1
|
Wald J, Marlovits TC. Holliday junction branch migration driven by AAA+ ATPase motors. Curr Opin Struct Biol 2023; 82:102650. [PMID: 37604043 DOI: 10.1016/j.sbi.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 08/23/2023]
Abstract
Holliday junctions are key intermediate DNA structures during genetic recombination. One of the first Holliday junction-processing protein complexes to be discovered was the well conserved RuvAB branch migration complex present in bacteria that mediates an ATP-dependent movement of the Holliday junction (branch migration). Although the RuvAB complex served as a paradigm for the processing of the Holliday junction, due to technical limitations the detailed structure and underlying mechanism of the RuvAB branch migration complex has until now remained unclear. Recently, structures of a reconstituted RuvAB complex actively-processing a Holliday junction were resolved using time-resolved cryo-electron microscopy. These structures showed distinct conformational states at different stages of the migration process. These structures made it possible to propose an integrated model for RuvAB Holliday junction branch migration. Furthermore, they revealed unexpected insights into the highly coordinated and regulated mechanisms of the nucleotide cycle powering substrate translocation in the hexameric AAA+ RuvB ATPase. Here, we review these latest advances and describe areas for future research.
Collapse
Affiliation(s)
- Jiri Wald
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
2
|
Bandyopadhyay D, Mishra PP. Revealing the DNA Unwinding Activity and Mechanism of Fork Reversal by RecG While Exposed to Variants of Stalled Replication-fork at Single-Molecular Resolution. J Mol Biol 2022; 434:167822. [PMID: 36108776 DOI: 10.1016/j.jmb.2022.167822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
RecG, belonging to the category of Superfamily-2 plays a vital role in rescuing different kinds of stalled fork. The elemental mechanism of the helicase activity of RecG with several non-homologous stalled fork structures resembling intermediates formed during the process of DNA repair has been investigated in the present study to capture the dynamic stages of genetic rearrangement. The functional characterization has been exemplified through quantifying the response of the substrate in terms of their molecular heterogeneity and dynamical response by employing single-molecule fluorescence methods. An elevated processivity of RecG is observed for the stalled fork where progression of lagging daughter strand is ahead as compared to that of the leading strand. Through precise alteration of its function in terms of unwinding, depending upon the substrate DNA, RecG catalyzes the formation of Holliday junction from a stalled fork DNA. RecG is found to adopt an asymmetric mode of locomotion to unwind the lagging daughter strand for facilitating formation of Holliday junction that acts as a suitable intermediate for recombinational repair pathway. Our results emphasize the mechanism adopted by RecG during its 'sliding back' mode along the lagging daughter strand to be 'active translocation and passive unwinding'. This also provide clues as to how this helicase decides and controls the mode of translocation along the DNA to unwind.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India. https://twitter.com/DebolinaBandyo2
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
3
|
Zhai B, DuPrez K, Han X, Yuan Z, Ahmad S, Xu C, Gu L, Ni J, Fan L, Shen Y. The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction. Nucleic Acids Res 2018; 46:6627-6641. [PMID: 29846688 PMCID: PMC6061704 DOI: 10.1093/nar/gky451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/27/2022] Open
Abstract
PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Xiaoyun Han
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Sohail Ahmad
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Cheng Xu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| |
Collapse
|
4
|
Zhai B, DuPrez K, Doukov TI, Li H, Huang M, Shang G, Ni J, Gu L, Shen Y, Fan L. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. J Mol Biol 2017; 429:1009-1029. [PMID: 28238763 PMCID: PMC5565510 DOI: 10.1016/j.jmb.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 11/15/2022]
Abstract
Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Tzanko I Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Huan Li
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Mengting Huang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China.
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
6
|
Gupta S, Yeeles JTP, Marians KJ. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. J Biol Chem 2014; 289:28376-87. [PMID: 25138216 DOI: 10.1074/jbc.m114.587881] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orderly progression of replication forks formed at the origin of replication in Escherichia coli is challenged by encounters with template damage, slow moving RNA polymerases, and frozen DNA-protein complexes that stall the fork. These stalled forks are foci for genomic instability and must be reactivated. Many models of replication fork reactivation invoke nascent strand regression as an intermediate in the processing of the stalled fork. We have investigated the replication fork regression activity of RecG and RuvAB, two proteins commonly thought to be involved in the process, using a reconstituted DNA replication system where the replisome is stalled by collision with leading-strand template damage. We find that both RecG and RuvAB can regress the stalled fork in the presence of the replisome and SSB; however, RuvAB generates a completely unwound product consisting of the paired nascent leading and lagging strands, whereas RuvC cleaves the Holliday junction generated by RecG-catalyzed fork regression. We also find that RecG stimulates RuvAB-catalyzed regression, presumably because it is more efficient at generating the initial Holliday junction from the stalled fork.
