1
|
Naushad SM, Vattam KK, Devi YKD, Hussain T, Alrokayan S, Kutala VK. Mechanistic insights into the CYP2C19 genetic variants prevalent in the Indian population. Gene 2021; 784:145592. [PMID: 33766706 DOI: 10.1016/j.gene.2021.145592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE CYP2C19 metabolizes the antiplatelet and antiepileptic drugs. Any alteration in CYP2C19 activity might influence the therapeutic efficacy. The objective of this study was to identify CYP2C19 variants prevalent in Indians and perform their in silico characterization. METHODS Infinium global screening array (GSA) was used for CYP2C19 genotyping in 2000 healthy Indians. In addition, we performed in silico characterization of the identified variants. RESULTS Out of the 11 variants covered (*2, *3, *4,*5,*6, *7,*8, *9,*10,*11, and *17), five were identified in Indians (*2, *3, *6,*8 and *17). The *2 and *17 were the most prevalent alleles (minor allele frequencies, MAF: 32.0% and 13.95%). The *3, *6 and *8 were rare (MAFs: 0.425%, 0.025% and 0.05%). The *2 variant is shown to affect the splicing at the fifth exon-intron boundary. The *3 variant is a non-sense variant that is predicted to be deleterious. On the otherhand, the *17 variant showed more binding affinity for GATA binding protein 1 (GATA1), myocyte enhancer factor 2 (MEF2) and ectotropic viral integration site 1 (EVI1). The *6 and *8 variants predicted to be deleterious. The *2, *3 and *7 variants showed lesser probability of exon skipping, while *17 showed more probability. The genotype distribution of Indian subjects is comparable with that of South Asians (SAS) (1000 genome project, phase 3). CONCLUSION The *2, *3 and *17 variants are the key pharmacogenetic determinants in Indians. The *2 and *3 are loss-of-function variants. The *17 is a gain-of-function variant with increased binding of transcriptional factors.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India.
| | - Kiran Kumar Vattam
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India
| | - Yadamreddy Kanaka Durga Devi
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman Alrokayan
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India.
| |
Collapse
|
2
|
Naushad SM, Hussain T, Alrokayan S, Kutala VK. Alpha synuclein (SNCA) rs7684318 variant contributes to Parkinson's disease risk by altering transcription factor binding related with Notch and Wnt signaling. Neurosci Lett 2021; 750:135802. [PMID: 33705925 DOI: 10.1016/j.neulet.2021.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
In view of inconsistencies in the association studies of alpha synuclein (SNCA) rs7684318 (chr4: 90655003 T > C) with Parkinson's disease (PD), we conducted a meta-analysis to establish the association of this variant with PD and examined changes in transcription factor binding. SNCA rs7684318 C-allele was identified as genetic risk factor for PD in fixed (OR: 1.53, 95 % CI: 1.40-1.68, p < 0.0001) and random effect (OR: 1.65, 95 % CI: 1.30-2.09, p = 0.0003) models. Heterogeneity was observed in association (Tau2: 0.0576, H: 2.32, I2: 0.815, Q: 21.64, p = 0.0002). Egger's test showed no evidence of publication bias (p = 0.37). Subgroup analysis showed that rs7684318 is contributing to PD risk in Japanese (OR: 1.46, 95 % CI: 1.30-1.64) and Indian (OR: 2.63, 95 % CI: 1.79-3.86) populations while showing no significant association in Chinese population (OR: 1.68, 95 % CI: 0.93-3.02). Sensitivity analysis showed that exclusion of any one of the studies has no significant impact on the association, which justifies the robustness of the analysis. Tissue-specific DNase foot print analysis revealed that this variant contributes to increased transcription factor binding in midbrain, putamen and caudate nucleus. The substitution of T > C increased binding of RBPJ and GATA-family transcription factors; and decreased binding of NKX2 family, SNAI2, SNAI3, DMRT1, HOXA13, HOXB13, HOXC13, HOXD13, WT1, POU4F1, POU4F2, POU4F3 transcriptional factors. TRANSFAC and DNA curvature analyses substantiate the association of this variant with increased binding of GATA1 that contribute to intensity of DNA curvature peaks and splitting pattern. These studies along with the meta-analysis strongly suggest that the rs7684318 variant contributes to the pathophysiology of PD by modulating binding of transcription factors related to Notch and Wnt signalling pathways that are likely to impair dopmanergic transmission.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India.
