1
|
Guo HZ, Feng RX, Zhang YJ, Yu YH, Lu W, Liu JJ, Yang SX, Zhao C, Zhang ZL, Yu SH, Jin H, Qian SX, Li JY, Zhu J, Shi J. A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML. Cell Rep Med 2024; 5:101592. [PMID: 38843841 PMCID: PMC11228649 DOI: 10.1016/j.xcrm.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.
Collapse
MESH Headings
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lipid Metabolism/drug effects
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Lipoproteins, LDL/metabolism
- Animals
- NF-kappa B/metabolism
- Cell Line, Tumor
- Myeloid Differentiation Factor 88/metabolism
- Myeloid Differentiation Factor 88/genetics
- Mice
- Signal Transduction/drug effects
- Tumor Escape/drug effects
- Drug Resistance, Neoplasm/drug effects
- Toll-Like Receptor 4/metabolism
- Acyltransferases/genetics
- Immunity, Innate/drug effects
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- He-Zhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Rui-Xue Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Yan-Jie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ye-Hua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jia-Jia Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shao-Xin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhao-Li Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Si-Xuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kim DH, Min SG, Kim HM, Kang HR, Choi JH, Lee HJ, Kim KR, Chung SW, Yoon JP. Comparison of the Characteristics of Rotator Cuff Tissue in a Diabetic Rat Model. Orthopedics 2022; 45:e154-e161. [PMID: 35112964 DOI: 10.3928/01477447-20220128-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluated the biomechanical and histologic characteristics of the rotator cuff tendon and muscle tissue with rat models with diabetes mellitus (DM) (group 1) and 30 male rats without DM (group 2). We conducted a time zero study without any additional procedures or external variables at 9 weeks after induction of the diabetic rat model. Thereafter, quantitative evaluation of advanced glycation end products (AGEs) was accomplished via enzyme-linked immunosorbent assay and immunohistochemistry (IHC). Fatty infiltration was investigated with Oil Red O staining, and the peroxisome proliferator activated receptor-gamma (PPAR-gamma) value was studied with IHC. Grossly, the supraspinatus tendons of the group 1 rats were more friable and discolored (yellowish) than those of group 2. In the biomechanical analysis, group 1 rats showed significantly inferior ultimate failure load (P=.001) and ultimate stress (P=.02). Group 1 was significantly inferior to group 2 in terms of total histologic scoring (P<.001). Mean AGE levels were significantly higher in group 1 (P<.001), as determined by IHC. In evaluating fatty infiltration, the degree of Oil Red O staining was significantly higher in group 1 (P<.001), but there was no significant difference in PPAR-gamma value between the 2 groups (P=.14). The intact rotator cuffs of rats with DM were associated with inferior biomechanics in association with AGE accumulation and increased fatty infiltration, as confirmed by histologic examination The hyperglycemic state caused by DM is associated with rotator cuff tendon degeneration. [Orthopedics. 2022;45(3):e154-e161.].
Collapse
|
3
|
Meier-Soelch J, Mayr-Buro C, Juli J, Leib L, Linne U, Dreute J, Papantonis A, Schmitz ML, Kracht M. Monitoring the Levels of Cellular NF-κB Activation States. Cancers (Basel) 2021; 13:5351. [PMID: 34771516 PMCID: PMC8582385 DOI: 10.3390/cancers13215351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The NF-κB signaling system plays an important regulatory role in the control of many biological processes. The activities of NF-κB signaling networks and the expression of their target genes are frequently elevated in pathophysiological situations including inflammation, infection, and cancer. In these conditions, the outcome of NF-κB activity can vary according to (i) differential activation states, (ii) the pattern of genomic recruitment of the NF-κB subunits, and (iii) cellular heterogeneity. Additionally, the cytosolic NF-κB activation steps leading to the liberation of DNA-binding dimers need to be distinguished from the less understood nuclear pathways that are ultimately responsible for NF-κB target gene specificity. This raises the need to more precisely determine the NF-κB activation status not only for the purpose of basic research, but also in (future) clinical applications. Here we review a compendium of different methods that have been developed to assess the NF-κB activation status in vitro and in vivo. We also discuss recent advances that allow the assessment of several NF-κB features simultaneously at the single cell level.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Christin Mayr-Buro
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Jana Juli
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Lisa Leib
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, 35032 Marburg, Germany;
| | - Jan Dreute
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| |
Collapse
|
4
|
Ancestral function of Inhibitors-of-kappaB regulates Caenorhabditis elegans development. Sci Rep 2020; 10:16153. [PMID: 32999373 PMCID: PMC7527347 DOI: 10.1038/s41598-020-73146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Mammalian IκB proteins (IκBs) exert their main function as negative regulators of NF-κB, a central signaling pathway controlling immunity and inflammation. An alternative chromatin role for IκBs has been shown to affect stemness and cell differentiation. However, the involvement of NF-κB in this function has not been excluded. NFKI-1 and IKB-1 are IκB homologs in Caenorhabditis elegans, which lacks NF-κB nuclear effectors. We found that nfki-1 and ikb-1 mutants display developmental defects that phenocopy mutations in Polycomb and UTX-1 histone demethylase, suggesting a role for C. elegans IκBs in chromatin regulation. Further supporting this possibility (1) we detected NFKI-1 in the nucleus of cells; (2) NFKI-1 and IKB-1 bind to histones and Polycomb proteins, (3) and associate with chromatin in vivo, and (4) mutations in nfki-1 and ikb-1 alter chromatin marks. Based on these results, we propose that ancestral IκB inhibitors modulate Polycomb activity at specific gene subsets with an impact on development.
Collapse
|
5
|
Zhang K, Hussain T, Wang J, Li M, Wang W, Ma X, Liao Y, Yao J, Song Y, Liang Z, Zhou X, Xu L. Sodium Butyrate Abrogates the Growth and Pathogenesis of Mycobacterium bovis via Regulation of Cathelicidin (LL37) Expression and NF-κB Signaling. Front Microbiol 2020; 11:433. [PMID: 32265874 PMCID: PMC7096352 DOI: 10.3389/fmicb.2020.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis, has been identified a serious threat to human population. It has been found that sodium butyrate (NaB), the inhibitor of histone deacetylase, can promote the expression of cathelicidin (LL37) and help the body to resist a variety of injuries. In the current study, we investigate the therapeutic effect of NaB on the regulation of host defense mechanism against M. bovis infection. We found an increased expression of LL37 in M. bovis infected THP-1 cells after NaB treatment. In contrast, NaB treatment significantly down-regulated the expression of Class I HDAC in THP-1 cells infected with M. bovis. Additionally, NaB reduced the expression of phosphorylated P65 (p-P65) and p-IκBα, indicating the inhibition of nuclear factor-κB (NF-κB) signaling. Furthermore, we found that NaB treatment reduced the production of inflammatory cytokines (IL-1β, TNF-α, and IL-10) and a key anti-apoptotic marker protein Bcl-2 in THP-1 cell infected with M. bovis. Notably, mice showed high resistance to M. bovis infection after NaB treatment. The reduction of viable M. bovis bacilli indicates that NaB-induced inhibition of M. bovis infection mediated by upregulation of LL37 and inhibition of NF-κB signaling pathway. These observations illustrate that NaB mediate protective immune responses against M. bovis infection. Overall, these results suggest that NaB can be exploited as a therapeutic strategy for the control of M. bovis in animals and human beings.
