1
|
Qiao C, Liu C, Ding R, Wang S, He M. Unveiling the Metabolic Trajectory of Pig Feces Across Different Ages and Senescence. Metabolites 2024; 14:558. [PMID: 39452939 PMCID: PMC11509300 DOI: 10.3390/metabo14100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Porcine models are increasingly recognized for their similarities to humans and have been utilized in disease modeling and organ grafting research. While extensive metabolomics studies have been conducted in swine, primarily focusing on conventional cohorts or specific animal models, the composition and functions of fecal metabolites in pigs across different age groups-particularly in the elderly-remain inadequately understood. In this study, an untargeted metabolomics approach was employed to analyze the fecal metabolomes of pigs at three distinct age stages: young (one year), middle-aged (four years), and elderly (eight years). The objective was to elucidate age-associated changes in metabolite composition and functionality under standardized rearing conditions. The untargeted metabolomic analysis revealed a diverse array of age-related metabolites. Notably, L-methionine sulfoxide levels were found to increase with age, whereas cytidine-5-monophosphate levels exhibited a gradual decline throughout the aging process. These metabolites demonstrated alterations across various biological pathways, including energy metabolism, pyrimidine metabolism, lipid metabolism, and amino acid metabolism. Collectively, the identified key metabolites, such as L-methionine sulfoxide and Cholecalciferol, may serve as potential biomarkers of senescence, providing valuable insights into the mechanistic understanding of aging in pigs.
Collapse
Affiliation(s)
- Chuanmin Qiao
- Hainan Provincial Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Chengzhong Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (C.L.); (R.D.); (S.W.)
| | - Ruipei Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (C.L.); (R.D.); (S.W.)
| | - Shumei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (C.L.); (R.D.); (S.W.)
| | - Maozhang He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (C.L.); (R.D.); (S.W.)
| |
Collapse
|
2
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Liu J, Pan S, Wang X, Liu Z, Zhang Y. Role of advanced glycation end products in diabetic vascular injury: molecular mechanisms and therapeutic perspectives. Eur J Med Res 2023; 28:553. [PMID: 38042909 PMCID: PMC10693038 DOI: 10.1186/s40001-023-01431-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND In diabetic metabolic disorders, advanced glycation end products (AGEs) contribute significantly to the development of cardiovascular diseases (CVD). AIMS This comprehensive review aims to elucidate the molecular mechanisms underlying AGE-mediated vascular injury. CONCLUSIONS We discuss the formation and accumulation of AGEs, their interactions with cellular receptors, and the subsequent activation of signaling pathways leading to oxidative stress, inflammation, endothelial dysfunction, smooth muscle cell proliferation, extracellular matrix remodeling, and impaired angiogenesis. Moreover, we explore potential therapeutic strategies targeting AGEs and related pathways for CVD prevention and treatment in diabetic metabolic disorders. Finally, we address current challenges and future directions in the field, emphasizing the importance of understanding the molecular links between AGEs and vascular injury to improve patient outcomes.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
- Affiliated Shaanxi Provincial People's Hospital, Medical Research Institute, Northwestern Polytechnical University, Xi'an, China.
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
| |
Collapse
|
4
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
5
|
Wroński A, Gęgotek A, Skrzydlewska E. Protein adducts with lipid peroxidation products in patients with psoriasis. Redox Biol 2023; 63:102729. [PMID: 37150149 DOI: 10.1016/j.redox.2023.102729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023] Open
Abstract
Psoriasis, one of the most frequent immune-mediated skin diseases, is manifested by numerous psoriatic lessons on the skin caused by excessive proliferation and keratinization of epidermal cells. These disorders of keratinocyte metabolism are caused by a pathological interaction with the cells of the immune system, including lymphocytes, which in psoriasis are also responsible for systemic inflammation. This is accompanied by oxidative stress, which promotes the formation of lipid peroxidation products, including reactive aldehydes and isoprostanes, which are additional pro-inflammatory signaling molecules. Therefore, the presented review is focused on highlighting changes that occur during psoriasis development at the level of lipid peroxidation products, including 4-hydroxynonenal, 4-oxononenal, malondialdehyde, and acrolein, and their influence on protein structures. Furthermore, we will examine inducing agents of cellular functioning, as well as intercellular signaling. These lipid peroxidation products can form adducts with a variety of proteins with different functions in the body, including proteins within skin cells and cells of the immune system. This is especially true in autoimmune diseases such as psoriasis. For example, these changes concern proteins involved in maintaining redox homeostasis or pro-inflammatory signaling. Therefore, the formation of such adducts should attract attention, especially during the design of preventive cosmetics or anti-psoriasis therapies.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center "DERMAL" NZOZ in Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland.
| | | |
Collapse
|
6
|
Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem 2023; 404:134541. [DOI: 10.1016/j.foodchem.2022.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
7
|
Van den Eynde MDG, Houben AJHM, Scheijen JLJM, Linkens AMA, Niessen PM, Simons N, Hanssen NMJ, Kusters YHAM, Eussen SJMP, Miyata T, Stehouwer CDA, Schalkwijk CG. Pyridoxamine reduces methylglyoxal and markers of glycation and endothelial dysfunction, but does not improve insulin sensitivity or vascular function in abdominally obese individuals: A randomized double-blind placebo-controlled trial. Diabetes Obes Metab 2023; 25:1280-1291. [PMID: 36655410 DOI: 10.1111/dom.14977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
AIM To investigate the effects of pyridoxamine (PM), a B6 vitamer and dicarbonyl scavenger, on glycation and a large panel of metabolic and vascular measurements in a randomized double-blind placebo-controlled trial in abdominally obese individuals. MATERIALS AND METHODS Individuals (54% female; mean age 50 years; mean body mass index 32 kg/m2 ) were randomized to an 8-week intervention with either placebo (n = 36), 25 mg PM (n = 36) or 200 mg PM (n = 36). We assessed insulin sensitivity, β-cell function, insulin-mediated microvascular recruitment, skin microvascular function, flow-mediated dilation, and plasma inflammation and endothelial function markers. PM metabolites, dicarbonyls and advanced glycation endproducts (AGEs) were measured using ultra-performance liquid chromatography tandem mass spectrometry. Treatment effects were evaluated by one-way ANCOVA. RESULTS In the high PM dose group, we found a reduction of plasma methylglyoxal (MGO) and protein-bound Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), as compared to placebo. We found a reduction of the endothelial dysfunction marker soluble vascular cell adhesion molecule-1 (sVCAM-1) in the low and high PM dose group and of soluble intercellular adhesion molecule-1 (sICAM-1) in the high PM dose, as compared to placebo. We found no treatment effects on insulin sensitivity, vascular function or other functional outcome measurements. CONCLUSIONS This study shows that PM is metabolically active and reduces MGO, AGEs, sVCAM-1 and sICAM-1, but does not affect insulin sensitivity and vascular function in abdominally obese individuals. The reduction in adhesion markers is promising because these are important in the pathogenesis of endothelial damage and atherosclerosis.