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salman Alrokayan
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
3
|
Erwin AL, Desnick RJ. Congenital erythropoietic porphyria: Recent advances. Mol Genet Metab 2019; 128:288-297. [PMID: 30685241 PMCID: PMC6597325 DOI: 10.1016/j.ymgme.2018.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by photosensitivity and by hematologic abnormalities in affected individuals. CEP is caused by mutations in the uroporphyrinogen synthase (UROS) gene. In three reported cases, CEP has been associated with a specific X-linked GATA1 mutation. Disease-causing mutations in either gene result in absent or markedly reduced UROS enzymatic activity. This in turn leads to the accumulation of the non-physiologic and photoreactive porphyrinogens, uroporphyrinogen I and coproporphyrinogen I, which damage erythrocytes and elicit a phototoxic reaction upon light exposure. The clinical spectrum of CEP depends on the level of residual UROS activity, which is determined by the underlying pathogenic loss-of-function UROS mutations. Disease severity ranges from non-immune hydrops fetalis in utero to late-onset disease with only mild cutaneous involvement. The clinical characteristics of CEP include exquisite photosensitivity to visible light resulting in bullous vesicular lesions which, when infected lead to progressive photomutilation of sun-exposed areas such as the face and hands. In addition, patients have erythrodontia (brownish discoloration of teeth) and can develop corneal scarring. Chronic transfusion-dependent hemolytic anemia is common and leads to bone marrow hyperplasia, which further increases porphyrin production. Management of CEP consists of strict avoidance of exposure to visible light with sun-protective clothing, sunglasses, and car and home window filters. Adequate care of ruptured vesicles and use of topical antibiotics is indicated to prevent superinfections and osteolysis. In patients with symptomatic hemolytic anemia, frequent erythrocyte cell transfusions may be necessary to suppress hematopoiesis and decrease marrow production of the phototoxic porphyrins. In severe transfection-dependent cases, bone marrow or hematopoietic stem cell transplantation has been performed, which is curative. Therapeutic approaches including gene therapy, proteasome inhibition, and pharmacologic chaperones are under investigation.
Collapse
Affiliation(s)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Address all Correspondence to: R. J. Desnick, PhD, MD, Dean for Genetic and Genomic Medicine Professor and Chairman Emeritus, Department of Genetic and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029, Phone: (212) 659-6700 Fax: (212) 360-1809
| |
Collapse
|
4
|
Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS, Chung IY. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. THE JOURNAL OF IMMUNOLOGY 2010; 185:6866-75. [PMID: 21041734 DOI: 10.4049/jimmunol.1001037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger-containing transcription factor, regulates not only the differentiation of eosinophils but also the expression of many eosinophil-specific genes. In the current study, we dissected CCR3 gene expression at the molecular level using several cell types that express varying levels of GATA-1 and CCR3. Chromatin immunoprecipitation analysis revealed that GATA-1 preferentially bound to sequences in both exon 1 and its proximal intron 1. A reporter plasmid assay showed that constructs harboring exon 1 and/or intron 1 sequences retained transactivation activity, which was essentially proportional to cellular levels of endogenous GATA-1. Introduction of a dominant-negative GATA-1 or small interfering RNA of GATA-1 resulted in a decrease in transcription activity of the CCR3 reporter. Both point mutation and EMSA analyses demonstrated that although GATA-1 bound to virtually all seven putative GATA elements present in exon 1-intron 1, the first GATA site in exon 1 exhibited the highest binding affinity for GATA-1 and was solely responsible for GATA-1-mediated transactivation. The fourth and fifth GATA sites in exon 1, which were postulated previously to be a canonical double-GATA site for GATA-1-mediated transcription of eosinophil-specific genes, appeared to play an inhibitory role in transactivation, albeit with a high affinity for GATA-1. Furthermore, mutation of the seventh GATA site (present in intron 1) increased transcription, suggesting an inhibitory role. These data suggest that GATA-1 controls CCR3 transcription by interacting dynamically with the multiple GATA sites in the regulatory region of the CCR3 gene.
