has a function in DNA double-strand break repair by homologous recombination (HR). However, their individual roles are not as well understood as that of RAD51 itself. The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the BCDX2 complex mediates HR downstream of BRCA2 but upstream of RAD51, as XRCC2 is involved in the assembly of RAD51 into DNA damage foci. XRCC2 can bind DNA and, along with RAD51D, can promote homologous pairing in vitro. Consistent with its role in HR, XRCC2-deficient cells have increased levels of spontaneous chromosome instability, and exhibit hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C and cisplatin as well as ionizing radiation, alkylating agents and aldehydes. XRCC2 also functions in promoting DNA replication and chromosome segregation. Biallelic mutation of XRCC2 (FANCU) causes the FA-U subtype of FA, while heterozygosity for deleterious mutations in XRCC2 may be associated with an increased breast cancer risk. XRCC2 appears to function 'downstream' in the FA pathway, since it is not required for FANCD2 monoubiquitination, which is the central step in the FA pathway. Clinically, the only known FA-U patient in the world exhibits severe congenital abnormalities, but had not developed, by seven years of age, the bone marrow failure and cancer that are often seen in patients from other FA complementation groups.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| | - Helmut Hanenberg
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| |
Collapse
|
14
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
15
|
RAD-ical New Insights into RAD51 Regulation. Genes (Basel) 2018; 9:genes9120629. [PMID: 30551670 PMCID: PMC6316741 DOI: 10.3390/genes9120629] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023] Open
Abstract
The accurate repair of DNA is critical for genome stability and cancer prevention. DNA double-strand breaks are one of the most toxic lesions; however, they can be repaired using homologous recombination. Homologous recombination is a high-fidelity DNA repair pathway that uses a homologous template for repair. One central HR step is RAD51 nucleoprotein filament formation on the single-stranded DNA ends, which is a step required for the homology search and strand invasion steps of HR. RAD51 filament formation is tightly controlled by many positive and negative regulators, which are collectively termed the RAD51 mediators. The RAD51 mediators function to nucleate, elongate, stabilize, and disassemble RAD51 during repair. In model organisms, RAD51 paralogs are RAD51 mediator proteins that structurally resemble RAD51 and promote its HR activity. New functions for the RAD51 paralogs during replication and in RAD51 filament flexibility have recently been uncovered. Mutations in the human RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, and SWSAP1) are found in a subset of breast and ovarian cancers. Despite their discovery three decades ago, few advances have been made in understanding the function of the human RAD51 paralogs. Here, we discuss the current perspective on the in vivo and in vitro function of the RAD51 paralogs, and their relationship with cancer in vertebrate models.
Collapse
|
16
|
Xu Z, Zhang J, Xu M, Ji W, Yu M, Tao Y, Gong Z, Gu M, Yu H. Rice RAD51 paralogs play essential roles in somatic homologous recombination for DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:282-295. [PMID: 29729110 DOI: 10.1111/tpj.13949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Synthesis-dependent strand annealing (SDSA) and single-strand annealing (SSA) are the two main homologous recombination (HR) pathways in double-strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss-of-function mutants of rad51 paralogs show increased sensitivity to the DSB-inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K-like kinases in wild-type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K-like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog-dependent somatic HR.
Collapse
Affiliation(s)
- Zhan Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yajun Tao
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
17
|
Ding YC, Adamson AW, Steele L, Bailis AM, John EM, Tomlinson G, Neuhausen SL. Discovery of mutations in homologous recombination genes in African-American women with breast cancer. Fam Cancer 2018; 17:187-195. [PMID: 28864920 PMCID: PMC5834346 DOI: 10.1007/s10689-017-0036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Esther M John
- Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research & Policy (Epidemiology), and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gail Tomlinson
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
18
|
Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M, Prakash R, Kass EM, Sullivan MR, Brunette GJ, Bernstein KA, Coleman RL, Floquet A, Friedlander M, Kichenadasse G, O'Malley DM, Oza A, Sun J, Robillard L, Maloney L, Bowtell D, Giordano H, Wakefield MJ, Kaufmann SH, Simmons AD, Harding TC, Raponi M, McNeish IA, Swisher EM, Lin KK, Scott CL. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov 2017; 7:984-998. [PMID: 28588062 PMCID: PMC5612362 DOI: 10.1158/2159-8290.cd-17-0419] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022]
Abstract
High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51CIn vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984-98. ©2017 AACR.See related commentary by Domchek, p. 937See related article by Quigley et al., p. 999See related article by Goodall et al., p. 1006This article is highlighted in the In This Issue feature, p. 920.