Collapse
Affiliation(s)
- Mathias D G Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Armand M A Linkens
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Petra M Niessen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Nynke Simons
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Department of Internal and Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Yvo H A M Kusters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Simone J M P Eussen
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht, The Netherlands
| | - Toshio Miyata
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Wageningen, The Netherlands
| |
Collapse
|
8
|
Endo T, Imagama S, Kato S, Kaito T, Sakai H, Ikegawa S, Kawaguchi Y, Kanayama M, Hisada Y, Koike Y, Ando K, Kobayashi K, Oda I, Okada K, Takagi R, Iwasaki N, Takahata M. Association Between Vitamin A Intake and Disease Severity in Early-Onset Heterotopic Ossification of the Posterior Longitudinal Ligament of the Spine. Global Spine J 2022; 12:1770-1780. [PMID: 33487053 PMCID: PMC9609524 DOI: 10.1177/2192568221989300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY DESIGN A sex- and age-matched case-control study and a cross-sectional study. OBJECTIVE In our previous study, patients with early-onset (<50 years of age) ossification of the posterior longitudinal ligament (OPLL) had distinct features such as morbid obesity, a high prevalence of lifestyle-related diseases, and diffuse ossified lesions mainly affecting the thoracic spine. Our goals were to determine whether early-onset OPLL patients have unbalanced dietary habits and to identify nutritional factors associated with OPLL exacerbation. METHODS In Study 1, the simple brief-type self-administered diet history questionnaire (BDHQ) was used to compare nutrient intake levels of early-onset OPLL patients (n = 13) with those of sex- and age-matched non-OPLL controls (n = 39) or with those of common OPLL (onset age ≥ 50 years, n = 62). In Study 2, serological validation was conducted for thoracic OPLL patients (n = 77) and non-OPLL controls (n = 101) in a nationwide multicenter study in Japan. RESULTS The BDHQ showed that the early-onset OPLL patients had significantly lower intakes of vitamins A and B6 than non-OPLL controls. These results were validated by lower serum vitamins A and B6 levels in the early-onset thoracic OPLL patients. The severity of OPLL negatively correlated with serum vitamin A levels in male early-onset OPLL patients. The multiple regression analysis revealed that the severity of thoracic OPLL had an association with onset age and serum vitamin A level. CONCLUSIONS Vitamin A deficiency resulting from unbalanced dietary habits is associated with exacerbation of male early-onset OPLL.
Collapse
Affiliation(s)
- Tsutomu Endo
- Department of Orthopedic Surgery,
Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya
University Graduate School of Medicine, Showa Ward, Nagoya, Aichi, Japan
| | - Satoshi Kato
- Department of Orthopedic Surgery,
Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa,
Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka
University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroaki Sakai
- Department of Orthopedic Surgery, Japan
Organization of Occupational Health and Safety, Spinal Injuries Center, Iizuka,
Fukuoka, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases,
Center for Integrative Medical Sciences, RIKEN, Minato-ku, Tokyo, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopedic Surgery,
Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masahiro Kanayama
- Department of Orthopedics, Hakodate
Central General Hospital, Hakodate, Hokkaido, Japan
| | - Yuichiro Hisada
- Department of Orthopedic Surgery,
Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Yoshinao Koike
- Department of Orthopedic Surgery,
Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Kei Ando
- Department of Orthopedic Surgery, Nagoya
University Graduate School of Medicine, Showa Ward, Nagoya, Aichi, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya
University Graduate School of Medicine, Showa Ward, Nagoya, Aichi, Japan
| | - Itaru Oda
- Department of Spine Surgery, Hokkaido
Orthopedic Memorial Hospital, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Kazufumi Okada
- Clinical Research and Medical
Innovation Center, Hokkaido University Hospital, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Ryo Takagi
- Clinical Research and Medical
Innovation Center, Hokkaido University Hospital, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery,
Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido,
Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery,
Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido,
Japan
| |
Collapse
|
9
|
Lipophilized apigenin derivatives produced during the frying process as novel antioxidants. Food Chem 2022; 379:132178. [DOI: 10.1016/j.foodchem.2022.132178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
|
10
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
11
|
Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021; 13:nu13103467. [PMID: 34684468 PMCID: PMC8539226 DOI: 10.3390/nu13103467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
The increased incidence of obesity, diabetes mellitus, aging, and associated comorbidities indicates the interplay between genetic and environmental influences. Several dietary components have been identified to play a role in the pathogenesis of the so-called "modern diseases", and their complications including advanced glycation end products (AGEs), which are generated during the food preparation and processing. Diet-derived advanced glycation end products (dAGEs) can be absorbed in the gastrointestinal system and contribute to the total body AGEs' homeostasis, partially excreted in the urine, while a significant amount accumulates to various tissues. Various in vitro, in vivo, and clinical studies support that dAGEs play an important role in health and disease, in a similar way to those endogenously formed. Animal studies using wild type, as well as experimental, animal models have shown that dAGEs contribute significantly to the pathogenesis of various diseases and their complications, and are involved in the changes related to the aging process. In addition, they support that dAGEs' restriction reduces insulin resistance, oxidative stress, and inflammation; restores immune alterations; and prevents or delays the progression of aging, obesity, diabetes mellitus, and their complications. These data can be extrapolated in humans and strongly support that dAGEs' restriction should be considered as an alternative therapeutic intervention.
Collapse
|
12
|
Toriumi K, Berto S, Koike S, Usui N, Dan T, Suzuki K, Miyashita M, Horiuchi Y, Yoshikawa A, Asakura M, Nagahama K, Lin HC, Sugaya Y, Watanabe T, Kano M, Ogasawara Y, Miyata T, Itokawa M, Konopka G, Arai M. Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biol 2021; 45:102057. [PMID: 34198071 PMCID: PMC8253914 DOI: 10.1016/j.redox.2021.102057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(−)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(−) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(−) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(−) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC. A combination of Glo1 KO and VB6 deficiency induces MG accumulation in the brain. Glo1 KO/VB6(−) mice exhibit schizophrenia-like behavioral deficits. Gene expression related to mitochondria is impaired in the PFC of the Glo1 KO/VB6(−). Mitochondria in the PFC of the Glo1 KO/VB6(−) mice show respiratory dysfunction. Oxidative stress is enhanced in the PFC of the Glo1 KO/VB6(−).