Collapse
Affiliation(s)
- Kai Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Jie Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mengying Li
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Wenjia Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojing Ma
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengmin Liang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihua Xu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Sun B, Wang B, Xu M. Esculetin inhibits histamine-induced expression of inflammatory cytokines and mucin in nasal epithelial cells. Clin Exp Pharmacol Physiol 2019; 46:821-827. [PMID: 31211861 DOI: 10.1111/1440-1681.13128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/11/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Allergic rhinitis (AR) is a type of respiratory disease closely associated with chronic inflammation. Esculetin is a natural coumarin derivative and has been reported to possess anti-allergic and anti-inflammatory effects. However, the roles of esculetin in AR have not been studied. In this study, we aimed to examine the effect of esculetin on AR using an in vitro model. The human nasal epithelial cells (HNEpC) were stimulated by histamine for 24 hours with or without the pretreatment of esculetin. The mRNA levels and production of inflammatory cytokines including IL-6 and IL-8, as well as mucin 5AC (MUC5AC) were measured using qRT-PCR and ELISA, respectively. The results showed that esculetin suppressed histamine-induced expression and secretion of IL-6, IL-8, and MUC5AC in HNEpCs. Furthermore, we examined the effect of esculetin on NF-κB pathway by detecting the expression levels of NF-κB p65, p-p65 and IκBα using western blot analysis. Esculetin treatment suppressed the histamine-induced p-p65 expression and p-IκBα degradation. Inhibiting NF-κB pathway suppressed histamine-induced production of IL-6, IL-8, and MUC5AC in HNEpCs. These findings suggested that esculetin suppressed histamine-induced production of inflammatory cytokines and mucin in HNEpCs, which were partly mediated by the inhibition of NF-κB pathway.
Collapse
Affiliation(s)
- Bin Sun
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Botao Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Dong B, An L, Yang X, Zhang X, Zhang J, Tuerhong M, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y. Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorg Chem 2019; 87:585-593. [DOI: 10.1016/j.bioorg.2019.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
8
|
Zang YQ, Feng YY, Luo YH, Zhai YQ, Ju XY, Feng YC, Wang JR, Yu CQ, Jin CH. Glycitein induces reactive oxygen species-dependent apoptosis and G0/G1 cell cycle arrest through the MAPK/STAT3/NF-κB pathway in human gastric cancer cells. Drug Dev Res 2019; 80:573-584. [PMID: 30916421 DOI: 10.1002/ddr.21534] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Glycitein is an isoflavone that reportedly inhibits the proliferation of human breast cancer and prostate cancer cells. However, its anti-cancer molecular mechanisms in human gastric cancer remain to be defined. This study evaluated the antitumor effects of glycitein on human gastric cancer cells and investigated the underlying mechanisms. We used MTT assay, flow cytometry and western blotting to investigate its molecular mechanisms with focus on reactive oxygen species (ROS) production. Our results showed that glycitein had significant cytotoxic effects on human gastric cancer cells. Glycitein markedly decreased mitochondrial transmembrane potential (ΔΨm) and increased AGS cells mitochondrial-related apoptosis, and caused G0/G1 cell cycle arrest by regulating cycle-related protein. Mechanistically, accompanying ROS, glycitein can activate mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappaB (NF-κB) signaling pathways. Furthermore, the MAPK signaling pathway regulated the expression levels of STAT3 and NF-κB upon treatment with MAPK inhibitor and N-acetyl-L-cysteine (NAC). These findings suggested that glycitein induced AGS cell apoptosis and G0/G1 phase cell cycle arrest via ROS-related MAPK/STAT3/NF-κB signaling pathways. Thus, glycitein has the potential to a novel targeted therapeutic agent for human gastric cancer.
Collapse
Affiliation(s)
- Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yan-Yu Feng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu-Qing Zhai
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xue-Ying Ju
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chang-Qing Yu
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Cheng-Hao Jin
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
9
|
Wang CY, Jang HJ, Han YK, Su XD, Lee SW, Rho MC, Wang HS, Yang SY, Kim YH. Alkaloids from Tetrastigma hemsleyanum and Their Anti-Inflammatory Effects on LPS-Induced RAW264.7 Cells. Molecules 2018; 23:molecules23061445. [PMID: 29899226 PMCID: PMC6099609 DOI: 10.3390/molecules23061445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/20/2022] Open
Abstract
Alkaloids 1–10 were isolated from the aerial parts of Tetrastigma hemsleyanum (APTH) and obtained from species of the genus Tetrastigma for the first time. The chemical structures of the isolated compounds were identified by NMR, UV, and MS analyses. Their anti-inflammatory activities were investigated by measuring nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Among all the isolates, compounds 6, 7 and 10 showed potent inhibitory activity against LPS-stimulated NO production in RAW264.7 cells (IC50: 31.9, 25.2 and 6.3 μM, respectively). Furthermore, APTH and S-(−)-trolline (10) inhibited induction of inflammatory cytokines or mediators such as interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) via suppression of nuclear factor κB (NF-κB) translocation into the nucleus. In addition, 10 suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) phosphorylation in a dose-dependent manner. These results conclusively demonstrated that compound 10 displays anti-inflammatory activity via suppression of NF-κB activation and the ERK-MAPK signaling pathway in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Cai Yi Wang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hyun-Jae Jang
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Korea.
| | - Yoo Kyong Han
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Xiang Dong Su
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Seung Woong Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Korea.
| | - Mun-Chual Rho
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Korea.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
10
|
Schmitz ML, Shaban MS, Albert BV, Gökçen A, Kracht M. The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-κB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines 2018; 6:biomedicines6020058. [PMID: 29772680 PMCID: PMC6027367 DOI: 10.3390/biomedicines6020058] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Stressful conditions occuring during cancer, inflammation or infection activate adaptive responses that are controlled by the unfolded protein response (UPR) and the nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. These systems can be triggered by chemical compounds but also by cytokines, toll-like receptor ligands, nucleic acids, lipids, bacteria and viruses. Despite representing unique signaling cascades, new data indicate that the UPR and NF-κB pathways converge within the nucleus through ten major transcription factors (TFs), namely activating transcription factor (ATF)4, ATF3, CCAAT/enhancer-binding protein (CEBP) homologous protein (CHOP), X-box-binding protein (XBP)1, ATF6α and the five NF-κB subunits. The combinatorial occupancy of numerous genomic regions (enhancers and promoters) coordinates the transcriptional activation or repression of hundreds of genes that collectively determine the balance between metabolic and inflammatory phenotypes and the extent of apoptosis and autophagy or repair of cell damage and survival. Here, we also discuss results from genetic experiments and chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor of NF-κB (IκB)α degradation pathway. These data show that the UPR affects this major control point of NF-κB activation through several mechanisms. Taken together, available evidence indicates that the UPR and NF-κB interact at multiple levels. This crosstalk provides ample opportunities to fine-tune cellular stress responses and could also be exploited therapeutically in the future.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - M Samer Shaban
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - B Vincent Albert
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Anke Gökçen
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
- Rudolf-Buchheim-Institute of Pharmacology, Universities of Giessen and Marburg Lung Center (UGMLC), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
11
|