Collapse
Affiliation(s)
- Olga Kondrashova
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kristy Shield-Artin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna V Tinker
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | - Michael J Kuiper
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gwo-Yaw Ho
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Holly Barker
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meghan R Sullivan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gregory J Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert L Coleman
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael Friedlander
- University of New South Wales and Prince of Wales Hospital, Sydney, New South Wales, Australia
| | | | | | - Amit Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - James Sun
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Matthew J Wakefield
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. ACTA ACUST UNITED AC 2017; 6:2286-2295. [PMID: 29399538 PMCID: PMC5796564 DOI: 10.17554/j.issn.2224-3992.2017.06.687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In normal cells, RAD51-mediated homologous recombination (HR) is a
precise DNA repair mechanism which plays a key role in the maintenance of
genomic integrity and stability. However, elevated (dysregulated) RAD51 is
implicated in genomic instability and is a potential target for treatment of
certain cancers, including Barrett’s adenocarcinoma (BAC). In this
study, we investigated genomic impact and translational significance of
moderate vs. strong suppression of RAD51 in BAC cells. METHODS BAC cells (FLO-1 and OE33) were transduced with non-targeting control
(CS) or RAD51-specific shRNAs, mediating a moderate (40–50%)
suppression or strong (80-near 100%) suppression of the gene. DNA
breaks, spontaneous or following exposure to DNA damaging agent, were
examined by comet assay and 53BP1 staining. Gene expression was monitored by
microarrays (Affymetrix). Homologous recombination (HR) and single strand
annealing (SSA) activities were measured using plasmid based assays. RESULTS We show that although moderate suppression consistenly
inhibits/reduces HR activity, the strong suppression is associated with
increase in HR activity (by ~15 – ≥ 50% in various
experiments), suggesting activation of RAD51-independent pathway. Contrary
to moderate suppression, a strong suppression of RAD51 is associated with a
significant induced DNA breaks as well as altered expression of genes
involved in detection/processing of DNA breaks and apoptosis. Stronger RAD51
suppression was also associated with mutagenic single strand annealing
mediated HR. Suppression of RAD51C inhibited RAD51-independent
(SSA-mediated) HR in BAC cells. CONCLUSION Elevated (dysregulated) RAD51 in BAC is implicated in both the repair
of DNA breaks as well as ongoing genomic rearrangements. Moderate
suppression of this gene reduces HR activity, whereas strong or near
complete suppression of this gene activates RAD51C-dependent HR involving a
mechanism known as single strand annealing (SSA). SSA-mediated HR, which is
a mutagenic HR pathway, further disrupts genomic integrity by increasing DNA
breaks in BAC cells.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Multi-disciplinary Research Units (MRUs), Pt J.N.M. Medical College, Raipur, CG, India
| | - Purushothama Nanjappa
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States
| | - Nikhil C Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| |
Collapse
|
20
|
Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, Vance GH, Alkuraya FS, Hanenberg H, Andreassen PR. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet 2016; 53:672-680. [PMID: 27208205 PMCID: PMC5035190 DOI: 10.1136/jmedgenet-2016-103847] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fanconi anaemia (FA) is a heterogeneous inherited disorder clinically characterised by progressive bone marrow failure, congenital anomalies and a predisposition to malignancies. OBJECTIVE Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene. METHODS Cells (900677A) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2. RESULTS Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harboured by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677A cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677A cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677A cells to ionising radiation. These cells also share milder sensitivities towards olaparib and formaldehyde with certain other FA cells. CONCLUSIONS XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins.