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Mai Asakura
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hsiao-Chun Lin
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
13
|
Van den Eynde MDG, Scheijen JLJM, Stehouwer CDA, Miyata T, Schalkwijk CG. Quantification of the B6 vitamers in human plasma and urine in a study with pyridoxamine as an oral supplement; pyridoxamine as an alternative for pyridoxine. Clin Nutr 2021; 40:4624-4632. [PMID: 34229268 DOI: 10.1016/j.clnu.2021.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Vitamin B6 is involved in a large spectrum of physiological processes and comprises of the vitamers pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and their phosphorylated derivatives including the biological active pyridoxal 5'-phosphate (PLP). While PN toxicity is known to complicate several treatments, PM has shown promise in relation to the treatment of metabolic and age-related diseases by blocking oxidative degradation and scavenging toxic dicarbonyl compounds and reactive oxygen species. We aimed to assess the metabolization of oral PM supplements in a single and three daily dose. MATERIALS AND METHODS We optimized and validated a method for the quantification of the B6 vitamers in plasma and urine using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Five healthy volunteers were recruited to study PM metabolization after a single oral dose of 200 mg PM or a three daily dose of 67 mg PM. A third protocol was implemented as control for dietary intake. Venous blood samples, 24 h urine and fasted second void urine samples were collected. RESULTS After a single oral dose of 200 mg PM, plasma PM increased in the first 3 h to a maximum of 2324 ± 266 nmol/L. While plasma PM levels returned to baseline after ~10 h of PM intake, PLP increased to a maximum of 2787 ± 329 nmol/L and reached a plateau. We found a small increase of PN to a maximum of 13.5 ± 2.1 nmol/L; it was nearly undetectable after ~12 h. With a three daily dose of 67 mg PM we observed an increase and decline of plasma PM, PL, and PN concentrations after each PM intake. PLP showed a similar increase as in the single dose protocol and accumulated over time. CONCLUSION In this study we showed high plasma levels of PM after oral PM supplementation. We found steadily increasing levels of the biologically active PLP, with minimal formation of PN. The B6 vitamer PM is an interesting supplement as an inhibitor of harmful processes in metabolic diseases and for the treatment of vitamin B6 deficiency. CLINICAL TRIAL REGISTRY The study was approved by the Medical Ethics Committee of Maastricht University (NL) and was registered at ClinicalTrials.gov as NCT02954588.
Collapse
Affiliation(s)
- Mathias D G Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Toshio Miyata
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands.
| |
Collapse
|
14
|
Zhang X, Ni L, Zhu Y, Liu N, Fan D, Wang M, Zhao Y. Quercetin Inhibited the Formation of Lipid Oxidation Products in Thermally Treated Soybean Oil by Trapping Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3479-3488. [PMID: 33703898 DOI: 10.1021/acs.jafc.1c00046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this research, we studied the inhibitory mechanism of quercetin, one popular phenolic compound, against aldehyde formation in thermally treated soybean oil. It was found that quercetin reduced unsaturated aldehyde formation significantly, with the inhibitory effect decreased with the extension of the heating time. Meanwhile, quercetin had minimum effects on the fatty acid profile compared to untreated samples. Some new phenolic derivatives were formed in thermally treated soybean oil with quercetin, further analyzed by liquid chromatography-tandem mass spectrometry, and compared to newly synthesized derivatives (characterized by mass spectrometry and nuclear magnetic resonance spectroscopy). On the basis of their chemical structures, we proposed that quercetin reacted with 13-oxo-octadecadienoic acid, 10-oxo-hexadecenoic acid, and 10-oxo-octadecenoic acid formed from peroxidation of linoleic acid, palmitoleic acid, and oleic acid, respectively, to inhibit aldehyde formation. In addition, newly formed quercetin-3-O-hexanoate, quercetin-3-O-heptanoate, and quercetin-3-O-nonanoate showed weaker 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation scavenging activity and weaker antioxidant activity in soybean oil, which explained the decreased inhibitory activity of quercetin against aldehyde formation during heat treatment. More interesting, quercetin-3-O-hexanoate showed improved cellular antioxidant activity compared to the parent quercetin. Overall, quercetin inhibited the formation of lipid oxidation products in thermally treated soybean oil by reacting with early intermediates in the lipid oxidation reaction, and quercetin derivatives formed in the process could be with enhanced cellular antioxidant activity. Our results provide novel insight into the inhibitory mechanism of quercetin against the formation of lipid oxidation products.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Yamin Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, People's Republic of China
| |
Collapse
|
15
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
16
|
Influence of Dietary Metformin on the Growth Performance and Plasma Concentrations of Amino Acids and Advanced Glycation End Products in Two Types of Chickens. J Poult Sci 2021; 58:110-118. [PMID: 33927565 PMCID: PMC8076621 DOI: 10.2141/jpsa.0200030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycation is a non-enzymatic reaction inducing the bonding of glucose to amino acids and proteins. Glycated amino acids are not useful for protein synthesis, suggesting that glycation reduces the utilization of amino acids. Metformin (MF) is well known as a therapeutic drug for type II diabetes that inhibits glycation. It is possible that treatment with MF raises the utilization of amino acids by the inhibition of glycation, thereby improving the growth performance of chickens. In the present study, therefore, we investigated the influence of dietary MF on the growth performance, and plasma concentrations of free amino acids and Nε-(Carboxymethyl)lysine (CML), which is an advanced glycation end product, in layer (Experiment 1) and broiler (Experiment 2) chickens. From 7 d of age, chicks were allowed free access to one of the experimental diets containing MF at 3 supplementation levels (0, 150, and 300 mg/kg diet) for 14 days. Body weight and feed intake were measured every week. At the end of the experiments, blood and breast muscle (M. pectoralis major) were collected for further analysis. Dietary MF did not affect weight gain, feed intake, or feed efficiency in both layer and broiler chickens. Dietary MF at the level of 150 mg/kg diet increased breast muscle weight in both layer and broiler chickens. Dietary MF increased plasma concentrations of branched chain amino acids and decreased concentrations of CML in layer chickens, although it did not affect plasma concentrations of glucose. The present study suggested that dietary MF might have the potency to increase breast muscle weight of layer chickens with an increment in plasma concentrations of branched-chain amino acids.
