1
|
Garcia LE, Lin Z, Culos S, Catherine Muenker M, Johnson EE, Wang Z, Lopez-Giraldez F, Giraud-Gatineau A, Jackson A, Picardeau M, Goodlett DR, Townsend JP, Pětrošová H, Wunder EA. DMEM and EMEM are suitable surrogate media to mimic host environment and expand leptospiral pathogenesis studies using in vitro tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634353. [PMID: 39896660 PMCID: PMC11785191 DOI: 10.1101/2025.01.22.634353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pathogenic Leptospira species can survive and thrive in a wide range of environments. Distinct environments expose the bacteria to different temperatures, osmolarities, and amounts and sources of nutrition. However, leptospires are mostly cultured, in a laboratory setting under in vitro conditions that do not reflect natural environments. This constraint on laboratory cultures limits the applicability of in vitro studies to the understanding of even simple pathogenic processes. Here we report, investigate, and identify a medium and conditions that mimic the host environment during leptospirosis infection, expanding the available in vitro tools to evaluate leptospiral pathogenesis. We quantified genome-wide gene expression of pathogenic Leptospira interrogans cultured in different in vitro media compositions (EMJH, DMEM, EMEM, and HAN). Using EMJH as standard, we compared gene expression in these compositions to genome-wide gene expression gathered in a host environment: whole blood (WB) of hamsters after infection with pathogenic leptospires. Leptospires cultured in DMEM and EMEM media shared 40% and 47% of all differentially expressed genes (DEGs) of leptospires present within WB (FDR<0.01), while leptospires cultured in HAN media only shared 20% of DEGs with those from WB. Furthermore, gene and pathway expression of leptospires cultured on DMEM and EMEM media exhibited a better correlation with leptospires grown in WB, including promoting expression of a similar leptospiral lipid A profile to the one identified directly in host tissues. Taken together, these results indicate that commercial cell-culture media EMEM or DMEM are better surrogates for in vivo pathogenic studies than EMJH or HAN media in Leptospira. These alternative culture conditions, using media that are a standard supply worldwide, provide a reproducible and cost-effective approach that can accelerate research investigation and reduce the number of animal infections necessary for basic research of leptospirosis.
Collapse
Affiliation(s)
- Leandro E. Garcia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Zitong Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Sophie Culos
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Emily E. Johnson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | | | - Angela Jackson
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| |
Collapse
|
2
|
Ni JT, Zhang MS, Lu DL, Lu WJ, Wu L, Yang ZD, Qin C, Dai ZJ, Li ZW, Feng WJ, Cai HH, Zhang JR, Liang CY, Deng JJ, Luo XC. Bioconversion of agriculture by-products with functionally enhanced Streptomyces sp. SCUT-3: Fish skin as a model. Food Chem 2025; 463:141106. [PMID: 39241423 DOI: 10.1016/j.foodchem.2024.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
With the global population continuously rising, efficient bioconversion of inedible agricultural by-products is crucial for human food and energy sustainability. We here propose solid-state fermentation approaches to efficiently convert biopolymers into oligomers/monomers by accelerating the natural degradation process of the versatile Streptomyces sp. strain SCUT-3. Using fish skin as a representative by-product, 54.3 g amino acids and 14.7 g peptides (91 % < 2500 Da) were recovered from 89.0 g protein in 100 g tilapia skin sample by collagenase-overexpressed SCUT-3 for seven days at a 1:4 substrate:liquid ratio. Fish skin collagen hydrolysates exhibited excellent anti-oxidation, anti-hypertension, scratch-repairing, anti-aging, anti-ultraviolet radiation, and anti-inflammation effects on human skin fibroblasts In vitro and zebrafish larvae in vivo, indicating their potential applications in healthcare/skincare and anti-atopic dermatitis. As Laozi said, the divine law follows nature. This study underscores the efficacy of genetically engineered SCUT-3 according to its natural biomass utilization laws in large-scale biopolymer conversion.
Collapse
Affiliation(s)
- Jing-Tao Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Wen-Jun Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Lei Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Zhen-Dong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Can Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Zhen-Jie Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Wen-Jing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Hua-Hong Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Jia-Rui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Chu-Yan Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Jun-Jin Deng
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Crop Germplasm Resources Conservation and Utilization, Guangzhou 510640, China.