Collapse
Affiliation(s)
- Jung-Young Park
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229
| | - Elizabeth L. Virts
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anna Jankowska
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University 40225 Duesseldorf, Germany
| | - Mohamed Othman
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Sujata C. Chakraborty
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gail H. Vance
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Helmut Hanenberg
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University 40225 Duesseldorf, Germany
- Division of Pediatrics III, University Children’s Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Paul R. Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
21
|
Yard BD, Reilly NM, Bedenbaugh MK, Pittman DL. RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity. DNA Repair (Amst) 2016; 42:82-93. [PMID: 27161866 PMCID: PMC4884500 DOI: 10.1016/j.dnarep.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
Abstract
The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.
Collapse
Affiliation(s)
- Brian D Yard
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Nicole M Reilly
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael K Bedenbaugh
- Department of Pharmacy Services, Greenville Health System, Greenville, SC 29615, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
22
|
Kalvala A, Gao L, Aguila B, Reese T, Otterson GA, Villalona-Calero MA, Duan W. Overexpression of Rad51C splice variants in colorectal tumors. Oncotarget 2016; 6:8777-87. [PMID: 25669972 PMCID: PMC4496183 DOI: 10.18632/oncotarget.3209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/24/2014] [Indexed: 01/04/2023] Open
Abstract
Functional alterations in Rad51C are the cause of the Fanconi anemia complementation group O (FANCO) gene disorder. We have identified novel splice variants of Rad51C mRNA in colorectal tumors and cells. The alternatively spliced transcript variants are formed either without exon-7 (variant 1), without exon 6 and 7 (variant 2) or without exon 7 and 8 (variant 3). Real time PCR analysis of nine pair-matched colorectal tumors and non-tumors showed that variant 1 was overexpressed in tumors compared to matched non-tumors. Among 38 colorectal tumor RNA samples analyzed, 18 contained variant 1, 12 contained variant 2, 14 contained variant 3, and eight expressed full length Rad51C exclusively. Bisulfite DNA sequencing showed promoter methylation of Rad51C in tumor cells. 5-azacytidine treatment of LS-174T cells caused a 14 fold increase in variant 1, a 4.8 fold increase for variant 3 and 3.4 fold for variant 2 compared to 2.5 fold increase in WT. Expression of Rad51C variants is associated with FANCD2 foci positive colorectal tumors and is associated with microsatellite stability in those tumors. Further investigation is needed to elucidate differential function of the Rad51C variants to evaluate potential effects in drug resistance and DNA repair.
Collapse
Affiliation(s)
- Arjun Kalvala
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Li Gao
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Brittany Aguila
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Tyler Reese
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Gregory A Otterson
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A.,Division of Medical Oncology Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Miguel A Villalona-Calero
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A.,Division of Medical Oncology Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A.,Department of Pharmacology at The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| | - Wenrui Duan
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A.,Division of Medical Oncology Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, U.S.A
| |
Collapse
|
23
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 608] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
24
|
Genois MM, Plourde M, Éthier C, Roy G, Poirier GG, Ouellette M, Masson JY. Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum. Nucleic Acids Res 2015; 43:2701-15. [PMID: 25712090 PMCID: PMC4357719 DOI: 10.1093/nar/gkv118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022] Open
Abstract
To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival.