Khajuria V, Gupta S, Sharma N, Tiwari H, Bhardwaj S, Dutt P, Satti N, Nargotra A, Bhagat A, Ahmed Z. Kaempferol-3-o-β- d -glucuronate exhibit potential anti-inflammatory effect in LPS stimulated RAW 264.7 cells and mice model. Int Immunopharmacol 2018; 57:62-71. [DOI: 10.1016/j.intimp.2018.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
|
12
|
Nam SY, Kim KY, Kim MH, Jang JB, Rah SY, Lee JM, Kim HM, Jeong HJ. Anti-inflammatory effects of a traditional Korean medicine: Ojayeonjonghwan. PHARMACEUTICAL BIOLOGY 2017; 55:1856-1862. [PMID: 28614972 PMCID: PMC6130514 DOI: 10.1080/13880209.2017.1339282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/17/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the anti-inflammatory properties of OJ. CONTEXT Ojayeonjonghwan (OJ) is a traditional Korean prescription, which has been widely used for the treatment of prostatitis. However, no scientific study has been performed of the anti-inflammatory effects of OJ. MATERIALS AND METHODS Peritoneal macrophages were isolated 3-4 days after injecting a C57BL/6J mouse with thioglycollate. They were then treated with OJ water extract (0.01, 0.1, and 1 mg/mL) for 1 h and stimulated with lipopolysaccharide (LPS) for different times. Nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and proinflammatory cytokine levels were determined by NO assay, Western blotting, RT-PCR and ELISA. RESULTS NO generation and iNOS induction were increased in the LPS-activated mouse peritoneal macrophages. However, NO generation and iNOS induction by LPS were suppressed by treatment with OJ for the first time. The IC50 value of OJ with respect to NO production was 0.09 mg/mL. OJ did not influence LPS-stimulated COX-2 induction, but did significantly decrease LPS-stimulated secretions and mRNA expressions of tumour necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Inhibition rates of TNF-α, IL-6, and IL-1β at an OJ concentration of 1 mg/mL were 77%, 88%, and 50%, respectively. OJ also suppressed the LPS-induced nuclear translocation of NF-κB. High-performance liquid chromatography showed schizandrin and gomisin A are major components of OJ. CONCLUSIONS OJ reduces inflammatory response, and this probably explains its positive impact on the prostatitis associated inflammation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/analysis
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Cells, Cultured
- Cyclooctanes/analysis
- Cyclooctanes/pharmacology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Dioxoles/analysis
- Dioxoles/pharmacology
- Ethnopharmacology
- Gene Expression Regulation/drug effects
- Lignans/analysis
- Lignans/pharmacology
- Lipopolysaccharides/toxicity
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Medicine, Korean Traditional
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/chemistry
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Polycyclic Compounds/analysis
- Polycyclic Compounds/pharmacology
- Prostatitis/drug therapy
- Prostatitis/immunology
- Prostatitis/metabolism
- Prostatitis/pathology
- Thioglycolates
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyu-Yeob Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hye Kim
- Department of Food and Nutrition, Hoseo University, Asan, Chungnam, Republic of Korea
| | - Jae-Bum Jang
- Department of Pharmaceutical Engineering, Hoseo University, Asan, Chungnam, Republic of Korea
| | - So-Young Rah
- Department of Biochemistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Jin-Man Lee
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam,Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam,Republic of Korea
| |
Collapse
|
13
|
Huang X, Sun B, Zhang J, Gao Y, Li G, Chang Y. Selenium Deficiency Induced Injury in Chicken Muscular Stomach by Downregulating Selenoproteins. Biol Trace Elem Res 2017; 179:277-283. [PMID: 28194559 DOI: 10.1007/s12011-017-0946-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to examine the effect of selenium (Se) deficiency on the expression of selenoproteins in chicken muscular stomach and to detect the correlation of selenoproteins with muscular stomach injuries. One-day-old broiler chickens were maintained for 55 days on a normal diet (0.2 mg/kg) or a Se-deficient diet (0.033 mg Se/kg). The expression levels of 25 selenoproteins, heat shock proteins (HSPs), and inflammatory factors were then examined by real-time PCR. Following this, the correlation between selenoproteins, HSPs, and inflammatory factors was analyzed by principal component analysis (PCA). The results showed that Se deficiency decreased the expression of 25 selenoproteins (P < 0.05), but increased the expression of HSP27, HSP40, HSP60, HSP70, and HSP90, and NF-κB, iNOS, TNF-α, COX-2, and HO-1 (P < 0.05). Selenoproteins showed a high negative correlation with HSPs and inflammatory factors. Thus, the results suggested that Se deficiency induced muscular stomach injuries by decreasing the expression of selenoproteins. In addition, selenoproteins play an important role in regulating HSPs and inflammatory response. The muscular stomach is a key target of Se deficiency and may play a special role in response to Se deficiency.
Collapse
Affiliation(s)
- Xiaodan Huang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Sun
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiuli Zhang
- Heilongjiang Polytechnic, Harbin, 150080, China
| | - Yuhong Gao
- Heilongjiang Polytechnic, Harbin, 150080, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Cardoso MA, Fontenele M, Lim B, Bisch PM, Shvartsman SY, Araujo HM. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo. Development 2017; 144:2907-2913. [PMID: 28705899 DOI: 10.1242/dev.145557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals.
Collapse
Affiliation(s)
- Maira Arruda Cardoso
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcio Fontenele
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Institute of Molecular Entomology, Brazil
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Paulo Mascarello Bisch
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Helena Marcolla Araujo
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil .,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
15
|
Khajuria V, Gupta S, Sharma N, Kumar A, Lone NA, Khullar M, Dutt P, Sharma PR, Bhagat A, Ahmed Z. Anti-inflammatory potential of hentriacontane in LPS stimulated RAW 264.7 cells and mice model. Biomed Pharmacother 2017; 92:175-186. [PMID: 28549290 DOI: 10.1016/j.biopha.2017.05.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/11/2023] Open
Abstract
Hentriacontane, has various pharmacological effects including anti-inflammatory, antitumor and antimicrobial activities. Its anti-inflammatory potential has been demonstrated in peritoneal macrophages. However detailed studies on other models elucidating the mechanistic description of the mode of action has not been done. Hence, the aim of the present study is to evaluate the anti-inflammatory potential of hentriacontane both in-vivo (Balb/c mice) and in-vitro (RAW 264.7 cells). Cytokine inhibition of both pro-inflammatory (TNF-α, IL-6, MCP-1 and IL-1β) and anti-inflammatory (IL-10) cytokines was studied in RAW 264.7 cells and Balb/c mice. Suppressive potential of hentriacontane on NO, PGE2, LTB4 and on LPS induced translocation of NF-κB in RAW 264.7 cells was studied. Further investigations on the effect of hentriacontane on phagocytic index, carrageenan induced paw oedema in mice and on organ weight were done. It was found that hentriacontane significantly reduced all the parameters of inflammation in the experiments under study at all the concentrations, 10μM, 5μM and 1μM (in-vitro) and 5mg/kg, 2mg/kg and 1mg/kg (in-vivo). The highest concentration used in the two models presented the most significant results. The results indicate that hentriacontane is a potent suppressor of inflammatory cytokines and other mediators. Moreover it also has regulatory effect on NF-κB. Hence, hentriacontane is a potential candidate for investigations to develop anti-inflammatory drug.
Collapse
Affiliation(s)
- Vidushi Khajuria
- Academy of Scientific Innovative Research, CSIR-Indian Institute of Integrative Medicines, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Shilpa Gupta
- Academy of Scientific Innovative Research, CSIR-Indian Institute of Integrative Medicines, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Neha Sharma
- Natural Product Chenistry, CSIR- Indian Institute of Integrative Medicines, India
| | - Ashok Kumar
- Academy of Scientific Innovative Research, CSIR-Indian Institute of Integrative Medicines, India; CancerPharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Nazir A Lone
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Mowkshi Khullar
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Prabhu Dutt
- Natural Product Chenistry, CSIR- Indian Institute of Integrative Medicines, India
| | - Parduman Raj Sharma
- CancerPharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Asha Bhagat
- Academy of Scientific Innovative Research, CSIR-Indian Institute of Integrative Medicines, India; Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, India.