Collapse
Affiliation(s)
- Byung Soo Kim
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Bates DL, Chen Y, Kim G, Guo L, Chen L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 2008; 381:1292-306. [PMID: 18621058 DOI: 10.1016/j.jmb.2008.06.072] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 11/26/2022]
Abstract
The GATA family of transcription factors (GATA1-6) binds selected GATA sites in vertebrate genomes to regulate specific gene expression. Although vertebrate GATA factors have two highly conserved zinc finger motifs, how the two fingers act together to recognize functional DNA elements is not well understood. Here we determined the crystal structures of the C-terminal zinc finger of mouse GATA3 bound to DNA containing two variously arranged GATA binding sites. Our structures and accompanying biochemical analyses reveal two distinct modes of DNA binding by GATA to closely arranged sites. One mode involves cooperative binding by two GATA factors that interact with each other through protein-protein interactions. The other involves simultaneous binding of the N-terminal zinc finger (N-finger) and the C-terminal zinc finger of the same GATA factor. Our studies represent the first crystallographic analysis of GATA zinc fingers bound to DNA and provide new insights into the DNA recognition mechanism by the GATA zinc finger. Our crystal structure also reveals a dimerization interface in GATA that has previously been shown to be important for GATA self-association. These findings significantly advance our understanding of the structure and function of GATA and provide an important framework for further investigating the in vivo mechanisms of GATA-dependent gene regulation.
Collapse
Affiliation(s)
- Darren L Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA
| | | | | | | | | |
Collapse
|
6
|
Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K, Yamamoto M. GATA-1 self-association controls erythroid development in vivo. J Biol Chem 2007; 282:15862-71. [PMID: 17374603 DOI: 10.1074/jbc.m701936200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 is the key transcription factor for the development of the erythroid, megakaryocytic, eosinophilic, and mast cell lineages. GATA-1 possesses the ability to self-associate, and this characteristic has been suggested to be important for GATA-1 function. To elucidate the roles self-associated GATA-1 plays during hematopoietic cell development in vivo, in this study we prepared GATA-1 mutants in which three lysine residues potentially contributing to the self-association (Lys-245, Lys-246, and Lys-312) are substituted in combination with alanines. Of the mutants, 3KA harboring alanine substitutions in all three lysines showed reduced self-association activity without considerable interference in the modification of GATA-1 by acetylation. We generated transgenic mouse lines that express these GATA-1 mutants utilizing the Gata1 hematopoietic regulatory domain, and crossed the mice to Gata1 knockdown (GATA-1.05) mutant mice. Although NKA (K245A and K246A) and CKA (K312A) mutants almost fully rescued the GATA-1.05 mice from anemia and embryonic lethality, the 3KA mutant only partially rescued the GATA-1.05 mutant mice. Even with the higher than endogenous level expression, GATA-1.05/Y::3KA embryos were prone to die at various stages in mid-to-late gestation. Live birth and an anemic phenotype were restored in some embryos depending on the expression level of the 3KA transgene. The expression of the transferrin receptor and heme biosynthesis enzymes was impaired in the yolk sac and liver of the 3KA-rescued embryos. Immature erythroid cells with insufficient expression of the transferrin receptor accumulated in the livers of 3KA-rescued embryos. These results provide the first convincing line of evidence that the self-association of GATA-1 is important for proper mammalian erythroid development in vivo.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Divine JK, Staloch LJ, Haveri H, Rowley CW, Heikinheimo M, Simon TC. Cooperative interactions among intestinal GATA factors in activating the rat liver fatty acid binding protein gene. Am J Physiol Gastrointest Liver Physiol 2006; 291:G297-306. [PMID: 16603485 DOI: 10.1152/ajpgi.00422.