Collapse
Affiliation(s)
- Marie-Michelle Genois
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada Centre de Recherche en Infectiologie, CHUL, 2705 boul. Laurier, Quebec, Quebec G1V 4G2, Canada
| | - Marie Plourde
- Centre de Recherche en Infectiologie, CHUL, 2705 boul. Laurier, Quebec, Quebec G1V 4G2, Canada
| | - Chantal Éthier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier, Quebec city, Quebec, G1V 4G2, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie, CHUL, 2705 boul. Laurier, Quebec, Quebec G1V 4G2, Canada
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier, Quebec city, Quebec, G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, CHUL, 2705 boul. Laurier, Quebec, Quebec G1V 4G2, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Evolutionary and functional analysis of the invariant SWIM domain in the conserved Shu2/SWS1 protein family from Saccharomyces cerevisiae to Homo sapiens. Genetics 2015; 199:1023-33. [PMID: 25659377 DOI: 10.1534/genetics.114.173518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae Shu2 protein is an important regulator of Rad51, which promotes homologous recombination (HR). Shu2 functions in the Shu complex with Shu1 and the Rad51 paralogs Csm2 and Psy3. Shu2 belongs to the SWS1 protein family, which is characterized by its SWIM domain (CXC...Xn...CXH), a zinc-binding motif. In humans, SWS1 interacts with the Rad51 paralog SWSAP1. Using genetic and evolutionary analyses, we examined the role of the Shu complex in mitotic and meiotic processes across eukaryotic lineages. We provide evidence that the SWS1 protein family contains orthologous genes in early-branching eukaryote lineages (e.g., Giardia lamblia), as well as in multicellular eukaryotes including Caenorhabditis elegans and Drosophila melanogaster. Using sequence analysis, we expanded the SWIM domain to include an invariant alanine three residues after the terminal CXH motif (CXC…Xn…CXHXXA). We found that the SWIM domain is conserved in all eukaryotic orthologs, and accordingly, in vivo disruption of the invariant residues within the canonical SWIM domain inhibits DNA damage tolerance in yeast and protein-protein interactions in yeast and humans. Furthermore, using evolutionary analyses, we found that yeast and Drosophila Shu2 exhibit strong coevolutionary signatures with meiotic proteins, and in yeast, its disruption leads to decreased meiotic progeny. Together our data indicate that the SWS1 family is an ancient and highly conserved eukaryotic regulator of meiotic and mitotic HR.
Collapse
|
26
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
27
|
DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 2014; 78:40-73. [PMID: 24600040 DOI: 10.1128/mmbr.00045-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance.
Collapse
|
28
|
PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim Biophys Acta Rev Cancer 2014; 1846:263-75. [PMID: 24998779 DOI: 10.1016/j.bbcan.2014.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/04/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.
Collapse
|
29
|
Byun MY, Kim WT. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:256-269. [PMID: 24840804 DOI: 10.1111/tpj.12558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/14/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two-hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss-of-function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro-nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi-OsRAD51D RNAi-knock-down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi-OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
30
|
Pradillo M, Varas J, Oliver C, Santos JL. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:23. [PMID: 24596572 PMCID: PMC3925842 DOI: 10.3389/fpls.2014.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 05/02/2023]
Abstract
Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1. Here we summarize the current progresses on the function of both recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model species Arabidopsis thaliana. Similarities and differences respect to the function of these proteins in other organisms are also indicated.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | | | | | | |
Collapse
|
31
|
Wang Y, Xiao R, Wang H, Cheng Z, Li W, Zhu G, Wang Y, Ma H. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation. THE NEW PHYTOLOGIST 2014; 201:292-304. [PMID: 24102485 DOI: 10.1111/nph.12498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/14/2013] [Indexed: 05/12/2023]
Abstract