| |
Collapse
|
16
|
Lee SR, Lee S, Moon E, Park HJ, Park HB, Kim KH. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells. Bioorg Chem 2016; 70:94-99. [PMID: 27912907 DOI: 10.1016/j.bioorg.2016.11.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
Poria cocos Wolf (Polyporaceae) has been used as a medicinal fungus to treat various diseases since ancient times. This study aimed to investigate the anti-inflammatory chemical constituents of the sclerotia of P. cocos. Based on bioassay-guided fractionation using lipopolysaccharide (LPS)-stimulated Raw264.7 cells, chemical investigation of the EtOH extract of the sclerotia of P. cocos resulted in the isolation and identification of eight compounds including six triterpenoids, namely poricoic acid A (1), 3-O-acetyl-16α-hydroxydehydrotrametenolic acid (2), polyporenic acid C (3), 3β-hydroxylanosta-7,9(11),24-trien-21-oic acid (4), trametenolic acid (5), and dehydroeburicoic acid (6), as well as (-)-pinoresinol (7) and protocatechualdehyde (8). The structures of the isolated compounds were determined by spectroscopic analysis, including 1H and 13C NMR spectra, and LC/MS analysis. The anti-inflammatory activities of the isolates were evaluated by estimating their effect on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated Raw264.7 as well as on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compounds 1-5 inhibited NO production and iNOS expression in LPS-stimulated Raw264.7 cells. Among them, compound 1 exerted the highest anti-inhibitory activity and reduced PGE2 levels via downregulation of COX-2 protein expression. The findings of this study provide experimental evidence that the sclerotia of P. cocos are a potential source of natural anti-inflammatory agents for use in pharmaceuticals and functional foods. Furthermore, the most active compound 1, seco-lanostane triterpenoid, could be a promising lead compound for the development of novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. Ltd., Seoul 135-851, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 461-701, Republic of Korea
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
17
|
Seo YJ, Jeong M, Lee KT, Jang DS, Choi JH. Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. Int Immunopharmacol 2016; 38:61-9. [PMID: 27240136 DOI: 10.1016/j.intimp.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
Abstract
The rhizomes of Cyperus rotundus (cyperaceae) have been used in Korean traditional medicines for treating diverse inflammatory diseases. However, little is known about the biological activities of isocyperol, a sesquiterpene isolated from C. rotundus, and their associated molecular mechanisms. In this study, we found that isocyperol significantly inhibited lipopolysaccharide (LPS)-induced production of nitrite oxide (NO) and prostaglandin E2 (PGE2) and suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in RAW 264.7 macrophages. In addition, isocyperol downregulated the LPS-induced expression of several proinflammatory cytokines, such as interleukin-1beta (IL-1β), IL-6, and monocyte chemotactic protein-1 (MCP-1). Isocyperol treatment suppressed the LPS-induced nuclear translocation and transcriptional activation of nuclear factor-kappaB (NF-κB) in macrophages. Moreover, the activation of STAT3, another proinflammatory signal, was suppressed by isocyperol in LPS-stimulated RAW 264.7 cells. Isocyperol pretreatment also induced heme oxygenase-1 (HO-1) expression and reduced LPS-stimulated reactive oxygen species (ROS) accumulation in macrophages. Furthermore, isocyperol significantly increased the survival rate and attenuated serum levels of NO, PGE2, and IL-6 in LPS-induced septic shock mouse model. Taken together, these data indicate that isocyperol suppress septic shock through negative regulation of pro-inflammatory factors through inhibition of the NF-κB and STAT3 pathways and ROS. To our knowledge, this is the first report on the biological activity of isocyperol and its molecular mechanism of action.
Collapse
Affiliation(s)
- Yun-Ji Seo
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Miran Jeong
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea.
| |
Collapse
|
18
|
Ankers JM, Awais R, Jones NA, Boyd J, Ryan S, Adamson AD, Harper CV, Bridge L, Spiller DG, Jackson DA, Paszek P, Sée V, White MR. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife 2016; 5. [PMID: 27185527 PMCID: PMC4869934 DOI: 10.7554/elife.10473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.001 Investigating how cells adapt to the constantly changing environment inside the body is vitally important for understanding how the body responds to an injury or infection. One of the ways in which human cells adapt is by dividing to produce new cells. This takes place in a repeating pattern of events, known as the cell cycle, through which a cell copies its DNA (in a stage known as S-phase) and then divides to make two daughter cells. Each stage of the cell cycle is tightly controlled; for example, a family of proteins called E2 factors control the entry of the cell into S phase. “Inflammatory” signals produced by a wound or during an infection can activate a protein called Nuclear Factor-kappaB (NF-κB), which controls the activity of genes that allow cells to adapt to the situation. Research shows that the activity of NF-κB is also regulated by the cell cycle, but it has not been clear how this works. Here, Ankers et al. investigated whether the stage of the cell cycle might affect how NF-κB responds to inflammatory signals. The experiments show that the NF-κB response was stronger in cells that were just about to enter S-phase than in cells that were already copying their DNA. An E2 factor called E2F-1 –which accumulates in the run up to S-phase – interacts with NF-κB and can alter the activity of certain genes. However, during S-phase, another E2 factor family member called E2F-4 binds to NF-κB and represses its activation. Next, Ankers et al. used a mathematical model to understand how these protein interactions can affect the response of cells to inflammatory signals. These findings suggest that direct interactions between E2 factor proteins and NF-κB enable cells to decide whether to divide or react in different ways to inflammatory signals. The research tools developed in this study, combined with other new experimental techniques, will allow researchers to accurately predict how cells will respond to inflammatory signals at different points in the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.002
Collapse
Affiliation(s)
- John M Ankers
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Raheela Awais
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Nicholas A Jones
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - James Boyd
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Sheila Ryan
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Antony D Adamson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Claire V Harper
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Lloyd Bridge
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom.,Department of Mathematics, University of Swansea, Swansea, United Kingdom
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Dean A Jackson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Pawel Paszek
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Violaine Sée
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Michael Rh White
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
19
|
Zhang JL, Xu B, Huang XD, Gao YH, Chen Y, Shan AS. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks. Biol Trace Elem Res 2016; 171:201-7. [PMID: 26400650 DOI: 10.1007/s12011-015-0512-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.
Collapse
Affiliation(s)
- Jiu-Li Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Bo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Dan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Hong Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - An-Shan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
20
|
Yamanishi E, Yoon K, Alberi L, Gaiano N, Mizutani KI. NF-κB signaling regulates the generation of intermediate progenitors in the developing neocortex. Genes Cells 2015; 20:706-19. [PMID: 26243725 DOI: 10.1111/gtc.12267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
In addition to its well-established role during immune system function, NF-κB regulates cell survival and synaptic plasticity in the mature nervous system. Here, we show that during mouse brain development, NF-κB activity is present in the neocortical ventricular and subventricular zones (VZ and SVZ), where it regulates proliferative pool maintenance. Activation of NF-κB signaling, by expression of p65 or an activated form of the IκB kinase complex subunit IKK2, inhibited neuronal differentiation and promoted retention of progenitors in the VZ and SVZ. In contrast, blockade of the pathway with dominant negative forms of IKK2 and IκBα promoted neuronal differentiation both in vivo and in vitro. Furthermore, by modulating both the NF-κB and Notch pathways, we show that in the absence of canonical Notch activity, after knockdown of the pathway effector CBF1, NF-κB signaling promoted Tbr2 expression and intermediate neural progenitor fate. Interestingly, however, activation of NF-κB in vivo, with canonical Notch signaling intact, promoted expression of the radial glial marker Pax6. This work identifies NF-κB signaling as a regulator of neocortical neurogenesis and suggests that the pathway plays roles in both the VZ and SVZ.
Collapse
Affiliation(s)
- Emiko Yamanishi
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Keejung Yoon
- Neuroregeneration Program, Institute for Cell Engineering, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lavinia Alberi
- Neuroregeneration Program, Institute for Cell Engineering, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas Gaiano
- Neuroregeneration Program, Institute for Cell Engineering, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ken-ichi Mizutani
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.,Neuroregeneration Program, Institute for Cell Engineering, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan
| |
Collapse
|
21
|
Fortmann KT, Lewis RD, Ngo KA, Fagerlund R, Hoffmann A. A Regulated, Ubiquitin-Independent Degron in IκBα. J Mol Biol 2015; 427:2748-56. [PMID: 26191773 DOI: 10.1016/j.jmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Whereas ubiquitin-dependent degrons have been characterized in some detail, how proteins may be targeted to ubiquitin-independent proteasomal degradation remains unclear. Here we show that IκBα contains an ubiquitin-independent degron whose activity is portable to heterologous proteins such as the globular protein GFP (green fluorescent protein) via a proteasome-dependent, ubiquitin-independent, non-lysosomal pathway. The ubiquitin-independent degradation signal resides in an 11-amino-acid sequence, which is not only sufficient but also required for IκBα's short half-life. Finally, we show that this degron's activity is regulated by the interaction with NFκB, which controls its solvent exposure, and we demonstrate that this regulation of the degron's activity is critical for IκBα's signaling functions.