Collapse
|
17
|
Zhu Z, Fang R, Yang J, Khan IA, Huang J, Huang M. Air frying combined with grape seed extract inhibits N ε-carboxymethyllysine and N ε-carboxyethyllysine by controlling oxidation and glycosylation. Poult Sci 2020; 100:1308-1318. [PMID: 33518088 PMCID: PMC7858175 DOI: 10.1016/j.psj.2020.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Advanced glycation end products (AGE), compounds formed in meat at the advanced stage of Maillard reaction, are easily exposed to thermal processing. Improving cooking condition and adding antioxidants are 2 common ways for AGE reduction. The present work compared the inhibition of grape seed extract (GSE) on levels of free and protein-bound Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in chicken breast under deep-frying and air-frying conditions. Efficiency of 5 concentrations of GSE (0.0, 0.2, 0.5, 0.8, and 1.0 g/kg) in retarding oxidation, glyoxal (GO), methylglyoxal (MGO), lysine (Lys), Maillard reaction degree (A294, A420), and Shiff's base were tested. Results showed that 0.5 g/kg GSE before heating significantly (P < 0.05) reduced AGE in fried breast chicken, whereas excessive supplementation of GSE (0.8 and 1 g/kg) was reverse. Air frying was found significantly (P < 0.05) better than deep frying to reduce the precursor substances (GO, MGO, and Lys) of AGE. In conclusion, GSE-derived polyphenols exhibited different inhibitory effects on oxidation and glycosylation at different concentrations. We found that 0.5 g/kg of GSE combined with air frying was the best recommendation for inhibiting CML and CEL.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Rui Fang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Jing Yang
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Iftikhar Ali Khan
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Jichao Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China; Nanjing Huang Jiaoshou Food Science and Technology Co., Ltd., National R & D Center For Poultry Processing Technology, Nanjing 210095, China.
| |
Collapse
|
18
|
Pramanik S, Chowdhury S, Ganguly U, Banerjee A, Bhattacharya B, Mondal LK. Visual contrast sensitivity could be an early marker of diabetic retinopathy. Heliyon 2020; 6:e05336. [PMID: 33145449 PMCID: PMC7591734 DOI: 10.1016/j.heliyon.2020.e05336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to explore the early predictive marker of diabetic retinopathy (DR) and to elucidate the associated demographic, metabolic, and ocular factors. We enrolled 43 type 2 diabetic subjects with mild non-proliferative retinopathy (MNPDR), 30 diabetic subjects with no retinopathy (DNR), and 35 healthy controls (HC). The study groups showed no significant alteration in central macular thickness (CMT) and visual acuity (VA). The contrast sensitivity (CS) score was found to be significantly lower among DNR and MNPDR subjects compared to HCs (p < 0.0001). Between MNPDR and DNR subjects, the CS score was significantly lower in the former (p = 0.0036). CS score discriminated DNR subjects from HC, with 74% accuracy for the optimal threshold 0.71. The associated area under the ROC curve (AUC) is 0.82 (p < 0.0001) while the discrimination rule has 66% sensitivity and 80% specificity. The CS score also discriminated MNPDR subjects from DNR with 64% accuracy for the optimal threshold 0.53. The associated AUC is 0.65 (p < 0.023) and the rule has 86% sensitivity and 33% specificity. According to best subset regression analysis, not only glycaemic parameters but also lipid parameters [low-density lipoprotein cholesterol (LDL-C) (p = 0.045) and triglycerides (TG) (p = 0.0005)] were found to be significant predictors of CS. CMT (p = 0.058) was another marginally significant predictor of CS. CS may be used as an early predictive marker for DR. So, not only hyperglycemia, but also hyperlipidemia seems to significantly affect retinal CS function in diabetes.
Collapse
Affiliation(s)
- Subhasish Pramanik
- Institute of Post Graduate Medical Education and Research (IPGMER), 244 Acharya Jagadish Chandra Bose Road, Kolkata, 700020, India
| | - Subhankar Chowdhury
- Institute of Post Graduate Medical Education and Research (IPGMER), 244 Acharya Jagadish Chandra Bose Road, Kolkata, 700020, India
| | - Upasana Ganguly
- Institute of Post Graduate Medical Education and Research (IPGMER), 244 Acharya Jagadish Chandra Bose Road, Kolkata, 700020, India
| | - Anindita Banerjee
- Institute of Post Graduate Medical Education and Research (IPGMER), 244 Acharya Jagadish Chandra Bose Road, Kolkata, 700020, India.,ICARE Institute of Medical Sciences and Research, Haldia, 721645, India
| | - Basudev Bhattacharya
- Institute of Post Graduate Medical Education and Research (IPGMER), 244 Acharya Jagadish Chandra Bose Road, Kolkata, 700020, India
| | - Lakshmi Kanta Mondal
- Regional Institute of Ophthalmology (RIO), Medical College and Hospital, Kolkata, 700073, India
| |
Collapse
|
19
|
Li J, Jeong SY, Xiong B, Tseng A, Mahon AB, Isaacman S, Gordeuk VR, Cho J. Repurposing pyridoxamine for therapeutic intervention of intravascular cell-cell interactions in mouse models of sickle cell disease. Haematologica 2020; 105:2407-2419. [PMID: 33054081 PMCID: PMC7556679 DOI: 10.3324/haematol.2019.226720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Adherent neutrophils on vascular endothelium positively contribute to cell-cell aggregation and vaso-occlusion in sickle cell disease. In the present study, we demonstrated that pyridoxamine, a derivative of vitamin B6, might be a therapeutic agent to alleviate intravascular cell-cell aggregation in sickle cell disease. Using real-time intravital microscopy, we found that one oral administration of pyridoxamine dose-dependently increased the rolling influx of neutrophils and reduced neutrophil adhesion to endothelial cells in cremaster microvessels of sickle cell disease mice challenged with hypoxia-reoxygenation. Short-term treatment also mitigated neutrophil-endothelial cell and neutrophil-platelet interactions in the microvessels and improved the survival of sickle cell disease mice challenged with tumor necrosis factor-α. The inhibitory effects of pyridoxamine on intravascular cell-cell interactions were potentiated by co-treatment with hydroxyurea. We observed that long-term (5.5 months) oral treatment with pyridoxamine significantly diminished the adhesive function of neutrophils and platelets and down-regulated the expression of E-selectin and intercellular adhesion molecule-1 on the vascular endothelium in tumor necrosis factor-α-challenged sickle cell disease mice. Ex vivo studies revealed that the surface amount of αMβ2 integrin was significantly decreased in stimulated neutrophils isolated from sickle cell disease mice treated with pyridoxamine-containing water. Studies using platelets and neutrophils from sickle cell disease mice and patients suggested that treatment with pyridoxamine reduced the activation state of platelets and neutrophils. These results suggest that pyridoxamine may be a novel therapeutic and a supplement to hydroxyurea to prevent and treat vaco-occlusion events in sickle cell disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Si-Yeon Jeong
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Bei Xiong
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Alan Tseng
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | | - Victor R. Gordeuk
- Section of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
- Comprehensive Sickle Cell Center, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
21
|
Pereira ENGDS, Silvares RR, Flores EEI, Rodrigues KL, Daliry A. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation 2020; 27:e12603. [PMID: 31876010 DOI: 10.1111/micc.12603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We investigated the protective effects of pyridoxamine against metabolic and microcirculatory complications in nonalcoholic fatty liver disease. METHODS Nonalcoholic fatty liver disease was established by a high-fat diet administration over 28 weeks. Pyridoxamine was administered between weeks 20 and 28. The recruitment of leukocytes and the number of vitamin A-positive hepatic stellate cells were examined by in vivo microscopy. Laser speckle contrast imaging was used to evaluate microcirculatory hepatic perfusion. Thiobarbituric acid reactive substances measurement and RT-PCR were used for oxidative stress and inflammatory parameters. advanced glycation end products were evaluated by fluorescence spectroscopy. RESULTS The increase in body, liver, and fat weights, together with steatosis and impairment in glucose metabolism observed in the nonalcoholic fatty liver disease group were attenuated by pyridoxamine treatment. Regarding the hepatic microcirculatory parameters, rats with high-fat diet-induced nonalcoholic fatty liver disease showed increased rolling and adhesion of leukocytes, increased hepatic stellate cells activation, and decreased tissue perfusion, which were reverted by pyridoxamine. Pyridoxamine protected against the increased hepatic lipid peroxidation observed in the nonalcoholic fatty liver disease group. Pyridoxamine treatment was associated with increased levels of tumor necrosis factor alpha (TNF-α) mRNA transcripts in the liver. CONCLUSION Pyridoxamine modulates oxidative stress, advanced glycation end products, TNF-α transcripts levels, and metabolic disturbances, being a potential treatment for nonalcoholic fatty liver disease-associated microcirculatory and metabolic complications.