The eukaryotic RAD51 gene family has seven ancient paralogs conserved between plants and animals. Among these, RAD51, DMC1, RAD51C and XRCC3 are important for homologous recombination and/or DNA repair, whereas single mutants in RAD51B, RAD51D or XRCC2 show normal meiosis, and the lineages they represent diverged from each other evolutionarily later than the other four paralogs, suggesting possible functional redundancy. The function of Arabidopsis RAD51B, RAD51D and XRCC2 genes in mitotic DNA repair and meiosis was analyzed using molecular genetic, cytological and transcriptomic approaches. The relevant double and triple mutants displayed normal vegetative and reproductive growth. However, the triple mutant showed greater sensitivity than single or double mutants to DNA damage by bleomycin. RNA-Seq transcriptome analysis supported the idea that the triple mutant showed DNA damage similar to that caused by bleomycin. On bleomycin treatment, many genes were altered in the wild-type but not in the triple mutant, suggesting that the RAD51 paralogs have roles in the regulation of gene transcription, providing an explanation for the hypersensitive phenotype of the triple mutant to bleomycin. Our results provide strong evidence that Arabidopsis XRCC2, RAD51B and RAD51D have complex functions in somatic DNA repair and gene regulation, arguing for further studies of these ancient genes that have been maintained in both plants and animals during their long evolutionary history.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Rong Xiao
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Haifeng Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wuxing Li
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Genfeng Zhu
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
32
|
Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet 2013; 9:e1003971. [PMID: 24278037 PMCID: PMC3836719 DOI: 10.1371/journal.pgen.1003971] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
The repair of DNA double-strand breaks by recombination is key to the maintenance of genome integrity in all living organisms. Recombination can however generate mutations and chromosomal rearrangements, making the regulation and the choice of specific pathways of great importance. In addition to end-joining through non-homologous recombination pathways, DNA breaks are repaired by two homology-dependent pathways that can be distinguished by their dependence or not on strand invasion catalysed by the RAD51 recombinase. Working with the plant Arabidopsis thaliana, we present here an unexpected role in recombination for the Arabidopsis RAD51 paralogues XRCC2, RAD51B and RAD51D in the RAD51-independent single-strand annealing pathway. The roles of these proteins are seen in spontaneous and in DSB-induced recombination at a tandem direct repeat recombination tester locus, both of which are unaffected by the absence of RAD51. Individual roles of these proteins are suggested by the strikingly different severities of the phenotypes of the individual mutants, with the xrcc2 mutant being the most affected, and this is confirmed by epistasis analyses using multiple knockouts. Notwithstanding their clearly established importance for RAD51-dependent homologous recombination, XRCC2, RAD51B and RAD51D thus also participate in Single-Strand Annealing recombination.
Collapse
|
33
|
Li C, Liu Y, Hu Z, Zhou Y. Genetic polymorphisms ofRAD51andXRCC3and acute myeloid leukemia risk: a meta-analysis. Leuk Lymphoma 2013; 55:1309-19. [DOI: 10.3109/10428194.2013.835404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
The HsRAD51B-HsRAD51C stabilizes the HsRAD51 nucleoprotein filament. DNA Repair (Amst) 2013; 12:723-32. [PMID: 23810717 DOI: 10.1016/j.dnarep.2013.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/28/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
There are six human RAD51 related proteins (HsRAD51 paralogs), HsRAD51B, HsRAD51C, HsRAD51D, HsXRCC2, HsXRCC3 and HsDMC1, that appear to enhance HsRAD51 mediated homologous recombinational (HR) repair of DNA double strand breaks (DSBs). Here we model the structures of HsRAD51, HsRAD51B and HsRAD51C and show similar domain orientations within a hypothetical nucleoprotein filament (NPF). We then demonstrate that HsRAD51B-HsRAD51C heterodimer forms stable complex on ssDNA and partially stabilizes the HsRAD51 NPF against the anti-recombinogenic activity of BLM. Moreover, HsRAD51B-HsRAD51C stimulates HsRAD51 mediated D-loop formation in the presence of RPA. However, HsRAD51B-HsRAD51C does not facilitate HsRAD51 nucleation on a RPA coated ssDNA. These results suggest that the HsRAD51B-HsRAD51C complex plays a role in stabilizing the HsRAD51 NPF during the presynaptic phase of HR, which appears downstream of BRCA2-mediated HsRAD51 NPF formation.
Collapse
|
35
|
Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:747318. [PMID: 23586058 PMCID: PMC3618918 DOI: 10.1155/2013/747318] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
Breast cancer is the most common malignancy among females. 5%-10% of breast cancer cases are hereditary and are caused by pathogenic mutations in the considered reference BRCA1 and BRCA2 genes. As sequencing technologies evolve, more susceptible genes have been discovered and BRCA1 and BRCA2 predisposition seems to be only a part of the story. These new findings include rare germline mutations in other high penetrant genes, the most important of which include TP53 mutations in Li-Fraumeni syndrome, STK11 mutations in Peutz-Jeghers syndrome, and PTEN mutations in Cowden syndrome. Furthermore, more frequent, but less penetrant, mutations have been identified in families with breast cancer clustering, in moderate or low penetrant genes, such as CHEK2, ATM, PALB2, and BRIP1. This paper will summarize all current data on new findings in breast cancer susceptibility genes.