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
3
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
4
|
Ramírez-Rico G, Martinez-Castillo M, Ruiz-Mazón L, Meneses-Romero EP, Palacios JAF, Díaz-Aparicio E, Abascal EN, de la Garza M. Identification, Biochemical Characterization, and In Vivo Detection of a Zn-Metalloprotease with Collagenase Activity from Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:1289. [PMID: 38279292 PMCID: PMC10816954 DOI: 10.3390/ijms25021289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico (UNAM), Mexico City 54714, Mexico;
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06726, Mexico;
| | - Lucero Ruiz-Mazón
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | | | | | - Efrén Díaz-Aparicio
- National Center for Disciplinary Research in Animal Health and Safety, National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Mexico City 05110, Mexico
| | - Erasmo Negrete Abascal
- Faculty of Professional Studies Iztacala, Autonomous National University of Mexico (UNAM), Mexico City 54090, Mexico;
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| |
Collapse
|
5
|
Ueshima S, Yasumoto M, Kitagawa Y, Akazawa K, Takita T, Tanaka K, Hattori S, Mizutani K, Mikami B, Yasukawa K. Insights into the catalytic mechanism of Grimontia hollisae collagenase through structural and mutational analyses. FEBS Lett 2023; 597:2473-2483. [PMID: 37698340 DOI: 10.1002/1873-3468.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Grimontia hollisae collagenase (Ghcol) exhibits high collagen-degrading activity. To explore its catalytic mechanism, its substrate (Gly-Pro-Hyp-Gly-Pro-Hyp, GPOGPO)-complexed crystal structure was determined at 2.0 Å resolution. A water molecule was observed near the active-site zinc ion. Since this water was not observed in the product (GPO)-complexed Ghcol, it was hypothesized that the GPOGPO-complexed Ghcol structure reflects a Michaelis complex, providing a structural basis for understanding the catalytic mechanism. Analyses of the active-site geometry and site-directed mutagenesis of the active-site tyrosine residues revealed that Glu493 and Tyr564 were essential for catalysis, suggesting that Glu493 functions as an acid and base catalyst while Tyr564 stabilizes the tetrahedral complex in the transition state. These results shed light on the catalytic mechanism of bacterial collagenase.
Collapse
Affiliation(s)
- Saori Ueshima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Mizuki Yasumoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Yuto Kitagawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Kaho Akazawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
6
|
Sarrigiannidis SO, Dobre O, Navarro AR, Dalby MJ, Gonzalez-Garcia C, Salmeron-Sanchez M. Engineered dual affinity protein fragments to bind collagen and capture growth factors. Mater Today Bio 2023; 20:100641. [PMID: 37179535 PMCID: PMC10173277 DOI: 10.1016/j.mtbio.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.
Collapse
|
7
|
Alhayek A, Abdelsamie AS, Schönauer E, Camberlein V, Hutterer E, Posselt G, Serwanja J, Blöchl C, Huber CG, Haupenthal J, Brandstetter H, Wessler S, Hirsch AKH. Discovery and Characterization of Synthesized and FDA-Approved Inhibitors of Clostridial and Bacillary Collagenases. J Med Chem 2022; 65:12933-12955. [PMID: 36154055 PMCID: PMC9574867 DOI: 10.1021/acs.jmedchem.2c00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/04/2022]
Abstract
In view of the worldwide antimicrobial resistance (AMR) threat, new bacterial targets and anti-infective agents are needed. Since important roles in bacterial pathogenesis have been demonstrated for the collagenase H and G (ColH and ColG) from Clostridium histolyticum, collagenase Q1 and A (ColQ1 and ColA) from Bacillus cereus represent attractive antivirulence targets. Furthermore, repurposing FDA-approved drugs may assist to tackle the AMR crisis and was addressed in this work. Here, we report on the discovery of two potent and chemically stable bacterial collagenase inhibitors: synthesized and FDA-approved diphosphonates and hydroxamates. Both classes showed high in vitro activity against the clostridial and bacillary collagenases. The potent diphosphonates reduced B. cereus-mediated detachment and death of cells and Galleria mellonella larvae. The hydroxamates were also tested in a similar manner; they did not have an effect in infection models. This might be due to their fast binding kinetics to bacterial collagenases.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building C2. 3, 66123 Saarbrücken, Germany
| | - Ahmed S. Abdelsamie
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National
Research Centre, El-Buhouth
St., Dokki, 12622 Cairo, Egypt
| | - Esther Schönauer
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Virgyl Camberlein
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Evelyn Hutterer
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Gernot Posselt
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Jamil Serwanja