Collapse
Affiliation(s)
- Karen T Fortmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Russell D Lewis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim A Ngo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Riku Fagerlund
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Tsui R, Kearns JD, Lynch C, Vu D, Ngo K, Basak S, Ghosh G, Hoffmann A. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun 2015; 6:7068. [PMID: 25946967 PMCID: PMC4425231 DOI: 10.1038/ncomms8068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signalling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction-guided by in vitro and in vivo experimentation-of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally related IκB proteins by distinguishing between a positive 'licensing' factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell's steady state, and negative feedback regulators (IκBα and -ɛ) that determine the duration and dynamics of the cellular response to an inflammatory stimulus.
Collapse
Affiliation(s)
- Rachel Tsui
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Jeffrey D. Kearns
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Candace Lynch
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Kim Ngo
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Soumen Basak
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, CA 90095
| |
Collapse
|
23
|
Glushkova OV, Khrenov MO, Novoselova TV, Lunin SM, Parfenyuk SB, Alekseev SI, Fesenko EE, Novoselova EG. The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low-intensity microwaves. Int J Radiat Biol 2015; 91:321-8. [DOI: 10.3109/09553002.2014.996261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Terry AJ. A minimal spatio-temporal model of the NF-κB signalling pathway exhibits a range of behaviours. Bull Math Biol 2014; 76:2363-88. [PMID: 25199662 DOI: 10.1007/s11538-014-0011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
In animal cells, the transcription factor NF-κB regulates many stressful, inflammatory, and innate immune responses. Experiments have revealed that, in response to cell stimulation, NF-κB can exhibit oscillatory dynamics where the nature of these dynamics can influence the pattern of NF-κB-dependent gene expression. Oscillations in NF-κB are believed to depend on a negative feedback loop linking NF-κB and one of its downstream products, namely IκBα. This negative feedback loop is enhanced by cell stimulation. However, it also exists in the absence of cell stimulation. Here we propose a minimal spatio-temporal model of the NF-κB signalling pathway, composed of partial differential equations. Through numerical simulations, we find various combinations of behaviours before and during cell stimulation: equilibrium dynamics (rapid convergence to a solution that is everywhere constant) before cell stimulation, followed by oscillatory dynamics during cell stimulation; oscillatory dynamics before and during cell stimulation; oscillatory dynamics before cell stimulation, followed by equilibrium dynamics during cell stimulation; and equilibrium dynamics before and during cell stimulation. In each case, when cell stimulation ceases, the model quickly returns to its pre-stimulation behaviour. All of these different combinations of behaviours occur for similar sets of parameter values. Therefore, our results may help to explain why, in experiments on the NF-κB pathway involving populations of cells, only a certain fraction of the cells exhibit oscillatory dynamics.
Collapse
Affiliation(s)
- Alan J Terry
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK,
| |
Collapse
|
25
|
A disorder-induced domino-like destabilization mechanism governs the folding and functional dynamics of the repeat protein IκBα. PLoS Comput Biol 2013; 9:e1003403. [PMID: 24367251 PMCID: PMC3868533 DOI: 10.1371/journal.pcbi.1003403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The stability of the repeat protein IκBα, a transcriptional inhibitor in mammalian cells, is critical in the functioning of the NF-κB signaling module implicated in an array of cellular processes, including cell growth, disease, immunity and apoptosis. Structurally, IκBα is complex, with both ordered and disordered regions, thus posing a challenge to the available computational protocols to model its conformational behavior. Here, we introduce a simple procedure to model disorder in systems that undergo binding-induced folding that involves modulation of the contact map guided by equilibrium experimental observables in combination with an Ising-like Wako-Saitô-Muñoz-Eaton model. This one-step procedure alone is able to reproduce a variety of experimental observables, including ensemble thermodynamics (scanning calorimetry, pre-transitions, m-values) and kinetics (roll-over in chevron plot, intermediates and their identity), and is consistent with hydrogen-deuterium exchange measurements. We further capture the intricate distance-dynamics between the domains as measured by single-molecule FRET by combining the model predictions with simple polymer physics arguments. Our results reveal a unique mechanism at work in IκBα folding, wherein disorder in one domain initiates a domino-like effect partially destabilizing neighboring domains, thus highlighting the effect of symmetry-breaking at the level of primary sequences. The offshoot is a multi-state and a dynamic conformational landscape that is populated by increasingly partially folded ensembles upon destabilization. Our results provide, in a straightforward fashion, a rationale to the promiscuous binding and short intracellular half-life of IκBα evolutionarily engineered into it through repeats with variable stabilities and expand the functional repertoire of disordered regions in proteins.
Collapse
|
26
|
YANG PANPAN, ZHOU TIANSHOU. RECEPTOR-DEPENDENT SENSITIVITY OF NF-κB TO LOW PHYSIOLOGICAL LEVEL. J BIOL SYST 2013. [DOI: 10.1142/s0218339013500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the NFκB signaling pathway, cells respond to different concentrations of the TNFα signal by means of NFκB transcription factors. Previous studies showed that most cells are activated under high-dose stimulations and NFκB activation results in oscillations in nuclear NFκB abundance. Here, by analyzing sensitivity gain for the response of the nuclear NFκB to the number of cell-surface receptors under low-dose stimulations, we show that changes in the receptor number can give rise to significant changes in the nonsaturation part of the dose–response curve, where the receptor activation rates are very sensitive to stimulations. In addition, the number of the activated receptors tends to increase in a large range of stimulation dose and can significantly influence the expression of the downstream genes. These results imply that the number of cell-surface receptors plays a role of information encoding like frequency or amplitude encoding described in previous studies.
Collapse
Affiliation(s)
- PANPAN YANG
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - TIANSHOU ZHOU
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
27
|
Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H. Calpain A modulates Toll responses by limited Cactus/IκB proteolysis. Mol Biol Cell 2013; 24:2966-80. [PMID: 23864715 PMCID: PMC3771957 DOI: 10.1091/mbc.e13-02-0113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.
Collapse
Affiliation(s)
- Marcio Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Chemistry Institute, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Princeton Collaborative Proteomics and Mass Spectrometry Center, Princeton University, Princeton, NJ 08544 Molecular Biology Department, Princeton University, Princeton, NJ 08544 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | | | | | | | | | | |
Collapse
|
28
|
An agent-based model of cellular dynamics and circadian variability in human endotoxemia. PLoS One 2013; 8:e55550. [PMID: 23383223 PMCID: PMC3559552 DOI: 10.1371/journal.pone.0055550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/30/2012] [Indexed: 01/01/2023] Open
Abstract
As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.