Collapse
Affiliation(s)
- Paraskevi Apostolou
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| |
Collapse
|
36
|
BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 2013; 12:306-11. [PMID: 23384538 DOI: 10.1016/j.dnarep.2012.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/08/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
Homologous recombination plays an important role in the high-fidelity repair of DNA double-strand breaks. A central player in this process, RAD51, polymerizes onto single-stranded DNA and searches for homology in a duplex donor DNA molecule, usually the sister chromatid. Homologous recombination is a highly regulated event in mammalian cells: some proteins have direct enzymatic functions, others mediate or overcome rate-limiting steps in the process, and still others signal cell cycle arrest to allow repair to occur. While the human BRCA2 protein has a clear role in delivering and loading RAD51 onto single-stranded DNA generated after resection of the DNA break, the mechanistic functions of the RAD51 paralogs remain unclear. In this study, we sought to determine the genetic interactions between BRCA2 and the RAD51 paralogs during DNA DSB repair. We utilized siRNA-mediated knockdown of these proteins in human cells to assess their impact on the DNA damage response. The results indicate that loss of BRCA2 alone imparts a more severe phenotype than the loss of any individual RAD51 paralog and that BRCA2 is epistatic to each of the four paralogs tested.
Collapse
|
37
|
Graham WJ, Haseltine CA. A recombinase paralog from the hyperthermophilic crenarchaeon Sulfolobus solfataricus enhances SsoRadA ssDNA binding and strand displacement. Gene 2012; 515:128-39. [PMID: 23220019 DOI: 10.1016/j.gene.2012.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of double-strand DNA breaks, a highly deleterious form of DNA damage. The main catalytic protein in HR is the essential RecA-family recombinase, which is conserved across all three domains of life. Eukaryotes and archaea encode varying numbers of proteins paralogous to their main recombinase. Although there is increasing evidence for the functions of some of these paralog proteins, overall their mechanism of action remains largely unclear. Here we present the first biochemical characterization of one of the paralog proteins, SsoRal3, from the crenarchaeaon Sulfolobus solfataricus. The SsoRal3 protein is a ssDNA-dependent ATPase that can catalyze strand invasion at both saturating and subsaturating concentrations. It can bind both ssDNA and dsDNA, but its binding preference is altered by the presence or absence of ATP. Addition of SsoRal3 to SsoRadA nucleoprotein filaments reduces total ATPase activity. Subsaturating concentrations of SsoRal3 increase the ssDNA binding activity of SsoRadA approximately 9-fold and also increase the persistence of SsoRadA catalyzed strand invasion products. Overall, these results suggest that SsoRal3 functions to stabilize the SsoRadA presynaptic filament.
Collapse
Affiliation(s)
- William J Graham
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | | |
Collapse
|
38
|
Amunugama R, He Y, Willcox S, Forties RA, Shim KS, Bundschuh R, Luo Y, Griffith J, Fishel R. RAD51 protein ATP cap regulates nucleoprotein filament stability. J Biol Chem 2012; 287:8724-36. [PMID: 22275364 DOI: 10.1074/jbc.m111.239426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RAD51 mediates homologous recombination by forming an active DNA nucleoprotein filament (NPF). A conserved aspartate that forms a salt bridge with the ATP γ-phosphate is found at the nucleotide-binding interface between RAD51 subunits of the NPF known as the ATP cap. The salt bridge accounts for the nonphysiological cation(s) required to fully activate the RAD51 NPF. In contrast, RecA homologs and most RAD51 paralogs contain a conserved lysine at the analogous structural position. We demonstrate that substitution of human RAD51(Asp-316) with lysine (HsRAD51(D316K)) decreases NPF turnover and facilitates considerably improved recombinase functions. Structural analysis shows that archaebacterial Methanococcus voltae RadA(D302K) (MvRAD51(D302K)) and HsRAD51(D316K) form extended active NPFs without salt. These studies suggest that the HsRAD51(Asp-316) salt bridge may function as a conformational sensor that enhances turnover at the expense of recombinase activity.