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GATA-4, GATA-5, and GATA-6 are endodermal zinc-finger transcription factors that activate numerous enterocytic genes. GATA-4 and GATA-6 but not GATA-5 are present in adult murine small intestinal enterocytes, and we now report the simultaneous presence of all three GATA factors in murine small intestinal enterocytes before weaning age. An immunohistochemical survey detected enterocytic GATA-4 and GATA-6 at birth and 1 wk of age and GATA-5 at 1 wk but not birth. Interactions among GATA factors were explored utilizing a transgene constructed from the proximal promoter of the rat liver fatty acid binding protein gene (Fabp1). GATA-4 and GATA-5 but not GATA-6 activate the Fabp1 transgene through a cognate binding site at -128. A dose-response assay revealed a maximum in transgene activation by both factors, where additional factor did not further increase transgene activity. However, at saturated levels of GATA-4, additional transgene activation was achieved by adding GATA-5 expression construct, and vice versa. Similar cooperativity occurred with GATA-5 and GATA-6. Identical interactions were observed with a target transgene consisting of a single GATA site upstream of a minimal promoter. Furthermore, GATA-4 and GATA-5 or GATA-5 and GATA-6 bound to each other in solution. These results are consistent with tethering of one GATA factor to the Fabp1 promoter through interaction with a second GATA factor to produce increased target gene activation. Cooperative target gene activation was specific to an intestinal cell line and may represent a mechanism by which genes are activated in the small intestinal epithelium during the period before weaning.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
8
|
Morceau F, Schnekenburger M, Dicato M, Diederich M. GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 2005; 1030:537-54. [PMID: 15659837 DOI: 10.1196/annals.1329.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GATA-1 is the founding member of the GATA family of transcription factors. GATA-1 and GATA family member GATA-2 are expressed in erythroid and megakaryocytic lineages, in which they play a crucial role in cell maturation and differentiation. GATA-1 regulates the transcription of many specific and nonspecific erythroid genes by binding to DNA at the consensus sequence WGATAR, which is recognized by all of the GATA family of transcription factors. However, it was identified in eosinophilic cells and also in Sertoli cells in testis. Its activity depends on close cooperation with a functional network of cofactors, among them Friend of GATA, PU.1, and CBP/p300. The GATA-1 protein structure has been well described and includes two zinc fingers that are directly involved in the interaction with DNA and other proteins in vivo. GATA-1 mutations in the zinc fingers can cause deregulation of required interactions and lead to severe dysfunction in the hematopoietic system.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
9
|
Ghering AB, Jenkins LMM, Schenck BL, Deo S, Mayer RA, Pikaart MJ, Omichinski JG, Godwin HA. Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins. J Am Chem Soc 2005; 127:3751-9. [PMID: 15771509 DOI: 10.1021/ja0464544] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
GATA proteins are transcription factors that bind GATA DNA elements through Cys4 structural zinc-binding domains and play critical regulatory roles in neurological and urogenital development and the development of cardiac disease. To evaluate GATA proteins as potential targets for lead, spectroscopically monitored metal-binding titrations were used to measure the affinity of Pb2+ for the C-terminal zinc-binding domain from chicken GATA-1 (CF) and the double-finger domain from human GATA-1 (DF). Using this method, Pb2+ coordinating to CF and DF was directly observed through the appearance of intense bands in the near-ultraviolet region of the spectrum (250-380 nm). Absorption data collected from these experiments were best fit to a 1:1 Pb2+ -CF model and a 2:1 Pb2+ -DF model. Competition experiments using Zn2+ were used to determine the absolute affinities of Pb2+ for these proteins. These studies reveal that Pb2+ forms tight complexes with cysteine residues in the zinc-binding sites in GATA proteins, beta1Pb = 6.4 (+/- 2.0) x 10(9) M(-1) for CF and beta2 = 6.3 (+/- 6.3) x 10(19) M(-2) for Pb(2+)2-DF, and within an order of magnitude of the affinity of Zn2+ for these proteins. Furthermore, Pb2+ was able to displace bound Zn2+ from CF and DF. Upon addition of Pb2+, GATA shows a decreased ability to bind to DNA and subsequently activate transcription. Therefore, the DNA binding and transcriptional activity of GATA proteins are most likely to be targeted by Pb2+ in cells and tissues that sequester Pb2+ in vivo, which include the brain and the heart.