Collapse
Affiliation(s)
- Sankalp Gupta
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph T P Yeeles
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
7
|
Wolfe A, Phipps K, Weitao T. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 2014; 4:31. [PMID: 24995125 PMCID: PMC4080785 DOI: 10.1186/2045-3701-4-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 01/15/2023] Open
Abstract
DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.
Collapse
Affiliation(s)
- Annie Wolfe
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Kara Phipps
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| |
Collapse
|
8
|
Rideout MC, Naili I, Boldt JL, Flores-Fujimoto A, Patra S, Rostron JE, Segall AM. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2. Peptides 2013; 40:112-22. [PMID: 23291222 PMCID: PMC3646928 DOI: 10.1016/j.peptides.2012.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022]
Abstract
DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Ilham Naili
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jeffrey L. Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - America Flores-Fujimoto
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: , Phone: (619) 594-6528, Fax: (619) 594-5676
| |
Collapse
|
9
|
Chen L, Shi K, Yin Z, Aihara H. Structural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution. Nucleic Acids Res 2013; 41:648-56. [PMID: 23118486 PMCID: PMC3592405 DOI: 10.1093/nar/gks1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/06/2023] Open
Abstract
Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallographic and biochemical analyses of RuvC from Thermus thermophilus (T.th. RuvC). The crystal structure of T.th. RuvC shows an overall protein fold similar to that of Escherichia coli RuvC, but T.th. RuvC has a more tightly associated dimer interface possibly reflecting its thermostability. The binding mode of a HJ-DNA substrate can be inferred from the shape/charge complementarity between the T.th. RuvC dimer and HJ-DNA, as well as positions of sulfate ions bound on the protein surface. Unexpectedly, the structure of T.th. RuvC homodimer refined at 1.28 Å resolution shows distinct asymmetry near the dimer interface, in the region harboring catalytically important aromatic residues. The observation suggests that the T.th. RuvC homodimer interconverts between two asymmetric conformations, with alternating subunits switched on for DNA strand cleavage. This model provides a structural basis for the 'nick-counter-nick' mechanism in HJ resolution, a mode of HJ processing shared by prokaryotic and eukaryotic HJ resolvases.
Collapse
Affiliation(s)
| | | | | | - Hideki Aihara
- Department of Biochemistry, Molecular biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Scott J, Nguyen SV, King CJ, Hendrickson C, McShan WM. Phage-Like Streptococcus pyogenes Chromosomal Islands (SpyCI) and Mutator Phenotypes: Control by Growth State and Rescue by a SpyCI-Encoded Promoter. Front Microbiol 2012; 3:317. [PMID: 22969756 PMCID: PMC3430984 DOI: 10.3389/fmicb.2012.00317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/13/2012] [Indexed: 11/13/2022] Open
Abstract
We recently showed that a prophage-like Streptococcus pyogenes chromosomal island (SpyCI) controls DNA mismatch repair and other repair functions in M1 genome strain SF370 by dynamic excision and reintegration into the 5' end of mutL in response to growth, causing the cell to alternate between a wild type and mutator phenotype. Nine of the 16 completed S. pyogenes genomes contain related SpyCI integrated into the identical attachment site in mutL, and in this study we examined a number of these strains to determine whether they also had a mutator phenotype as in SF370. With the exception of M5 genome strain Manfredo, all demonstrated a mutator phenotype as compared to SpyCI-free strain NZ131. The integrase gene (int) in the SpyCIM5 contains a deletion that rendered it inactive, and this deletion predicts that Manfredo would have a pronounced mutator phenotype. Remarkably, this was found not to be the case, but rather a cryptic promoter within the int ORF was identified that ensured constitutive expression of mutL and the downstream genes encoded on the same mRNA, providing a striking example of rescue of gene function following decay of a mobile genetic element. The frequent occurrence of SpyCI in the group A streptococci may facilitate bacterial survival by conferring an inducible mutator phenotype that promotes adaptation in the face of environmental challenges or host immunity.