Collapse
Affiliation(s)
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Moretti R, Peinkhofer C. B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia? Int J Mol Sci 2019; 20:5797. [PMID: 31752183 PMCID: PMC6888477 DOI: 10.3390/ijms20225797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have been written on vitamin supplementation, fatty acid, and dementia, but results are still under debate, and no definite conclusion has yet been drawn. Nevertheless, a significant amount of lab evidence confirms that vitamins of the B group are tightly related to gene control for endothelium protection, act as antioxidants, play a co-enzymatic role in the most critical biochemical reactions inside the brain, and cooperate with many other elements, such as choline, for the synthesis of polyunsaturated phosphatidylcholine, through S-adenosyl-methionine (SAM) methyl donation. B-vitamins have anti-inflammatory properties and act in protective roles against neurodegenerative mechanisms, for example, through modulation of the glutamate currents and a reduction of the calcium currents. In addition, they also have extraordinary antioxidant properties. However, laboratory data are far from clinical practice. Many studies have tried to apply these results in everyday clinical activity, but results have been discouraging and far from a possible resolution of the associated mysteries, like those represented by Alzheimer's disease (AD) or small vessel disease dementia. Above all, two significant problems emerge from the research: No consensus exists on general diagnostic criteria-MCI or AD? Which diagnostic criteria should be applied for small vessel disease-related dementia? In addition, no general schema exists for determining a possible correct time of implementation to have effective results. Here we present an up-to-date review of the literature on such topics, shedding some light on the possible interaction of vitamins and phosphatidylcholine, and their role in brain metabolism and catabolism. Further studies should take into account all of these questions, with well-designed and world-homogeneous trials.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
23
|
Dayem SMAE, Battah AA, Bohy AEME, Ahmed S, Hamed M, Fattah SNAE. Nitric Oxide Gene Polymorphism is a Risk Factor for Diabetic Nephropathy and Atherosclerosis in Type 1 Diabetic Patients. Open Access Maced J Med Sci 2019; 7:3132-3138. [PMID: 31949504 PMCID: PMC6953926 DOI: 10.3889/oamjms.2019.831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 11/24/2022] Open
Abstract
AIM: To assess the risk factor for diabetic atherosclerosis nephropathy and diabetic nephropathy in type 1 diabetic patients. PATIENTS AND METHODS: Thirty healthy volunteers age and sex-matched and Sixty-five type 1 diabetic patient were in rolled in the study. The mean age of patients was 17.99 ± 2.59 years, mean age of onset of diabetes was 7.00 ± 3.28 years, mean duration of diabetes was 10.91 ± 3.54 years. Glycosylated sex-matched (HbA1c) was assessed in blood samples, serum lipid profile was determined, and serum level of oxidised low-density lipoprotein (OxLDL), and nitric oxide was evaluated by enzyme-linked immunosorbent assay (ELISA) technique. Nitric oxide 894G > T genotype was analysed by (PCR-RFLP) method and confirmed by Sequencing. Assessment of the albumin / creatinine ratio was done in urine samples. Renal Doppler and Carotid intima-media thickness (cIMT) via ultrasound was also performed. RESULTS: OxLDL, lipid profile, albumin/creatinine ratio, cIMT and resistivity index were significantly higher in diabetic patients while nitric oxide was significantly lower. Nitric oxide genotype shows no significant difference between diabetic’s patients and controls. Diabetic patients with homozygous NO had a significantly lower serum level of Nitric oxide, a significantly higher OxLDL, albumin / creatinine ratio and lipid profile. CONCLUSION: diabetic patients are liable for the occurrence of early diabetic nephropathy and atherosclerosis as a result of the presence of low level of nitric oxide. Nitric oxide gene polymorphism 894G > T in diabetic patients is a risk factor for diabetic nephropathy and atherosclerosis.