Collapse
Affiliation(s)
- Amy B Ghering
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Divine JK, Staloch LJ, Haveri H, Jacobsen CM, Wilson DB, Heikinheimo M, Simon TC. GATA-4, GATA-5, and GATA-6 activate the rat liver fatty acid binding protein gene in concert with HNF-1alpha. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1086-99. [PMID: 14715527 DOI: 10.1152/ajpgi.00421.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcriptional regulation by GATA-4, GATA-5, and GATA-6 in intestine and liver was explored using a transgene constructed from the proximal promoter of the rat liver fatty acid binding protein gene (Fabpl). An immunohistochemical survey detected GATA-4 and GATA-6 in enterocytes, GATA-6 in hepatocytes, and GATA-5 in neither cell type in adult animals. In cell transfection assays, GATA-4 or GATA-5 but not GATA-6 activated the Fabpl transgene solely through the most proximal of three GATA binding sites in the Fabpl promoter. However, all three factors activated transgenes constructed from each Fabpl site upstream of a minimal viral promoter. GATA factors interact with hepatic nuclear factor (HNF)-1alpha, and the proximal Fabpl GATA site adjoins an HNF-1 site. GATA-4, GATA-5, or GATA-6 bounded to HNF-1alpha in solution, and all cooperated with HNF-1alpha to activate the Fabpl transgene. Mutagenizing all Fabpl GATA sites abrogated transgene activation by GATA factors, but GATA-4 activated the mutagenized transgene in the presence of HNF-1alpha. These in vitro results suggested GATA/HNF-1alpha interactions function in Fabpl regulation, and in vivo relevance was determined with subsequent experiments. In mice, the Fabpl transgene was active in enterocytes and hepatocytes, a transgene with mutagenized HNF-1 site was silent, and a transgene with mutagenized GATA sites had identical expression as the native transgene. Mice mosaic for biallelic Gata4 inactivation lost intestinal but not hepatic Fabpl expression in Gata4-deficient cells but not wild-type cells. These results demonstrate GATA-4 is critical for intestinal gene expression in vivo and suggest a specific GATA-4/HNF-1alpha physical and functional interaction in Fabpl activation.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ghering AB, Shokes JE, Scott RA, Omichinski JG, Godwin HA. Spectroscopic determination of the thermodynamics of cobalt and zinc binding to GATA proteins. Biochemistry 2004; 43:8346-55. [PMID: 15222747 DOI: 10.1021/bi035673j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vertebrate GATA proteins regulate processes that are vital to development, and each possesses two tandem GATA finger domains: an N-terminal GATA finger and a C-terminal GATA finger. These GATA fingers require Zn(2+) to fold, to bind DNA recognition elements, and to regulate transcription. While the GATA-1 C-terminal finger is necessary and sufficient to bind to single GATA DNA sites, the N-terminal finger interacts with DNA such that the double finger unit (DF domain) has a binding and transactivation profile that is tuned by the DNA-binding site. Co(2+) was used as a spectroscopic probe in a series of competition titrations to determine the affinity of Co(2+) and Zn(2+) for the C-terminal finger from chicken GATA-1 and the double finger from human GATA-1 (referred to in this report as CF and DF). For CF, these experiments yielded K(b)(Co) = 1.0 (+/-1.3) x 10(7) M(-1) and K(b)(Zn) = 2.0 (+/-1.3) x 10(10) M(-1). For DF, these experiments yielded equilibrium constants for the process of two M(2+) binding to form M(2+)(2)-DF of beta(2)(Co) = 2.5 (+/-1.6) x 10(14) M(-2) and beta(2)(Zn) = 6.3 (+/-2.5) x 10(20) M(-2). The ZnS(4) coordination environment of Zn(2+)-bound CF was confirmed with X-ray absorption spectroscopy. A detailed analysis of these data suggests that the N-terminal and C-terminal fingers of DF act as independent and identical Zn(2+)-binding sites and each finger binds Zn(2+) with an affinity equivalent to that of CF.