Collapse
Affiliation(s)
- Julie Scott
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Scott V. Nguyen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Catherine J. King
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Christina Hendrickson
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - W. Michael McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| |
Collapse
|
11
|
Loot C, Ducos-Galand M, Escudero JA, Bouvier M, Mazel D. Replicative resolution of integron cassette insertion. Nucleic Acids Res 2012; 40:8361-70. [PMID: 22740653 PMCID: PMC3458562 DOI: 10.1093/nar/gks620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombination catalyzed by tyrosine recombinases follows a common pathway consisting of two consecutive strand exchanges. The first strand exchange generates a Holliday junction (HJ), which is resolved by a second strand exchange. In integrons, attC sites recombine as folded single-stranded substrates. Only one of the two attC site strands, the bottom one, is efficiently bound and cleaved by the integrase during the insertion of gene cassettes at the double-stranded attI site. Due to the asymmetry of this complex, a second strand exchange on the attC bottom strand (bs) would form linearized abortive recombination products. We had proposed that HJ resolution would rely on an uncharacterized mechanism, probably replication. Using an attC site carried on a plasmid with each strand specifically tagged, we followed the destiny of each strand after recombination. We demonstrated that only one strand, the one carrying the attC bs, is exchanged. Furthermore, we show that the recombination products contain the attC site bs and its entire de novo synthesized complementary strand. Therefore, we demonstrate the replicative resolution of single-strand recombination in integrons and rule out the involvement of a second strand exchange of any kind in the attC × attI reaction.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris 75724, France
| | | | | | | | | |
Collapse
|
12
|
DprB facilitates inter- and intragenomic recombination in Helicobacter pylori. J Bacteriol 2012; 194:3891-903. [PMID: 22609923 DOI: 10.1128/jb.00346-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For naturally competent microorganisms, such as Helicobacter pylori, the steps that permit recombination of exogenous DNA are not fully understood. Immediately downstream of an H. pylori gene (dprA) that facilitates high-frequency natural transformation is HP0334 (dprB), annotated to be a putative Holliday junction resolvase (HJR). We showed that the HP0334 (dprB) gene product facilitates high-frequency natural transformation. We determined the physiologic roles of DprB by genetic analyses. DprB controls in vitro growth, survival after exposure to UV or fluoroquinolones, and intragenomic recombination. dprB ruvC double deletion dramatically decreases both homologous and homeologous transformation and survival after exposure to DNA-damaging agents. Moreover, the DprB protein binds to synthetic Holliday junction structures rather than double-stranded or single-stranded DNA. These results demonstrate that the dprB product plays important roles affecting inter- and intragenomic recombination. We provide evidence that the two putative H. pylori HJRs (DprB and RuvC) have overlapping but distinct functions involving intergenomic (primarily DprB) and intragenomic (primarily RuvC) recombination.
Collapse
|
13
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
14
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hülter N, Wackernagel W. Frequent integration of short homologous DNA tracks during Acinetobacter baylyi transformation and influence of transcription and RecJ and SbcCD DNases. MICROBIOLOGY-SGM 2009; 154:3676-3685. [PMID: 19047735 DOI: 10.1099/mic.0.2008/021378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The minimal length of integrated homologous donor DNA tracks in Acinetobacter baylyi transformation and factors influencing the location and length of tracks were determined. Donor DNA contained the nptII gene region (kanamycin resistance, KmR). This region carried nine approximately evenly spaced silent nucleotide sequence tags and was embedded in heterologous DNA. Recipient cells carried the normal nptII gene with a central 10 bp deletion (kanamycin-sensitive). The Km(R) transformants obtained had donor DNA tracks integrated covering on average only 4.6 (2-7) of the nine tags, corresponding to about 60 % of the 959 nt homologous donor DNA segment. The track positions were biased towards the 3' end of nptII. While the replication direction of recipient DNA did not affect track positions, inhibited transcription (by rifampicin) shifted the beginning of tracks towards the nptII promoter. Absence of the RecJ DNase decreased the length of tracks. Absence of SbcCD DNase increased the integration frequency of the 5' part of nptII, which can form hairpin structures of 43-75 nt, suggesting that SbcCD DNase interferes with hairpins in transforming DNA. In homology-facilitated illegitimate recombination events during transformation (in which a homologous DNA segment serves as a recombinational anchor to facilitate illegitimate recombination in neighbouring heterologous DNA), on average only about half of the approximately 800 nt long tagged nptII anchor sequences were integrated. From donor DNA with an approximately 5000 nt long homologous segment having the nptII gene in the middle, most transformants (74 %) had only a part of the donor nptII integrated, showing that short track integration occurs frequently also from large homologous DNA. It is discussed how short track integration steps can also accomplish incorporation of large DNA molecules.