Collapse
Affiliation(s)
| | - Ahmed A Battah
- Critical Care Department, Cairo University, Cairo, Egypt
| | | | - Solaf Ahmed
- Clinical Pathology Department, National Research Centre, Cairo, Egypt
| | - Mona Hamed
- Clinical Pathology Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
24
|
Shtyrlin YG, Petukhov AS, Strelnik AD, Shtyrlin NV, Iksanova AG, Pugachev MV, Pavelyev RS, Dzyurkevich MS, Garipov MR, Balakin KV. Chemistry of pyridoxine in drug design. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2504-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
26
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
27
|
Lee SH, Matsunaga A, Oe T. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS One 2018; 13:e0196050. [PMID: 29672562 PMCID: PMC5908094 DOI: 10.1371/journal.pone.0196050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 02/02/2023] Open
Abstract
Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| | - Atsushi Matsunaga
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| |
Collapse
|
28
|
Lewicki S, Leśniak M, Bertrandt J, Kalicki B, Kubiak JZ, Lewicka A. The long-term effect of a protein-deficient-diet enriched with vitamin B6 on the blood parameters in unexercised and exercised rats. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1439900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Jerzy Bertrandt
- Department of Hygiene and Physiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Bolesław Kalicki
- Paediatric, Nephrology and Allergology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Faculté de Medecine, CNRS UMR 6290, IGDR, Université Rennes, Rennes, France
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
29
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
30
|
Steiner CA, Higgins PDR. Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:347-385. [DOI: 10.1007/978-3-319-90578-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Kumar V, Bhatt PC, Rahman M, Al-Abbasi FA, Anwar F, Verma A. Umbelliferon-α-d-glucopyranosyl-(2 I→1 II)-α-Dglucopyranoside ameliorates Diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed Pharmacother 2017; 94:834-842. [PMID: 28802237 DOI: 10.1016/j.biopha.2017.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
It is well documented that anomalous production of inflammatory proteins linked with most of the toxic expression and genesis of diverse chronic disease including cancer. Diethylnitrosamine (DEN) a well-known hepatotoxin and hepatocarcinogen, can induce oxidative stress and inflammatory reaction in it. Umbelliferone, secondary metabolites, is present in different plants and widely consumed by humans as medicine and food supplements. The aim of the current study was to scrutinize the chemoprotective potential of umbelliferon-α-d-glucopyranosyl-(2I→1II)-α-d-glucopyranoside (UFD) against DEN-induced hepatocellular carcinoma (HCC) in experimental rats. Single intraperitoneal injection of DEN (200mg/kg) was used for induction of HCC in rats and rats were grouped and orally treated with UFD (5, 10 and 20mg/kg) dose for 22 weeks. Parameters under investigation included hepatic, non-hepatic enzymes, oxidative stress, pro-inflammatory cytokines, COX-2 and NF-κB level along with histopathological examination in HCC rats. UFD exerted protective effect via reduction of oxidative stress, liver and non-liver parameters in a dose-dependent manner. It also reduced the expression of TNF-α, IL-1β, IL-6 and COX-2 in diseased rats. Our result revealed the essential repression of the inflammation cascade through modulation of nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India.
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
32
|
Mori Y, Kakuta T, Miyakogawa T, Takekoshi S, Yuzawa H, Kobayashi H, Kawakami A, Miyata T, Fukagawa M. Effect of Scavenging Circulating Reactive Carbonyls by Oral Pyridoxamine in Uremic Rats on Peritoneal Dialysis. Ther Apher Dial 2016; 20:645-654. [PMID: 27620210 DOI: 10.1111/1744-9987.12446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Pyridoxamine, a reactive carbonyl (RCO) scavenger, can ameliorate peritoneal deterioration in uremic peritoneal dialysis (PD) rats when given via dialysate. We examined the effects of scavenging circulating RCOs by oral pyridoxamine. Rats underwent nephrectomy and 3 weeks of twice daily PD either alone or with once daily oral pyridoxamine. PD solution was supplemented with methylglyoxal, a major glucose-derived RCO, to quench intraperitoneal pyridoxamine. Oral pyridoxamine achieved comparable blood and dialysate pyridoxamine concentrations, suppressed pentosidine accumulation in the blood but not in the mesenterium or dialysate, and reduced the increases in small solute transport and mesenteric vessel densities, with no effects on submesothelial matrix layer thickening or serum creatinine. Thus, reducing circulating RCOs by giving oral pyridoxamine with PD provides limited peritoneal protection. However, orally given pyridoxamine efficiently reaches the peritoneal cavity and would eliminate intraperitoneal RCOs. Oral pyridoxamine is more clinically favorable and may be as protective as intraperitoneal administration.
Collapse
Affiliation(s)
- Yoshitaka Mori
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takatoshi Kakuta
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Department of Nephrology, Endocrinology and Metabolism, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan
| | - Takayo Miyakogawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Susumu Takekoshi
- Division of Basic Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiroko Yuzawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Kawakami
- Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masafumi Fukagawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
33
|
Targeting advanced glycation with pharmaceutical agents: where are we now? Glycoconj J 2016; 33:653-70. [PMID: 27392438 DOI: 10.1007/s10719-016-9691-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.
Collapse
|
34
|
Momeni A, Chaleshtori MH, Saadatmand S, Kheiri S. Correlation of Endothelial Nitric Oxide Synthase Gene Polymorphism (GG, TT and GT Genotype) with Proteinuria and Retinopathy in Type 2 Diabetic Patients. J Clin Diagn Res 2016; 10:OC32-5. [PMID: 27042499 DOI: 10.7860/jcdr/2016/14975.7291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nephropathy is the most important leading cause of end stage renal failure in type 2 diabetic patients, so numerous studies were done to diagnose and evaluate risk factors of diabetic nephropathy (DN). Some gene polymorphisms may be associated with progression or regression of DN, so the aim of this study was to compare prevalence of eNOS gene polymorphism in diabetic patients with controls and its association with diabetic nephropathy. MATERIALS AND METHODS In a cross-sectional study, 94 type 2 diabetic patients and 94 normal participants were enrolled. Patients without retinopathy were excluded from this study. For all of the patients, fasting blood sugar (FBS), 2 hours post-prandial (BS), Blood Urea Nitrogen (BUN), Creatinine (Cr), 24 hours urine protein were measured in the case group. Endothelial nitric oxide synthetase gene polymorphism was evaluated in the case and control groups. RESULTS There was no significant difference based on age and sex between patients in case and control groups. GG genotype of eNOS was less common in the patient group compared to control group. There was no difference between prevalence of TT, GT or GG genotype based on age and sex. There was no correlation between diabetic retinopathy or proteinuria and genotypes of eNOs. CONCLUSION The study showed that in type 2 diabetic patients, NOS gene polymorphism was more common compared to normal population; however, there is no correlation between this gene polymorphism and proteinuria or retinopathy in these patients.
Collapse
Affiliation(s)
- Ali Momeni
- Associate Professor, Department of Nephrology, Nephrology Division of Internal medicine Department, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Morteza Hashemzadeh Chaleshtori
- Professor, Department of Human Genetics, Cellular and Molecular research center, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Saeed Saadatmand
- Internist, Department of Internal Medicine Department, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Soleiman Kheiri
- Associate Professor, Department of Biostatics, Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences , Iran
| |
Collapse
|
35
|
Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 2015; 14:693-720. [PMID: 26338155 DOI: 10.1038/nrd4592] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis, which leads to progressive loss of tissue function and eventual organ failure, has been estimated to contribute to ~45% of deaths in the developed world, and so new therapeutics to modulate fibrosis are urgently needed. Major advances in our understanding of the mechanisms underlying pathological fibrosis are supporting the search for such therapeutics, and the recent approval of two anti-fibrotic drugs for idiopathic pulmonary fibrosis has demonstrated the tractability of this area for drug discovery. This Review examines the pharmacology and structural information for small molecules being evaluated for lung, liver, kidney and skin fibrosis. In particular, we discuss the insights gained from the use of these pharmacological tools, and how these entities can inform, and probe, emerging insights into disease mechanisms, including the potential for future drug combinations.