Collapse
Affiliation(s)
- Amy B Ghering
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
12
|
Ghirlando R, Trainor CD. Determinants of GATA-1 binding to DNA: the role of non-finger residues. J Biol Chem 2003; 278:45620-8. [PMID: 12941967 DOI: 10.1074/jbc.m306410200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian GATA transcription factors are expressed in various tissues in a temporally regulated manner. The prototypic member, GATA-1, is required for normal erythroid, megakaryocytic, and mast cell development. This family of DNA-binding proteins recognizes a consensus (A/T)GATA(A/G) motif and possesses homologous DNA binding domains consisting of two zinc fingers. The C-terminal finger of GATA-1 recognizes the consensus motif with nanomolar affinities, whereas the N-terminal finger shows a binding preference for a GATC motif, albeit with much reduced affinity (Kd approximately microm). The N-terminal finger of GATA-2 also shows a preference for an AGATCT binding site, with an increased affinity attributed to N- and C-terminal flanking basic residues (Kd approximately nm). To understand the differences in the binding specificities of the N- and C-terminal zinc fingers of GATA-1, we have constructed a series of swapped domain peptides. We show that the specificity for AGATAA over AGATCT arises from the C-terminal non-finger basic domain. Thus, the N-terminal finger binds preferentially to AGATAA once appended to the C-terminal arm of the C-terminal finger. We further show that this specificity arises from the highly conserved QTRNRK residues. The converse is, however, untrue in the case of the C-terminal finger; swapping of QTRNRK with the corresponding LVSKRA does not switch the DNA binding specificity from AGATAA to AGATCT. These results highlight the important role of residues adjacent to the CXXCX17CNAC zinc finger motif (i.e. non-finger residues) in the specific recognition of DNA residues.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
13
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
14
|
Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom-Himes JA, Ackerman SJ. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 2002; 277:43481-94. [PMID: 12202480 DOI: 10.1074/jbc.m204777200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and the ets factor PU.1 have been reported to functionally antagonize one another in the regulation of erythroid versus myeloid gene transcription and development. The CCAAT enhancer binding protein epsilon (C/EBPepsilon) is expressed as multiple isoforms and has been shown to be essential to myeloid (granulocyte) terminal differentiation. We have defined a novel synergistic, as opposed to antagonistic, combinatorial interaction between GATA-1 and PU.1, and a unique repressor role for certain C/EBPepsilon isoforms in the transcriptional regulation of a model eosinophil granulocyte gene, the major basic protein (MBP). The eosinophil-specific P2 promoter of the MBP gene contains GATA-1, C/EBP, and PU.1 consensus sites that bind these factors in nuclear extracts of the eosinophil myelocyte cell line, AML14.3D10. The promoter is transactivated by GATA-1 alone but is synergistically transactivated by low levels of PU.1 in the context of optimal levels of GATA-1. The C/EBPepsilon(27) isoform strongly represses GATA-1 activity and completely blocks GATA-1/PU.1 synergy. In vitro mutational analyses of the MBP-P2 promoter showed that both the GATA-1/PU.1 synergy, and repressor activity of C/EBPepsilon(27) are mediated via protein-protein interactions through the C/EBP and/or GATA-binding sites but not the PU.1 sites. Co-immunoprecipitations using lysates of AML14.3D10 eosinophils show that both C/EBPepsilon(32/30) and epsilon(27) physically interact in vivo with PU.1 and GATA-1, demonstrating functional interactions among these factors in eosinophil progenitors. Our findings identify novel combinatorial protein-protein interactions for GATA-1, PU.1, and C/EBPepsilon isoforms in eosinophil gene transcription that include GATA-1/PU.1 synergy and repressor activity for C/EBPepsilon(27).
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002; 100:2040-5. [PMID: 12200364 PMCID: PMC2808424 DOI: 10.1182/blood-2002-02-0387] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor GATA-1 is essential for the development of erythroid cells and megakaryocytes. Each of its 2 zinc fingers is critical for normal function. The C-terminal finger is necessary for DNA binding. The N finger mediates interaction with FOG-1, a cofactor for GATA-1, and also modulates DNA-binding affinity, notably at complex or palindromic GATA sites. Residues of the N finger-mediating interaction with FOG-1 lie on the surface of the N finger facing away from DNA. Strong sequence conservation of residues facing DNA suggests that this other surface may also have an important role. We report here that a syndrome of X-linked thrombocytopenia with thalassemia in humans is caused by a missense mutation (Arg216Gln) in the GATA-1 N finger. To investigate the functional consequences of this substitution, we used site-directed mutagenesis to alter the corresponding residue in GATA-1. Compared with wild-type GATA-1, Arg216Gln GATA-1 shows comparable affinity to single GATA sites but decreased affinity to palindromic sites. Arg216Gln GATA-1 interacts with FOG-1 similarly with wild-type GATA-1. Arg216Gln GATA-1 supports erythroid maturation of GATA-1 erythroid cells, albeit at reduced efficiency compared with wild-type GATA-1. Together, these findings suggest that residues of the N finger of GATA-1-facing DNA contribute to GATA-1 function apart from interaction with the cofactor FOG-1. This is also the first example of beta-thalassemia in humans caused by a mutation in an erythroid transcription factor.