Collapse
Affiliation(s)
- Nils Hülter
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | - Wilfried Wackernagel
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
16
|
|
17
|
Hülter N, Wackernagel W. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 2008; 67:984-95. [PMID: 18194157 DOI: 10.1111/j.1365-2958.2007.06096.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acquisition of foreign DNA by horizontal gene transfer is seen as a major source of genetic diversity in prokaryotes. However, strongly divergent DNA is not genomically integrated by homologous recombination and would depend on illegitimate recombination (IR) events which are rare. We show that, by two mechanisms, during natural transformation of Acinetobacter baylyi two IR events can integrate DNA segments. One mechanism is double illegitimate recombination (DIR) acting in the absence of any homology (frequency: 7 x 10(-13) per cell). It occurs about 10(10)-fold less frequent than homologous transformation. The other mechanism is homology-facilitated double illegitimate recombination (HFDIR) being about 440-fold more frequent (3 x 10(-10) per cell) than DIR. HFDIR depends on a homologous sequence located between the IR sites and on recA(+). In HFDIR two IR events act on the same donor DNA molecule as shown by the joint inheritance of molecular DNA tags. While the IR events in HFDIR occurred at microhomologies, in DIR microhomologies were not used. The HFDIR phenomenon indicates that a temporal recA-dependent association of donor DNA at a homology in recipient DNA may facilitate two IR events on the 5' and 3' heterologous parts of the transforming DNA molecule.
Collapse
Affiliation(s)
- Nils Hülter
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | |
Collapse
|
18
|
Donaldson JR, Courcelle CT, Courcelle J. RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli. J Biol Chem 2006; 281:28811-21. [PMID: 16895921 DOI: 10.1074/jbc.m603933200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RuvABC is a complex that promotes branch migration and resolution of Holliday junctions. Although ruv mutants are hypersensitive to UV irradiation, the molecular event(s) that necessitate RuvABC processing in vivo are not known. Here, we used a combination of two-dimensional gel analysis and electron microscopy to reveal that although ruvAB and ruvC mutants are able to resume replication following arrest at UV-induced lesions, molecules that replicate in the presence of DNA damage accumulate unresolved Holliday junctions. The failure to resolve the Holliday junctions on the fully replicated molecules correlates with a delayed loss of genomic integrity that is likely to account for the loss of viability in these cells. The strand exchange intermediates that accumulate in ruv mutants are distinct from those observed at arrested replication forks and are not subject to resolution by RecG. These results indicate that the Holliday junctions observed in ruv mutants are intermediates of a repair pathway that is distinct from that of the recovery of arrested replication forks. A model is proposed in which RuvABC is required to resolve junctions that arise during the repair of a subset of nonarresting lesions after replication has passed through the template.
Collapse
Affiliation(s)
- Janet R Donaldson
- Department of Biology, Portland State University, Portland, Oregon 97207, USA.