Collapse
|
29
|
Evolutionary, structural and functional interplay of the IκB family members. PLoS One 2013; 8:e54178. [PMID: 23372681 PMCID: PMC3553144 DOI: 10.1371/journal.pone.0054178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 12/17/2022] Open
Abstract
A primary level of control for nuclear factor kappa B (NF-κB) is effected through its interactions with the inhibitor protein, inhibitor of kappa B (IκB). Several lines of evidence confirm the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. Therefore, we performed a comprehensive bioinformatics analysis to understand the evolutionary history and intrinsic functional diversity of IκB family members. Phylogenetic relationships were constructed to trace the evolution of the IκB family genes. Our phylogenetic analysis revealed 10 IκB subfamily members that clustered into 5 major clades. Since the ankyrin (ANK) domain appears to be more ancient than the Rel homology domain (RHD), our phylogenetic analysis suggests that some undefined ancestral set of ANK repeats acquired an RHD before any duplication and was later duplicated and then diverged into the different IκB subfamilies. Functional analysis identified several functionally divergent sites in the ANK repeat domains (ARDs) and revealed that this region has undergone strong purifying selection, suggesting its functional importance in IκB genes. Structural analysis showed that the major variations in the number of ANK repeats and high conformational changes in the finger loop ARD region contribute to the differing binding partner specificities, thereby leading to distinct IκB functions. In summary, our study has provided useful information about the phylogeny and structural and functional divergence of the IκB family. Additionally, we identified a number of amino acid sites that contribute to the predicted functional divergence of these proteins.
Collapse
|
30
|
Pinna F, Sahle S, Beuke K, Bissinger M, Tuncay S, D'Alessandro LA, Gauges R, Raue A, Timmer J, Klingmüller U, Schirmacher P, Kummer U, Breuhahn K. A Systems Biology Study on NFκB Signaling in Primary Mouse Hepatocytes. Front Physiol 2012; 3:466. [PMID: 23293603 PMCID: PMC3533138 DOI: 10.3389/fphys.2012.00466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/26/2012] [Indexed: 12/14/2022] Open
Abstract
The cytokine tumor necrosis factor-alpha (TNFα) is one of the key factors during the priming phase of liver regeneration as well as in hepatocarcinogenesis. TNFα activates the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) signaling pathway and contributes to the conversion of quiescent hepatocytes to activated hepatocytes that are able to proliferate in response to growth factor stimulation. Different mathematical models have been previously established for TNFα/NFκB signaling in the context of tumor cells. Combining these mathematical models with time-resolved measurements of expression and phosphorylation of TNFα/NFκB pathway constituents in primary mouse hepatocytes revealed that an additional phosphorylation step of the NFκB isoform p65 has to be considered in the mathematical model in order to sufficiently describe the dynamics of pathway activation in the primary cells. Also, we addressed the role of basal protein turnover by experimentally measuring the degradation rate of pivotal players in the absence of TNFα and including this information in the model. To elucidate the impact of variations in the protein degradation rates on TNFα/NFκB signaling on the overall dynamic behavior we used global sensitivity analysis that accounts for parameter uncertainties and showed that degradation and translation of p65 had a major impact on the amplitude and the integral of p65 phosphorylation. Finally, our mathematical model of TNFα/NFκB signaling was able to predict the time-course of the complex formation of p65 and of the inhibitor of NFκB (IκB) in primary mouse hepatocytes, which was experimentally verified. Hence, we here present a mathematical model for TNFα/NFκB signaling in primary mouse hepatocytes that provides an important basis to quantitatively disentangle the complex interplay of multiple factors in liver regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Federico Pinna
- Institute of Pathology, University Hospital of Heidelberg Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int Immunopharmacol 2012; 15:450-6. [PMID: 23261363 DOI: 10.1016/j.intimp.2012.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 11/29/2012] [Indexed: 01/12/2023]
Abstract
Natural products and dietary components rich in polyphenols have been shown to reduce inflammation; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. This research was carried out to clarify the potential role of procyanidin trimer C1 in the anti-inflammatory effect of polyphenols. Procyanidin C1 inhibited inducible nitric oxide synthase-mediated nitric oxide production and the release of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) in lipopolysaccharide (LPS)-induced macrophages. Treatment with procyanidin C1 resulted in a significant decrease in prostaglandin E2 and cyclooxygenase-2 levels, as well as the expression of cell surface molecules (CD80, CD86, and MHC class II), which was induced by LPS. Furthermore, our data demonstrated that the anti-inflammatory effect of procyanidin C1 occurs through inhibition of mitogen-activated protein kinase (p38 and c-Jun N-terminal kinase) and nuclear factor-κB signaling pathways. These 2 factors play a major role in controlling inflammation, through toll-like receptor 4, suggesting that procyanidin C1 plays a potent role in promoting anti-inflammatory activity in macrophages. These results represent a novel and effective therapeutic intervention for the treatment of inflammatory disease.
Collapse
|
32
|
Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, Chew CH. Tumour necrosis factor alpha down-regulates the expression of peroxisome proliferator activated receptor alpha (PPARα) in human hepatocarcinoma HepG2 cells by activation of NF-κB pathway. Cytokine 2012; 61:266-74. [PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/27/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
Collapse
Affiliation(s)
- Wyi Sian Lim
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | | | | | | | | | | | | |
Collapse
|
33
|
Yamaguchi T, Morikawa A, Miyoshi H. Comparison of gene-trapping efficiency between retroviral and lentiviral vectors in mouse embryonic stem cells. Biochem Biophys Res Commun 2012; 425:297-303. [PMID: 22842569 DOI: 10.1016/j.bbrc.2012.07.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Gene trapping is a method of inserting DNA into the genome at random, generating insertional mutations throughout the genome. The efficiency of retroviral gene trapping is not sufficient in part because of a strong preference for retroviral integration near transcription start sites. In contrast, lentiviral vectors strongly favor integration in the entire region of highly active genes, suggesting that lentiviral vectors would improve the efficiency of gene trapping. In this study, we constructed both lentiviral and retroviral gene-trap vectors and analyzed integration sites in mouse embryonic stem (ES) cells. The frequency of false-positive gene-trap events was about 12-fold higher for the retroviral vector compared to the lentiviral vector. Within intragenic regions, most of the retroviral vector integration sites were found in the 5' untranslated region, while the lentiviral vector integrated uniformly throughout transcriptional units. The trapping efficiency of unique genes was significantly higher for the lentiviral vector (~83%) than for the retroviral vector (~51%). Our data demonstrate that the lentiviral vector can trap the active genes more efficiently than the retroviral vector and will facilitate efficient generation of gene-trap libraries not only in ES cells but also in a wide variety of cell lines and primary cells.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
34
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
35
|
Abstract
Mathematical modeling has proved to be a critically important approach in the study of many complex networks and dynamic systems in physics, engineering, chemistry, and biology. The nuclear factor κB (NF-κB) system consists of more than 50 proteins and protein complexes and is both a highly networked and dynamic system. To date, mathematical modeling has only addressed a small fraction of the molecular species and their regulation, but when employed in conjunction with experimental analysis has already led to important insights. Here, we provide a personal account of studying how the NF-κB signaling system functions using mathematical descriptions of the molecular mechanisms. We focus on the insights gained about some of the key regulatory components: the control of the steady state, the signaling dynamics, and signaling crosstalk. We also discuss the biological relevance of these regulatory systems properties.
Collapse
Affiliation(s)
- Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
36
|
Tsukamoto H, Zhu NL, Wang J, Asahina K, Machida K. Morphogens and hepatic stellate cell fate regulation in chronic liver disease. J Gastroenterol Hepatol 2012; 27 Suppl 2:94-8. [PMID: 22320925 PMCID: PMC3337168 DOI: 10.1111/j.1440-1746.2011.07022.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatic stellate cells (HSC) are the liver mesenchymal cell type which responds to hepatocellular damage and participates in wound healing. Although HSC myofibroblastic trans-differentiation (activation) is implicated in excessive extracellular matrix deposition, molecular understanding of this phenotypic switch from the viewpoint of cell fate regulation is limited. Recent studies demonstrate the roles of anti-adipogenic morphogens (Wnt, Necdin, Shh) in epigenetic repression of the HSC differentiation gene Pparγ as a causal event in HSC activation. These morphogens have positive cross-interactions which converge to epigenetic repression of Pparγ involving the methyl-CpG binding protein MeCP2. However, these morphogens expressed by activated HSC may also participate in cross-talk between HSC and hepatoblasts/hepatocytes to support liver regeneration, and their aberrant regulation may contribute to liver tumorigenesis. Implications of HSC-derived morphogens in these possibilities are discussed.