Collapse
|
36
|
Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. PHARMACEUTICAL BIOLOGY 2015; 54:198-206. [PMID: 25853955 DOI: 10.3109/13880209.2015.1028080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT During diabetes mellitus, non-enzymatic reaction between amino groups of protein and carbonyl of reducing sugars (Millard reaction) is responsible for the major diabetic complications. Various efforts have been made to influence the process of protein glycation. OBJECTIVES This review article provides an extensive survey of various studies published in scientific literature to understand the process of protein glycation and its measurement. Moreover, evaluation and identification of potential inhibitors (antiglycation agents) of protein glycation from natural and synthetic sources and their mechanism of action in vitro and in vivo are also addressed. METHOD In this review article, the mechanism involved in the formation of advanced glycation end products (AGEs) is discussed, while in second and third parts, promising antiglycation agents of natural and synthetic sources have been reviewed, respectively. Finally, in vivo studies have been addressed. This review is mainly compiled from important databases such as Science, Direct, Chemical Abstracts, SciFinder, and PubMed. RESULTS During the last two decades, various attempts have been made to inhibit the process of protein glycation. New potent inhibitors of protein glycation belonging to different classes such as flavonoids, alkaloids, terpenes, benzenediol Schiff bases, substituted indol, and thio compounds have been identified. CONCLUSION Antiglycation therapy will be an effective strategy in future to prevent the formation of AGEs for the management of late diabetic complications Current review article highlighted various compounds of natural and synthetic origins identified previously to inhibit the protein glycation and formation of AGEs in vitro and in vivo.
Collapse
Affiliation(s)
- Ghulam Abbas
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Ahmed Sulaiman Al-Harrasi
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Hidayat Hussain
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Javid Hussain
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
| | - Rehana Rashid
- c Department of Chemistry , COMSATS Institute of Information Technology , Abbottabad , Pakistan , and
| | - M Iqbal Choudhary
- d HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| |
Collapse
|
37
|
Gentile G, Mastroluca D, Ruggenenti P, Remuzzi G. Novel effective drugs for diabetic kidney disease? or not? Expert Opin Emerg Drugs 2014; 19:571-601. [PMID: 25376947 DOI: 10.1517/14728214.2014.979151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Diabetes mellitus is increasingly common worldwide and is expected to affect 592 million people by 2035. The kidney is often involved. A key goal in treating diabetes is to reduce the risk of development of kidney disease and, if kidney disease is already present, to delay the progression to end-stage renal disease (ESRD). This represents a social and ethical issue, as a significant proportion of patients reaching ESRD in developing countries do not have access to renal replacement therapy. AREAS COVERED The present review focuses on novel therapeutic approaches for diabetic nephropathy (DN), implemented on the basis of recent insights on its pathophysiology, which might complement the effects of single inhibition of the renin-angiotensin-aldosterone system (RAAS), the cornerstone of renoprotective interventions in diabetes, along with glycemic and blood pressure control. EXPERT OPINION Although a plethora of new treatment options has arisen from experimental studies, the number of novel renoprotective molecules successfully implemented in clinical practice over the last two decades is disappointingly low. Thus, new investigational strategies and diagnostic tools - including the appropriate choice of relevant renal end points and the study of urinary proteome of patients - will be as important as new therapeutic interventions to fight DN. Finally, in spite of huge financial interests in replacing the less expensive ACE inhibitors and angiotensin II receptor blockers with newer drugs, any future therapeutic approach has to be tested on top of - rather than instead of - optimal RAAS blockade.
Collapse
Affiliation(s)
- Giorgio Gentile
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Center for Rare Diseases "Aldo e Cele Daccò" , Villa Camozzi, Via Giambattista Camozzi 3, 24020, Ranica, Bergamo , Italy +39 03545351 ; +39 0354535371 ;
| | | | | | | |
Collapse
|
38
|
Cardoso S, Carvalho C, Marinho R, Simões A, Sena CM, Matafome P, Santos MS, Seiça RM, Moreira PI. Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. J Bioenerg Biomembr 2014; 46:347-355. [PMID: 24831520 DOI: 10.1007/s10863-014-9551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 02/02/2023]
Abstract
Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Voziyan P, Brown KL, Chetyrkin S, Hudson B. Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin Chem Lab Med 2014; 52:39-45. [PMID: 23492568 DOI: 10.1515/cclm-2012-0818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/07/2013] [Indexed: 11/15/2022]
Abstract
Non-enzymatic modification of proteins in hyperglycemia is a major proposed mechanism of diabetic complications. Specifically, advanced glycation end products (AGEs) derived from hyperglycemia-induced reactive carbonyl species (RCS) can have pathogenic consequences when they target functionally critical protein residues. Modification of a small number of these critical residues, often undetectable by the methodologies relying on measurements of total AGE levels, can cause significant functional damage. Therefore, detection of specific sites of protein damage in diabetes is central to understanding the molecular basis of diabetic complications and for identification of biomarkers which are mechanistically linked to the disease. The current paradigm of RCS-derived protein damage places a major focus on methylglyoxal (MGO), an intermediate of cellular glycolysis. We propose that glyoxal (GO) is a major contributor to extracellular matrix (ECM) damage in diabetes. Here, we review the current knowledge and provide new data about GO-derived site-specific ECM modification in experimental diabetes.
Collapse
|
40
|
Tsekovska R, Boyanova M, Mironova R, Ivanov I. Impact of Glycation Inhibitors on the Biologic Activity of Recombinant Human Interferon-Gamma. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/50yrtimb.2011.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
41
|
Aldini G, Carini M, Yeum KJ, Vistoli G. Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radic Biol Med 2014; 69:145-56. [PMID: 24456906 DOI: 10.1016/j.freeradbiomed.2014.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
Abstract
4-Hydroxy-trans-2-nonenal (HNE), an α,β-unsaturated aldehyde generated endogenously by the radical-mediated peroxidation of ω-6 polyunsaturated fatty acids, is a bioactive molecule acting in several physiopathological mechanisms and most of its activity is due to the covalent modification of biomolecules. Although at low and physiological levels HNE acts as an endogenous signaling molecule, a growing bulk of evidence indicates that at high and toxic concentrations, HNE is involved in the onset and propagation of several human diseases. To get more conclusive evidence of HNE as a pathogenetic factor, a pharmacological tool able to inhibit the HNE-induced cellular response is required. Such compound is currently not available, although several molecular strategies have so far been reported with the aim of inhibiting HNE formation or catalyzing its removal. Although most of these are not selective, such strategies have been found to induce several biological responses and would merit further investigation. In this review the various strategies are reported and discussed together with their limits and potentials.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Kyung-Jin Yeum
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
42
|
Hajhosseiny R, Khavandi K, Jivraj N, Mashayekhi S, Goldsmith DJ, Malik RA. Have we reached the limits for the treatment of diabetic nephropathy? Expert Opin Investig Drugs 2014; 23:511-22. [DOI: 10.1517/13543784.2014.892580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Vidal N, Cavaille J, Graziani F, Robin M, Ouari O, Pietri S, Stocker P. High throughput assay for evaluation of reactive carbonyl scavenging capacity. Redox Biol 2014; 2:590-8. [PMID: 24688895 PMCID: PMC3969608 DOI: 10.1016/j.redox.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. We describe a rapid method for assessment of reactive carbonyl scavengers. We evaluated the carbonyl scavenger activity of various pharmacophores. α-amino-β-mercaptoethane structure showed the highest degree of activity.