| | | | | |
Collapse
|
19
|
Culyba MJ, Harrison JE, Hwang Y, Bushman FD. DNA cleavage by the A22R resolvase of vaccinia virus. Virology 2006; 352:466-76. [PMID: 16781759 DOI: 10.1016/j.virol.2006.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/21/2006] [Accepted: 05/06/2006] [Indexed: 11/16/2022]
Abstract
Vaccinia virus encodes an enzyme, A22R, required during DNA replication for cleaving viral DNA concatamers to yield unit-length viral genomes. The concatamer junctions contain inverted repeat sequences that can be extruded as cruciforms, yielding Holliday junctions. Previous work indicated that A22R can cleave Holliday junctions in vitro. To investigate the mechanism of action of A22R, we have optimized reaction conditions and characterized the sequence specificity of cleavage. We found that addition of 20% dimethylsulfoxide boosted product formation six-fold, resulting in improved sensitivity of cleavage assays. To analyze cleavage specificity, we took advantage of mobile Holliday junctions, in which branch migration allowed sampling of many DNA sequences. We found that A22R weakly favors cleavage at the sequence 5'-(G/C) downward arrow(A/T)-3', and so is much less sequence specific than its Escherichia coli relative, RuvC. Analysis of the reaction products revealed that A22R cleaves to leave a 3' hydroxyl at the cleaved phosphodiester bond.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | |
Collapse
|
20
|
Garcia AD, Otero J, Lebowitz J, Schuck P, Moss B. Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem 2006; 281:11618-26. [PMID: 16513635 DOI: 10.1074/jbc.m600182200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, poxviruses were found to encode a protein with signature motifs present in the RuvC family of Holliday junction (HJ) resolvases, which have a key role in homologous recombination in bacteria. The vaccinia virus homolog A22 specifically cleaved synthetic HJ DNA in vitro and was required for the in vivo resolution of viral DNA concatemers into unit-length genomes with hairpin telomeres. It was of interest to further characterize a poxvirus resolvase in view of the low sequence similarity with RuvC, the absence of virus-encoded RuvA and RuvB to interact with, and the different functions of the viral and bacterial resolvases. Because purified A22 aggregated severely, studies were carried out with maltose-binding protein fused to A22 as well as to RuvC. Using gel filtration, chemical cross-linking, analytical ultracentrifugation, and light scattering, we demonstrated that A22 and RuvC are homodimers in solution. Furthermore, the dimeric form of the resolvase associated with HJ DNA, presumably facilitating the symmetrical cleavage of such structures. Like RuvC, A22 symmetrically cleaved fixed HJ junctions as well as junctions allowing strand mobility. Unlike RuvC and other members of the family, however, the poxvirus enzyme exhibited little cleavage sequence specificity. Structural and enzymatic similarities of poxvirus, bacterial, and fungal mitochondrial HJ resolvases are consistent with their predicted evolutionary relationship based on sequence analysis. The absence of a homologous resolvase in mammalian cells makes these microbial enzymes excellent potential therapeutic targets.
Collapse
Affiliation(s)
- Alonzo D Garcia
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Kaplan DL, O'Donnell M. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J Mol Biol 2005; 355:473-90. [PMID: 16324713 DOI: 10.1016/j.jmb.2005.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/25/2022]
Abstract
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Rockefeller University, Laboratory of DNA Replication, New York, NY 10021, USA.
| | | |
Collapse
|
22
|
Parker JL, White MF. The endonuclease Hje catalyses rapid, multiple turnover resolution of Holliday junctions. J Mol Biol 2005; 350:1-6. [PMID: 15921693 DOI: 10.1016/j.jmb.2005.04.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/20/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Holliday junction-resolving enzymes are ubiquitous, structure-specific endonucleases that resolve four-way DNA junctions by the introduction of paired nicks in opposing strands, and are required for homologous recombination, double-strand break repair, recombination-dependent restart of stalled or collapsed DNA replication forks, and phage DNA processing. Here, we present the first steady-state kinetic characterisation of a junction-resolving enzyme; the Hje endonuclease from Sulfolobus solfataricus. We demonstrate that substrate turnover by Hje is sequence-independent and limited largely by the rate of cleavage of the phosphodiester bonds of the bound Holliday junction substrate, rather than substrate association or product dissociation. Reaction rates under multiple turnover conditions compare favourably with type II restriction enzymes. These properties, coupled with a high level of specificity for four-way junctions over all other DNA substrates, make Hje a suitable enzyme for applications requiring the detection and cleavage of Holliday junctions in vitro.