Collapse
Affiliation(s)
- Ravindra Amunugama
- Biophysics Graduate Program, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Suwaki N, Klare K, Tarsounas M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 2011; 22:898-905. [PMID: 21821141 DOI: 10.1016/j.semcdb.2011.07.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
Abstract
Chromosomal double-strand breaks (DSBs) have the potential to permanently arrest cell cycle progression and endanger cell survival. They must therefore be efficiently repaired to preserve genome integrity and functionality. Homologous recombination (HR) provides an important error-free mechanism for DSB repair in mammalian cells. In addition to RAD51, the central recombinase activity in mammalian cells, a family of proteins known as the RAD51 paralogs and consisting of five proteins (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), play an essential role in the DNA repair reactions through HR. The RAD51 paralogs act to transduce the DNA damage signal to effector kinases and to promote break repair. However, their precise cellular functions are not fully elucidated. Here we discuss recent advances in our understanding of how these factors mediate checkpoint responses and act in the HR repair process. In addition, we highlight potential functional similarities with the BRCA2 tumour suppressor, through the recently reported links between RAD51 paralog deficiencies and tumorigenesis triggered by genome instability.
Collapse
Affiliation(s)
- Natsuko Suwaki
- The Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
41
|
Clague J, Wilhoite G, Adamson A, Bailis A, Weitzel JN, Neuhausen SL. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families. PLoS One 2011; 6:e25632. [PMID: 21980511 PMCID: PMC3182241 DOI: 10.1371/journal.pone.0025632] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022] Open
Abstract
BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5′ UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.
Collapse
Affiliation(s)
- Jessica Clague
- Division of Clinical Cancer Genetics, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Greg Wilhoite
- Department of Population Sciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Aaron Adamson
- Department of Population Sciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey N. Weitzel
- Division of Clinical Cancer Genetics, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
RecQ helicases; at the crossroad of genome replication, repair, and recombination. Mol Biol Rep 2011; 39:4527-43. [PMID: 21947842 DOI: 10.1007/s11033-011-1243-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/14/2011] [Indexed: 01/07/2023]
Abstract
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA in an ATP-dependent and directionally specific manner. Such an action is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Here, I focus on a subgroup of DNA helicases, the RecQ family, which is highly conserved in evolution. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. In this review, protein structural motifs and the roles of different domains will be discussed first. The Review moves on to speculate about the different models to explain why RecQ helicases are required to protect against genome instability.
Collapse
|
43
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
44
|
Dobson R, Stockdale C, Lapsley C, Wilkes J, McCulloch R. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation. Mol Microbiol 2011; 81:434-56. [PMID: 21615552 PMCID: PMC3170485 DOI: 10.1111/j.1365-2958.2011.07703.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue.
Collapse
Affiliation(s)
- Rachel Dobson
- College of Medical Veterinary and Life Sciences, University of Glasgow, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G128TA, UK
| | | | | | | | | |
Collapse
|
45
|
Santos RA, Teixeira AC, Mayorano MB, Carrara HHA, Andrade JM, Takahashi CS. DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients. Genet Mol Biol 2010; 33:637-40. [PMID: 21637570 PMCID: PMC3036161 DOI: 10.1590/s1415-47572010005000082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/09/2010] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln) or XRCC3 (Thr241Met) action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T) genotypes and BC risk in the subgroups with higher levels of chromosome damage.