Collapse
Affiliation(s)
- Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California Keck School of Medicine, Los Angeles, CA,Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA,Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nian-Ling Zhu
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California Keck School of Medicine, Los Angeles, CA,Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Jiaohong Wang
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California Keck School of Medicine, Los Angeles, CA,Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California Keck School of Medicine, Los Angeles, CA,Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, University of Southern California Keck School of Medicine, Los Angeles, CA,Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
37
|
Komives EA. Consequences of fuzziness in the NFκB/IκBα interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:74-85. [PMID: 22399319 DOI: 10.1007/978-1-4614-0659-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter provides a short review of various biophysical experiments that have been applied to the inhibitor of kappa B, IκBα and its binding partner, nuclear factor kappa B, or NFκB. The picture that emerges from amide hydrogen/deuterium exchange, NMR and binding kinetics experiments is one in which parts of both proteins are "fuzzy" in the free-state and some parts remain "fuzzy" in the NFκB-IκBα complex. The NFκB family of transcription factors responds to inflammatory cytokines with rapid transcriptional activation, in which NFκB enters the nucleus and binds DNA. Just as rapidly as transcription is activated, it is subsequently repressed by newly synthesized IκBα?that also enters the nucleus and removes NFκB from the DNA. Because IκBα?is an ankyrin repeat protein, it's "fuzziness" can be controlled by mutagenesis to stabilized the folded state. Experimental comparison with such stabilized mutants helps provide evidence that much of the system control depends on the "fuzziness" of IκBα.
Collapse
Affiliation(s)
- Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
38
|
Terry AJ, Chaplain MAJ. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry. J Theor Biol 2011; 290:7-26. [PMID: 21907212 DOI: 10.1016/j.jtbi.2011.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/01/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
Abstract
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours.
Collapse
Affiliation(s)
- Alan J Terry
- Division of Mathematics, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
39
|
Liew CY, Lam KW, Kim MK, Harith HH, Tham CL, Cheah YK, Sulaiman MR, Lajis NH, Israf DA. Effects of 3-(2-Hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone (HMP) upon signalling pathways of lipopolysaccharide-induced iNOS synthesis in RAW 264.7 cells. Int Immunopharmacol 2011; 11:85-95. [DOI: 10.1016/j.intimp.2010.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 01/13/2023]
|
40
|
Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, Zakaria ZA, Sulaiman MR, Lajis MN, Israf DA. A synthetic hydroxypropenone inhibits nitric oxide, prostaglandin E2, and proinflammatory cytokine synthesis. Immunopharmacol Immunotoxicol 2010; 32:495-506. [PMID: 20109039 DOI: 10.3109/08923970903575708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
Collapse
Affiliation(s)
- Choi Yi Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huxford T, Ghosh G. A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb Perspect Biol 2010; 1:a000075. [PMID: 20066103 DOI: 10.1101/cshperspect.a000075] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prosurvival transcription factor NF-kappaB specifically binds promoter DNA to activate target gene expression. NF-kappaB is regulated through interactions with IkappaB inhibitor proteins. Active proteolysis of these IkappaB proteins is, in turn, under the control of the IkappaB kinase complex (IKK). Together, these three molecules form the NF-kappaB signaling module. Studies aimed at characterizing the molecular mechanisms of NF-kappaB, IkappaB, and IKK in terms of their three-dimensional structures have lead to a greater understanding of this vital transcription factor system.
Collapse
Affiliation(s)
- Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, USA
| | | |
Collapse
|
42
|
Mathes E, Wang L, Komives E, Ghosh G. Flexible regions within I{kappa}B{alpha} create the ubiquitin-independent degradation signal. J Biol Chem 2010; 285:32927-32936. [PMID: 20682784 DOI: 10.1074/jbc.m110.107326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeostatic regulation of NF-κB requires the continuous synthesis of IκBα and its rapid degradation by the proteasome through a ubiquitin-independent pathway. We previously showed that the ubiquitin-independent degradation signal of unbound IκBα was located in the C-terminal PEST region, and we have now identified a single tyrosine, Tyr-289, and determined that the hydrophobic character of the tyrosine is important for the rapid turnover of IκBα. The sequence composition of the PEST peptide surrounding this Tyr-289 imposes a distinct polyproline II conformation. Enhancing the polyproline II helix formation correlates with slower degradation rates of unbound IκBα. We have further identified a degradation signal located within the 5th ankyrin repeat that is functional once the C terminus is removed. Both the C-terminal and 5th ankyrin repeat degradation signals have inherent flexibility and specific hydrophobic residue(s), which together constitute the ubiquitin-independent degradation signal for IκBα.
Collapse
Affiliation(s)
- Erika Mathes
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Lily Wang
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Elizabeth Komives
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Gourisankar Ghosh
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
43
|
Israf DA, Tham CL, Syahida A, Lajis NH, Sulaiman MR, Mohamad AS, Zakaria ZA. Atrovirinone inhibits proinflammatory mediator synthesis through disruption of NF-kappaB nuclear translocation and MAPK phosphorylation in the murine monocytic macrophage RAW 264.7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:732-739. [PMID: 20378317 DOI: 10.1016/j.phymed.2010.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In a previous communication we showed that atrovirinone, a 1,4-benzoquinone isolated from the roots of Garcinia atroviridis, was able to inhibit several major proinflammatory mediators of inflammation. In this report we show that atrovirinone inhibits NO and PGE(2) synthesis through inhibition of iNOS and COX-2 expression. We also show that atrovirinone inhibits the secretion of IL-1beta and IL-6 in a dose dependent fashion whereas the secretion of IL-10, the anti-inflammatory cytokine, was enhanced. Subsequently we determined that the inhibition of proinflammatory cytokine synthesis and inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation of p38 and ERK1/2. We also showed that atrovirinone prevented phosphorylation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation as demonstrated by expression analysis. We conclude that atrovirinone is a potential anti-inflammatory drug lead that targets both the MAPK and NF-kappaB pathway.
Collapse
Affiliation(s)
- D A Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. Biochemistry 2010; 49:1560-7. [PMID: 20055496 DOI: 10.1021/bi901948j] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The NF-kappaB family of transcription factors responds to inflammatory cytokines with rapid transcriptional activation and subsequent signal repression. Much of the system control depends on the unique characteristics of its major inhibitor, IkappaBalpha, which appears to have folding dynamics that underlie the biophysical properties of its activity. Theoretical folding studies followed by experiments have shown that a portion of the ankyrin repeat domain of IkappaBalpha folds on binding. In resting cells, IkappaBalpha is constantly being synthesized, but most of it is rapidly degraded, leaving only a very small pool of free IkappaBalpha. Nearly all of the NF-kappaB is bound to IkappaBalpha, resulting in near-complete inhibition of nuclear localization and transcriptional activation. Combined solution biophysical measurements and quantitative protein half-life measurements inside cells have allowed us to understand how the inhibition occurs, why IkappaBalpha can be degraded quickly in the free state but remain extremely stable in the bound state, and how signal activation and repression can be tuned by IkappaB folding dynamics. This review summarizes results of in vitro and in vivo experiments that converge demonstrating the effective interplay between biophysics and cell biology in understanding transcriptional control by the NF-kappaB signaling module.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Laboratorio de Expresion y Plegado de Proteinas, Universidad Nacional de Quilmes, Roque Saenz Pena 352,B1876BXD Bernal, Buenos Aires, Argentina
| | | |
Collapse
|
45
|
Yang CLH, Chik SCC, Li JCB, Cheung BKW, Lau ASY. Identification of the bioactive constituent and its mechanisms of action in mediating the anti-inflammatory effects of black cohosh and related Cimicifuga species on human primary blood macrophages. J Med Chem 2009; 52:6707-15. [PMID: 19835377 DOI: 10.1021/jm9006164] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cimicifuga species have been used as traditional medicinal herbs to treat inflammation and symptoms associated with menopause in Asia, Europe, and North America. However, the underlying mechanism of their anti-inflammatory effects remains to be investigated. With bioactivity guided purification involving the use of partitioning extraction and high performance liquid chromatography, we isolated one of the key bioactive constituents from the rhizome extracts of Cimicifuga racemosa. By NMR spectroscopy, the molecule was identified to be cimiracemate A (1). This compound (140 muM) suppressed the lipopolysaccharide-induced TNF-alpha production in the blood macrophages by 47 +/- 19% and 58 +/- 30% at LPS concentrations of 1 ng/mL and 10 ng/mL, respectively. The anti-inflammatory activity of compound 1 may be due to its modulation of a signaling mitogen activated protein kinase and transcription factor nuclear factor-kappaB activities. Compound 1 was found in other Cimicifuga species. Our data indicate that compound 1 or its chemical analogues may have the potential to be further developed as a new class of therapeutic agent.