Collapse
Affiliation(s)
- Joanne L Parker
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
23
|
Carrasco B, Ayora S, Lurz R, Alonso JC. Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities. Nucleic Acids Res 2005; 33:3942-52. [PMID: 16024744 PMCID: PMC1176016 DOI: 10.1093/nar/gki713] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. However, RecU inhibited the RecA-mediated three-strand exchange reaction and ssDNA-dependent dATP or rATP hydrolysis. The addition of an SSB protein did not reverse the negative effect exerted by RecU on RecA function. Annealing of circular ssDNA and homologous linear 3′-tailed double-stranded DNA by RecU was not affected by the addition of RecA both in the presence and in the absence of SSB. We propose that RecU modulates RecA activities by promoting RecA-catalyzed strand invasion and inhibiting RecA-mediated branch migration, by preventing RecA filament disassembly, and suggest a potential mechanism for the control of resolvasome assembly.
Collapse
Affiliation(s)
- Begoña Carrasco
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Biología MolecularC/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rudi Lurz
- Max-Planck-Institut für molekulare GenetikIhnestrasse 73, D-14195, Germany
| | - Juan C. Alonso
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
24
|
Buchner JM, Robertson AE, Poynter DJ, Denniston SS, Karls AC. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases. J Bacteriol 2005; 187:3431-7. [PMID: 15866929 PMCID: PMC1112027 DOI: 10.1128/jb.187.10.3431-3437.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.
Collapse
Affiliation(s)
- John M Buchner
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | | | |
Collapse
|
25
|
Yamada K, Ariyoshi M, Morikawa K. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 2005; 14:130-7. [PMID: 15093826 DOI: 10.1016/j.sbi.2004.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The processing of the Holliday junction by various proteins is a major event in DNA homologous recombination and is crucial to the maintenance of genome stability and biological diversity. The proteins RuvA, RuvB and RuvC play central roles in the late stage of recombination in prokaryotes. Recent atomic views of these proteins, including protein-protein and protein-junction DNA complexes, provide new insights into branch migration mechanisms: RuvA is likely to be responsible for base-pair rearrangements, whereas RuvB, classified as a member of the AAA(+) family, functions as a pump to pull DNA duplex arms without segmental unwinding. The mechanism of junction resolution by RuvC in the RuvABC resolvasome remains to be elucidated.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
26
|
Turlan C, Loot C, Chandler M. IS911 partial transposition products and their processing by the Escherichia coli RecG helicase. Mol Microbiol 2004; 53:1021-33. [PMID: 15306008 DOI: 10.1111/j.1365-2958.2004.04165.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.
Collapse
Affiliation(s)
- Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
27
|
Abstract
DNA damage encountered during the cellular process of chromosomal replication can disrupt the replication machinery and result in mutagenesis or lethality. The RecA protein of Escherichia coli is essential for survival in this situation: It maintains the integrity of the arrested replication fork and signals the upregulation of over 40 gene products, of which most are required to restore the genomic template and to facilitate the resumption of processive replication. Although RecA was originally discovered as a gene product that was required to change the genetic information during sexual cell cycles, over three decades of research have revealed that it is also the key enzyme required to maintain the genetic information when DNA damage is encountered during replication in asexual cell cycles. In this review, we examine the significant experimental approaches that have led to our current understanding of the RecA-mediated processes that restore replication following encounters with DNA damage.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
28
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
29
|
Prabhu VP, Simons AM, Iwasaki H, Gai D, Simmons DT, Chen J. p53 blocks RuvAB promoted branch migration and modulates resolution of Holliday junctions by RuvC. J Mol Biol 2002; 316:1023-32. [PMID: 11884140 DOI: 10.1006/jmbi.2001.5408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.
Collapse
Affiliation(s)
- Vidya P Prabhu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ingleston SM, Dickman MJ, Grasby JA, Hornby DP, Sharples GJ, Lloyd RG. Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1525-33. [PMID: 11874468 DOI: 10.1046/j.1432-1033.2002.02805.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RuvA, RuvB and RuvC proteins of Escherichia coli act together to process Holliday junctions formed during recombination and DNA repair. RuvA has a well-defined DNA binding surface that is sculptured specifically to accommodate a Holliday junction and allow subsequent loading of RuvB and RuvC. A negatively charged pin projecting from the centre limits binding of linear duplex DNA. The amino-acid sequences forming the pin are highly conserved. However, in certain Mycoplasma and Ureaplasma species the structure is extended by four amino acids and two acidic residues forming a crucial charge barrier are missing. We investigated the significance of these differences by analysing RuvA from Mycoplasma pneumoniae. Gel retardation and surface plasmon resonance assays revealed that this protein binds Holliday junctions and other branched DNA structures in a manner similar to E. coli RuvA. Significantly, it binds duplex DNA more readily. However it does not support branch migration mediated by E. coli RuvB and when bound to junction DNA is unable to provide a platform for stable binding of E. coli RuvC. It also fails to restore radiation resistance to an E. coli ruvA mutant. The data presented suggest that the modified pin region retains the ability to promote junction-specific DNA binding, but acts as a physical obstacle to linear duplex DNA rather than as a charge barrier. They also indicate that such an obstacle may interfere with the binding of a resolvase. Mycoplasma species may therefore process Holliday junctions via uncoupled branch migration and resolution reactions.