Collapse
Affiliation(s)
- Raquel A Santos
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Shete S, Wang LE, El-Zein R, Etzel CJ, Liang FW, Armstrong G, Tsavachidis S, Gilbert MR, Aldape KD, Xing J, Wu X, Wei Q, Bondy ML. Gamma-radiation sensitivity and polymorphisms in RAD51L1 modulate glioma risk. Carcinogenesis 2010; 31:1762-9. [PMID: 20610542 DOI: 10.1093/carcin/bgq141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND DNA strand breaks pose the greatest threat to genomic stability. Genetically determined mutagen sensitivity predisposes individuals to a variety of cancers, including glioma. However, polymorphisms in DNA strand break repair genes that may determine mutagen sensitivity are not well studied in cancer risk, especially in gliomas. METHODS We correlated genotype data for tag single-nucleotide polymorphisms (tSNPs) of DNA strand break repair genes with a gamma-radiation-induced mutagen sensitivity phenotype [expressed as mean breaks per cell (B/C)] in samples from 426 glioma patients. We also conducted analysis to assess joint and haplotype effects of single-nucleotide polymorphisms (SNPs) on mutagen sensitivity. We further validate our results in an independent external control group totaling 662 subjects. RESULTS Of the 392 tSNPs examined, we found that mutagen sensitivity was modified by one tSNP in the EME2 gene and six tSNPs in the RAD51L1 gene (P < 0.01). Among the six RAD51L1 SNPs tested in the validation set, one (RAD51L1 rs2180611) was significantly associated with mutagen sensitivity (P = 0.025). Moreover, we found a significant dose-response relationship between the mutagen sensitivity and the number of adverse tSNP genotypes. Furthermore, haplotype analysis revealed that RAD51L1 haplotypes F-A (zero adverse allele) and F-E (six adverse alleles) exhibited the lowest (0.42) and highest (0.93) mean B/C values, respectively. A similar dose-response relationship also existed between the mutagen sensitivity and the number of adverse haplotypes. CONCLUSION These results suggest that polymorphisms in and haplotypes of the RAD51L1 gene, which is involved in the double-strand break repair pathway, modulate gamma-radiation-induced mutagen sensitivity.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst) 2010; 9:517-25. [DOI: 10.1016/j.dnarep.2010.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 01/28/2010] [Indexed: 12/11/2022]
|
48
|
Zafar F, Seidler SB, Kronenberg A, Schild D, Wiese C. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions. Radiat Res 2010; 173:27-39. [PMID: 20041757 DOI: 10.1667/rr1910.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To test the contribution of homologous recombinational repair (HRR) in repairing DNA damage sites induced by high-energy iron ions, we used (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We found that in response to exposure to iron ions, HRR contributed to cell survival in rodent cells and that HRR deficiency abrogated RAD51 focus formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 focus formation. For human cells irradiated with iron ions, cell survival was decreased, and in p53 mutant cells, the levels of mutagenesis were increased when HRR was impaired. Human cells synchronized in S phase exhibited a more pronounced resistance to iron ions compared with cells in G(1) phase, and this increase in radioresistance was diminished by RAD51 knockdown. These results indicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged-particle radiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival after exposure to high-energy high-LET radiation.
Collapse
Affiliation(s)
- Faria Zafar
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
49
|
Cho YH, Kim YJ, An YS, Woo HD, Choi SY, Kang CM, Chung HW. Micronucleus-centromere assay and DNA repair gene polymorphism in lymphocytes of industrial radiographers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 680:17-24. [DOI: 10.1016/j.mrgentox.2009.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 08/11/2009] [Accepted: 08/30/2009] [Indexed: 11/25/2022]
|
50
|
Rajesh C, Gruver AM, Basrur V, Pittman DL. The interaction profile of homologous recombination repair proteins RAD51C, RAD51D and XRCC2 as determined by proteomic analysis. Proteomics 2009; 9:4071-86. [PMID: 19658102 DOI: 10.1002/pmic.200800977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co-precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectroscopic analysis was performed on protein bands obtained after 1-D SDS-PAGE of co-precipitation eluates from cell extracts of mitomycin C treated and untreated mouse embryonic fibroblasts. Profiling of the interacting proteins showed a clear bias toward nucleic acid binding and modification proteins. Interactions of four candidate proteins (SFPQ, NONO, MSH2 and mini chromosome maintenance protein 2) were confirmed by Western blot analysis of co-precipitation eluates and were also verified to form ex vivo complexes with RAD51D. Additional interacting proteins were associated with cell division, embryo development, protein and carbohydrate metabolism, cellular trafficking, protein synthesis, modification or folding, and cell structure or motility functions. Results from this study are an important step toward identifying interacting partners of the RAD51 paralogs and understanding the functional diversity of proteins that assist or regulate HR repair mechanisms.
Collapse
Affiliation(s)
- Changanamkandath Rajesh
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|