Collapse
Affiliation(s)
- Cindy L H Yang
- Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
46
|
Lászlí CF, Wu S. Old target new approach: an alternate NF-kappaB activation pathway via translation inhibition. Mol Cell Biochem 2009; 328:9-16. [PMID: 19224334 PMCID: PMC2740372 DOI: 10.1007/s11010-009-0067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
Abstract
Activation of the transcription factor NF-kappaB is a highly regulated multi-level process. The critical step during activation is the release from its inhibitor IkappaB, which as any other protein is under the direct influence of translation regulation. In this review, we summarize in detail the current understanding of the impact of translational regulation on NF-kappaB activation. We illustrate a newly developed mechanism of eIF2alpha kinase-mediated IkappaB depletion and subsequent NF-kappaB activation. We also show that the classical NF-kappaB activation pathways occur simultaneously with, and are complemented by, translational down regulation of the inhibitor molecule IkappaB, the importance of one or the other being shifted in accordance with the type and magnitude of the stressing agent or stimuli.
Collapse
Affiliation(s)
- Csaba F. Lászlí
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
47
|
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66:1858-67. [PMID: 19387548 PMCID: PMC4385580 DOI: 10.1007/s00018-009-9154-y] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- J. H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - G. Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - J. Slaton
- Urology Service, Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - K. Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
48
|
De-ubiquitylation is the most critical step in the ubiquitin-mediated homeostatic control of the NF-kappaB/IKK basal activity. Mol Cell Biochem 2009; 331:69-80. [PMID: 19421711 DOI: 10.1007/s11010-009-0146-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
The role of ubiquitylation in signal-induced activation of nuclear factor -kappaB (NF-kappaB) has been well established, while its involvement in maintaining NF-kappaB basal activity is less certain. Recent evidences demonstrate that in unstimulated cells, NF-kappaB homeostasis is actually the result of opposing forces: pro-activating activity of the IkappaB Kinase (IKK) and inhibitory activity of the Inhibitor of -kappaB (IkappaB) proteins. It is well known that endogenous de-ubiquitylating mechanisms are less effective on Ub motifs containing UbG76A. Here, we show that overexpression of a ubiquitin (Ub) G76A mutant leads to persistent activation of the IKK/NF-kappaB pathway in the absence of extra-cellular stimuli. In contrast, no effects on NF-kappaB activation were observed upon expression of UbK48R and UbK63R mutants, which are known to impair elongation of Lys(48)- and Lys(63)-linked poly-ubiquitin chains, respectively. Overall, these findings indicate that under basal conditions, the rate of de-ubiquitylation, rather than that of substrate ubiquitylation, is critical for the maintenance of appropriate levels of IKK/NF-kappaB activity.
Collapse
|
49
|
Jang HS, Chung HS, Ko E, Shin JS, Shin MK, Hong MC, Kim Y, Min BI, Bae H. Microarray analysis of gene expression profiles in response to treatment with bee venom in lipopolysaccharide activated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:213-220. [PMID: 18852038 DOI: 10.1016/j.jep.2008.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY The therapeutic application of bee venom (BV) has been used in traditional medicine to treat diseases such as arthritis, rheumatism and pain. Macrophages produce molecules that are known to play roles in inflammatory responses. MATERIAL AND METHODS We performed microarray analysis to evaluate the global gene expression profiles of RAW264.7 macrophage cells treated with BV. In addition, six genes were subjected to real-time PCR to confirm the results of the microarray. The cells were treated with lipopolysaccharide (LPS) or BV plus LPS for 30 min or 1h. RESULTS 124 genes were found to be up-regulated and 158 were found to be down-regulated in cells that were treated with BV plus LPS for 30 min, whereas 211 genes were up-regulated and 129 were down-regulated in cells that were treated with BV plus LPS for 1h when compared with cells that were treated with LPS alone. Furthermore, the results of real-time PCR were similar to those of the microarray. BV inhibited the expression of specific inflammatory genes that were up-regulated by nuclear factor-kappa B in the presence of LPS, including mitogen-activated protein kinase kinase kinase 8 (MAP3K8), TNF, TNF-alpha-induced protein 3 (TNFAIP3), suppressor of cytokine signaling 3 (SOCS3), TNF receptor-associated factor 1 (TRAF1), JUN, and CREB binding protein (CBP). CONCLUSIONS These results demonstrate the potent activity of BV as a modulator of the LPS-mediated nuclear factor-kappaB (NF-kappaB)/MAPK pathway in activated macrophages. In addition, these results can be used to understand other effects of BV treatment.
Collapse
Affiliation(s)
- Hyoung-Seok Jang
- Department of East-West Medicine, Graduate School, Kyung-Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Moulakakis C, Stamme C. Role of clathrin-mediated endocytosis of surfactant protein A by alveolar macrophages in intracellular signaling. Am J Physiol Lung Cell Mol Physiol 2009; 296:L430-41. [PMID: 19136579 DOI: 10.1152/ajplung.90458.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We recently provided evidence that anti-inflammatory macrophage activation, i.e., the inhibition of constitutive and signal-induced NF-kappaB activity by the pulmonary collectin surfactant protein (SP)-A, critically involves a promoted stabilization of IkappaB-alpha, the predominant inhibitor of NF-kappaB, via posttranscriptional mechanisms comprising the activation of atypical (a)PKCzeta. SP-A uptake and degradation by alveolar macrophages (AMphi) occur in a receptor-mediated, clathrin-dependent manner. However, a mutual link between endocytosis of and signaling by SP-A remains elusive. The aim of this study was to investigate whether clathrin-mediated endocytosis (CME) of SP-A by AMphi is a prerequisite for its modulation of the IkappaB-alpha/NF-kappaB pathway. The inhibition of clathrin-coated pit (CCP) formation and clathrin-coated vesicle (CCV) formation/budding abrogates SP-A-mediated IkappaB-alpha stabilization and SP-A-mediated inhibition of LPS-induced NF-kappaB activation in freshly isolated rat AMphi, as determined by Western analysis, fluorescence-activated cell sorting, confocal microscopy, and EMSA. Actin depolymerization and inhibition of CCP formation further abolished SP-A-mediated inhibition of LPS-induced TNF-alpha release, as determined by ELISA. In addition, SP-A-induced atypical PKCzeta activation was abolished by pretreatment of AMphi with CCV inhibitors as determined by in vitro immunocomplex kinase assay. Although CME is classically considered as a means to terminate signaling, our results demonstrate that SP-A uptake via CME by AMphi has to precede the initiation of SP-A signaling.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Clinical Medicine, Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | |
Collapse
|