Collapse
Affiliation(s)
- Stuart M Ingleston
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
31
|
Kvaratskhelia M, Wardleworth BN, Bond CS, Fogg JM, Lilley DMJ, White MF. Holliday junction resolution is modulated by archaeal chromatin components in vitro. J Biol Chem 2002; 277:2992-6. [PMID: 11709558 DOI: 10.1074/jbc.m109496200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Holliday junction-resolving enzyme Hjc is conserved in the archaea and probably plays a role analogous to that of Escherichia coli RuvC in the pathway of homologous recombination. Hjc specifically recognizes four-way DNA junctions, cleaving them without sequence preference to generate recombinant DNA duplex products. Hjc imposes an X-shaped global conformation on the bound DNA junction and distorts base stacking around the point of cleavage, three nucleotides 3' of the junction center. We show that Hjc is autoinhibitory under single turnover assay conditions and that this can be relieved by the addition of either competitor duplex DNA or the architectural double-stranded DNA-binding protein Sso7d (i.e. by approximating in vivo conditions more closely). Using a combination of isothermal titration calorimetry and fluorescent resonance energy transfer, we demonstrate that multiple Hjc dimers can bind to each synthetic four-way junction and provide evidence for significant distortion of the junction structure at high protein:DNA ratios. Analysis of crystal packing interactions in the crystal structure of Hjc suggests a molecular basis for this autoinhibition. The wider implications of these findings for the quantitative study of DNA-protein interactions is discussed.
Collapse
Affiliation(s)
- Mamuka Kvaratskhelia
- Centre for Biomolecular Science, University of Saint Andrews, North Haugh, Saint Andrews, KY16 9ST, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Crowley DJ, Courcelle J. Answering the Call: Coping with DNA Damage at the Most Inopportune Time. J Biomed Biotechnol 2002; 2:66-74. [PMID: 12488586 PMCID: PMC153787 DOI: 10.1155/s1110724302202016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Accepted: 02/20/2002] [Indexed: 12/02/2022] Open
Abstract
DNA damage incurred during the process of chromosomal replication has a particularly high possibility of resulting in mutagenesis or lethality for the cell. The SOS response of Escherichia coli appears to be well adapted for this particular situation and involves the coordinated up-regulation of genes whose products center upon the tasks of maintaining the integrity of the replication fork when it encounters DNA damage, delaying the replication process (a DNA damage checkpoint), repairing the DNA lesions or allowing replication to occur over these DNA lesions, and then restoring processive replication before the SOS response itself is turned off. Recent advances in the fields of genomics and biochemistry has given a much more comprehensive picture of the timing and coordination of events which allow cells to deal with potentially lethal or mutagenic DNA lesions at the time of chromosomal replication.