Collapse
Affiliation(s)
- Channing Yu
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Schultz JR, Loven MA, Melvin VMS, Edwards DP, Nardulli AM. Differential modulation of DNA conformation by estrogen receptors alpha and beta. J Biol Chem 2002; 277:8702-7. [PMID: 11773069 DOI: 10.1074/jbc.m108491200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human estrogen receptor (ER) induces transcription of estrogen-responsive genes upon binding to estrogen and the estrogen response element (ERE). To determine whether receptor-induced changes in DNA structure are related to transactivation, we compared the abilities of ER alpha and ER beta to activate transcription and induce distortion and bending in DNA. ER alpha induced higher levels of transcription than ER beta in the presence of 17 beta-estradiol. In circular permutation experiments ER alpha induced greater distortion in DNA fragments containing the consensus ERE sequence than ER beta. Phasing analysis indicated that ER alpha induced a bend directed toward the major groove of the DNA helix but that ER beta failed to induce a directed DNA bend. Likewise, the ER alpha DNA binding domain (DBD) and hinge region induced a bend directed toward the major groove of the DNA helix, but the ER beta DBD and hinge region failed to bend ERE-containing DNA fragments. Using receptor chimeras we demonstrated that the ER alpha DBD C-terminal extension is required for directed DNA bending. Transient transfection assays revealed that appropriately oriented DNA bending enhances receptor-mediated transactivation. The different abilities of ER alpha and ER beta to induce change in DNA structure could foster or inhibit the interaction of regulatory proteins with the receptor and other transcription factors and help to explain how estrogen-responsive genes are differentially regulated by these two receptors.
Collapse
Affiliation(s)
- Jennifer R Schultz
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
17
|
Murakami A, Ishida S, Dickson C. GATA-4 interacts distinctively with negative and positive regulatory elements in the Fgf-3 promoter. Nucleic Acids Res 2002; 30:1056-64. [PMID: 11842118 PMCID: PMC100337 DOI: 10.1093/nar/30.4.1056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GATA-4 binds two sites in the Fgf-3 promoter, PS4A and PS13, which function as positive and negative regulatory elements, respectively. In spite of their opposite functions, both PS4A and PS13 acted as potent enhancer elements when three copies of each were appended to a minimal tk promoter. Mutational analysis showed that the negative regulatory activity of PS13 was dependent on its close proximity to the major transcription initiation site (P3), since it was a stronger repressor when moved closer to P3, but had no significant activity when moved to more distal positions. While only the C-terminal zinc finger and the basic domain of GATA-4 were required for binding to PS13, this was insufficient for binding at PS4A. In addition to the PS4A GATA site, the presence of sequences located 10-12 bp distant was required for efficient binding. Both the sequence and location of this second site was crucial for binding and enhancer activity. Truncation deletions of GATA-4 showed that efficient binding to PS4A was dependent on both zinc fingers and the basic domain, suggesting a direct interaction between one zinc finger domain and a possible second site (AGACAA) that shows some similarity to a GATA motif. GATA-4 binding to PS4A through both zinc finger domains was essential for Fgf-3 promoter activity. The substitution in PS4A of a GATA-binding sequence similar to PS13, which only requires a single zinc finger domain, bound GATA-4 efficiently but did not activate the Fgf-3 promoter. These differences in GATA-4 binding were also reflected in DNA bending assays that suggested clear conformational differences between complexes formed on PS4A and PS13.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
18
|
Trainor CD, Ghirlando R, Simpson MA. GATA zinc finger interactions modulate DNA binding and transactivation. J Biol Chem 2000; 275:28157-66. [PMID: 10862757 DOI: 10.1074/jbc.m000020200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and other vertebrate GATA factors contain a DNA binding domain composed of two adjacent homologous zinc fingers. Whereas only the C-terminal finger of GATA-1 is capable of independent binding to the GATA recognition sequence, double GATA sites that require both fingers for high affinity interaction are found in several genes. We propose a mechanism whereby adjacent zinc fingers interact to influence the binding and transactivation properties of GATA-1 at a subset of DNA-binding sites. By using two such double GATA sites we demonstrate that the N-terminal finger and adjacent linker region can alter the binding specificity of the C-terminal finger sufficiently to prevent it from recognizing some consensus GATA sequences. Therefore, the two zinc fingers form a composite binding domain having a different DNA binding specificity from that shown by the constituent single C-terminal finger. Furthermore, we compare two of these double sites and show that high affinity binding of GATA-1 to a reporter gene does not necessarily induce transactivation, namely the sequence of the DNA-binding site can alter the ability of GATA-1 to stimulate transcription.
Collapse
Affiliation(s)
- C D Trainor
- Laboratory of Molecular Biology, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|