Collapse
Affiliation(s)
- N. Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - J.P. Cavaille
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - F. Graziani
- Aix Marseille Université, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - M. Robin
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - O. Ouari
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - S. Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - P. Stocker
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
- Corresponding author. Tel.: +33 4 91 28 87 92; fax: +33 4 91 28 87 58.
| |
Collapse
|
44
|
Kao D, Chaintreau A, Lepoittevin JP, Giménez-Arnau E. Mechanistic studies on the reactivity of sensitizing allylic hydroperoxides: investigation of the covalent modification of amino acids by carbon-radical intermediates. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50109d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Kato Y. The formation of lipid hydroperoxide-derived amide-type lysine adducts on proteins: a review of current knowledge. Subcell Biochem 2014; 77:21-39. [PMID: 24374915 DOI: 10.1007/978-94-007-7920-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan,
| |
Collapse
|
46
|
Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2013; 48:251-63. [PMID: 24237196 DOI: 10.3109/10715762.2013.864761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.
Collapse
Affiliation(s)
- V R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System , Detroit, MI , USA
| | | |
Collapse
|
47
|
Charvet CD, Saadane A, Wang M, Salomon RG, Brunengraber H, Turko IV, Pikuleva IA. Pretreatment with pyridoxamine mitigates isolevuglandin-associated retinal effects in mice exposed to bright light. J Biol Chem 2013; 288:29267-80. [PMID: 23970548 DOI: 10.1074/jbc.m113.498832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The benefits of antioxidant therapy for treating age-related macular degeneration, a devastating retinal disease, are limited. Perhaps species other than reactive oxygen intermediates should be considered as therapeutic targets. These could be lipid peroxidation products, including isolevuglandins (isoLGs), prototypical and extraordinarily reactive γ-ketoaldehydes that avidly bind to proteins, phospholipids, and DNA and modulate the properties of these biomolecules. We found isoLG adducts in aged human retina but not in the retina of mice kept under dim lighting. Hence, to test whether scavenging of isoLGs could complement or supplant antioxidant therapy, we exposed mice to bright light and found that this insult leads to retinal isoLG-adduct formation. We then pretreated mice with pyridoxamine, a B6 vitamer and efficient scavenger of γ-ketoaldehydes, and found that the levels of retinal isoLG adducts are decreased, and morphological changes in photoreceptor mitochondria are not as pronounced as in untreated animals. Our study demonstrates that preventing the damage to biomolecules by lipid peroxidation products, a novel concept in vision research, is a viable strategy to combat oxidative stress in the retina.
Collapse
|
48
|
Deng Y, Wang W, Yu P, Xi Z, Xu L, Li X, He N. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. NANOSCALE RESEARCH LETTERS 2013; 8:190. [PMID: 23618076 PMCID: PMC3637245 DOI: 10.1186/1556-276x-8-190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/05/2013] [Indexed: 05/30/2023]
Abstract
The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Deng
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Wei Wang
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
| | - Pingfeng Yu
- Guangzhou The Bond Chemicals Co. Ltd., Guangzhou, 510530, People’s Republic of China
| | - Zhijiang Xi
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Lijian Xu
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
| | - Xiaolong Li
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Nongyue He
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| |
Collapse
|
49
|
Mima A, Qi W, King GL. Implications of treatment that target protective mechanisms against diabetic nephropathy. Semin Nephrol 2013; 32:471-8. [PMID: 23062988 DOI: 10.1016/j.semnephrol.2012.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes results in vascular changes and dysfunction, and vascular complications are the leading cause of morbidity and mortality in diabetic patients. There has been a continual increase in the number of diabetic nephropathy patients and epidemic increases in the number of patients progressing to end-stage renal diseases. To identify targets for therapeutic intervention, most studies have focused on understanding how abnormal levels of glucose metabolites cause diabetic nephropathy, which is of paramount importance in devising strategies to combat the development and progression of diabetic nephropathy. However, less studied than the systemic toxic mechanisms, hyperglycemia and dyslipidemia might inhibit the endogenous vascular protective factors such as insulin, vascular endothelial growth factor, and platelet-derived growth factor. In this review, we highlight the importance of enhancing endogenous protective factors to prevent or delay diabetic nephropathy.
Collapse
Affiliation(s)
- Akira Mima
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
50
|
Rodrigues T, Matafome P, Santos-Silva D, Sena C, Seiça R. Reduction of methylglyoxal-induced glycation by pyridoxamine improves adipose tissue microvascular lesions. J Diabetes Res 2013; 2013:690650. [PMID: 23671887 PMCID: PMC3647595 DOI: 10.1155/2013/690650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/22/2022] Open
Abstract
Background and Aims. Adipose tissue dysfunction results from many factors, including glycation-induced microvascular damages. We tested the usefulness of inhibiting methylglyoxal-induced glycation to adipose tissue microvasculature in this work, using the antioxidant and dicarbonyl scavenger drug pyridoxamine. Methods. A group of Wistar rats was treated daily with methylglyoxal (MG, 75 mg/Kg/day, 8 weeks). Half of this group was treated with pyridoxamine in the following 4 weeks (Pyr) (100 mg/Kg/day) and the other half did not have any further treatment (MG). A group of Wistar rats without MG treatment was used as control (C). Results. MG group showed decreased HDL cholesterol and increased plasma free fatty acids levels, what was reverted by pyridoxamine. MG also caused an increase of tissue CEL levels (glycation marker), as well as increased staining of PAS and Masson Trichrome-positive components. Pyridoxamine led to CEL and TGF- β levels similar to those observed in control rats and inhibited the accumulation of PAS and Masson Trichrome-positive components. MG caused a decrease of Bcl-2/Bax ratio (marker of apoptosis) and vWF staining (microvascular marker), what was partially reverted by the treatment with pyridoxamine. Conclusions. Preventing methylglyoxal-induced accumulation of glycated and fibrotic materials using pyridoxamine improves the microvascular lesions of the adipose tissue.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center of Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Daniela Santos-Silva
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|