Collapse
Affiliation(s)
- David J. Crowley
- Biology Department, Mercer University, 1400 Coleman Avenue, Macon, GA 31207, USA
| | - Justin Courcelle
- Department of Biological Sciences, Mississippi State University, PO Box GY, Mississippi State, MS 39762, USA
| |
Collapse
|
33
|
McIlwraith MJ, Hall DR, Stasiak AZ, Stasiak A, Wigley DB, West SC. RadA protein from Archaeoglobus fulgidus forms rings, nucleoprotein filaments and catalyses homologous recombination. Nucleic Acids Res 2001; 29:4509-17. [PMID: 11713300 PMCID: PMC92570 DOI: 10.1093/nar/29.22.4509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
Collapse
Affiliation(s)
- M J McIlwraith
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
34
|
Bolt EL, Lloyd RG, Sharples GJ. Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli. J Mol Biol 2001; 310:577-89. [PMID: 11439025 DOI: 10.1006/jmbi.2001.4791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of genes and proteins in heterologous model systems provides a powerful approach to the analysis of common processes in biology. Here, we show how the bacterium Escherichia coli can be exploited to analyse genetically and biochemically the activity and function of a Holliday junction resolving enzyme from an archaeal species. We have purified and characterised a member of the newly discovered Holliday junction cleaving (Hjc) family of resolvases from the moderately thermophilic archaeon Methanobacterium thermoautotrophicum and demonstrate that it promotes DNA repair in resolvase-deficient ruv mutants of E. coli. The data presented provide the first direct evidence that such archaeal enzymes can promote DNA repair in vivo, and support the view that formation and resolution of Holliday junctions are key to the interplay between DNA replication, recombination and repair in all organisms. We also show that Hjc promotes DNA repair in E. coli in a manner that requires the presence of the RecG branch migration protein. These results support models in which RecG acts at a replication fork stalled at a lesion in the DNA, catalysing fork regression and forming a Holliday junction that can then be acted upon by Hjc.
Collapse
Affiliation(s)
- E L Bolt
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
35
|
Abstract
Genetic recombination is a critical cellular process that promotes evolutionary diversity, facilitates DNA repair and underpins genome duplication. It entails the reciprocal exchange of single strands between homologous DNA duplexes to form a four-way branched intermediate commonly referred to as the Holliday junction. DNA molecules interlinked in this way have to be separated in order to allow normal chromosome transmission at cell division. This resolution reaction is mediated by structure-specific endonucleases that catalyse dual-strand incision across the point of strand cross-over. Holliday junctions can also arise at stalled replication forks by reversing the direction of fork progression and annealing of nascent strands. Resolution of junctions in this instance generates a DNA break and thus serves to initiate rather than terminate recombination. Junction resolvases are generally small, homodimeric endonucleases with a high specificity for branched DNA. They use a metal-binding pocket to co-ordinate an activated water molecule for phosphodiester bond hydrolysis. In addition, most junction endonucleases modulate the structure of the junction upon binding, and some display a preference for cleavage at specific nucleotide target sequences. Holliday junction resolvases with distinct properties have been characterized from bacteriophages (T4 endo VII, T7 endo I, RusA and Rap), Bacteria (RuvC), Archaea (Hjc and Hje), yeast (CCE1) and poxviruses (A22R). Recent studies have brought about a reappraisal of the origins of junction-specific endonucleases with the discovery that RuvC, CCE1 and A22R share a common catalytic core.
Collapse
Affiliation(s)
- G J Sharples
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
36
|
McIlwraith MJ, West SC. The efficiency of strand invasion by Escherichia coli RecA is dependent upon the length and polarity of ssDNA tails. J Mol Biol 2001; 305:23-31. [PMID: 11114244 DOI: 10.1006/jmbi.2000.4268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RecA protein is essential for homologous recombination and the repair of DNA double-strand breaks in Escherichia coli. The protein binds DNA to form nucleoprotein filaments that promote joint molecule formation and strand exchange in vitro. RecA polymerises on ssDNA in the 5'-3' direction and catalyses strand exchange and branch migration with a 5'-3' polarity. It has been reported previously, using D-loop assays, in which ssDNA (containing a heterologous block at one end) invades supercoiled duplex DNA that 3'-homologous ends are reactive, whereas 5'-ends are inactive. This polarity bias was thought to be due to the polarity of RecA filament formation, which results in the 3'-ends being coated in RecA, whereas 5'-ends remain naked. Using a range of duplex substrates containing ssDNA tails of various lengths and polarities, we now demonstrate that when no heterologous block is imposed, 5'-ends are just as reactive as 3'-ends. Moreover, using short-tailed substrates, we find that 5'-ends form more stable D-loops than 3'-ends. This bias may be a consequence of the instability of short 3'-joints. With more physiological substrates containing long ssDNA tails, we find that RecA shows no intrinsic preference for 5' or 3'-ends and that both form D-loop complexes with high efficiency.
Collapse
Affiliation(s)
- M J McIlwraith
- Clare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, Hertfordshire, EN6 3LD, UK
| | | |
Collapse
|