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Constantin Blöchl
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Silja Wessler
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building C2. 3, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Xiao H, Liu X, Feng Y, Zheng L, Zhao M, Huang M. Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:89. [PMID: 36031598 PMCID: PMC9420286 DOI: 10.1186/s13068-022-02186-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022]
Abstract
Background The production and processing of animal-based products generates many collagen-rich by-products, which have received attention both for exploitation to increase their added value and to reduce their negative environmental impact. The collagen-rich by-products can be hydrolyzed by collagenases for further utilization. Therefore, collagenases are of benefit for efficient collagen materials processing. An alternative and safe way to produce secreted collagenases is needed. Results Two collagenases from Hathewaya histolytica, ColG and ColH, were successfully secreted by the yeast Saccharomyces cerevisiae. Compared with the native signal peptide of collagenase, the α-factor leader is more efficient in guiding collagenase secretion. Collagenase secretion was significantly increased in YPD medium by supplementing with calcium and zinc ions. Recombinant collagenase titers reached 68 U/mL and 55 U/mL for ColG and ColH, respectively. Collagenase expression imposed metabolic perturbations on yeast cells; substrate consumption, metabolites production and intracellular cofactor levels changed in engineered strains. Both recombinant collagenases from yeast could hydrolyze soluble and insoluble collagen materials. Recombinant ColG and ColH showed a synergistic effect on efficient collagen digestion. Conclusions Sufficient calcium and zinc ions are essential for active collagenase production by yeast. Collagenase secretion was increased by optimization of expression cassettes. Collagenase expression imposed metabolic burden and cofactor perturbations on yeast cells, which could be improved through metabolic engineering. Our work provides a useful way to produce collagenases for collagen resource utilization. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02186-y.
Collapse
|
9
|
Crystal structure of Grimontia hollisae collagenase provides insights into its novel substrate specificity toward collagen. J Biol Chem 2022; 298:102109. [PMID: 35679897 PMCID: PMC9304777 DOI: 10.1016/j.jbc.2022.102109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2′ positions, which may be attributed to the larger space available for substrate binding at the S2 and S2′ sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.
Collapse
|
10
|
Mechanistic Insight into the Fragmentation of Type I Collagen Fibers into Peptides and Amino Acids by a Vibrio Collagenase. Appl Environ Microbiol 2022; 88:e0167721. [PMID: 35285716 DOI: 10.1128/aem.01677-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.
Collapse
|
11
|
Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat Commun 2022; 13:566. [PMID: 35091565 PMCID: PMC8799719 DOI: 10.1038/s41467-022-28264-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase. The collagenolytic mechanism of Vibrio collagenase, a virulence factor, remains unclear. Here, the authors report the structure of Vibrio collagenase VhaC and propose the mechanism for collagen recognition and degradation, providing new insight into bacterial collagenolysis.
Collapse
|
12
|
Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A, Alfano M. Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol 2021; 4:1011. [PMID: 34446834 PMCID: PMC8390675 DOI: 10.1038/s42003-021-02539-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Valentina Murdica
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Filippo Pederzoli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bandini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
13
|
Hayashi K, Ikeuchi T, Morishita R, Qian J, Kojima K, Takita T, Tanaka K, Hattori S, Yasukawa K. The roles of histidine and tyrosine residues in the active site of collagenase in Grimontia hollisae. J Biochem 2020; 168:385-392. [PMID: 32386303 DOI: 10.1093/jb/mvaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
Collagenase from the Grimontia hollisae strain 1706B (Ghcol) is a zinc metalloproteinase with the zinc-binding motif H492EXXH496. It exhibits higher collagen-degrading activity than the collagenase from Clostridium histolyticum, which is widely used in industry. We previously examined the pH and temperature dependencies of Ghcol activity; Glu493 was thought to contribute acidic pKa (pKe1), while no residue was assigned to contribute alkaline pKa (pKe2). In this study, we introduced nine single mutations at the His or Tyr residues in and near the active site. Our results showed that H412A, H485A, Y497A, H578A and H737A retained the activities to hydrolyze collagen and gelatin, while H426A, H492A, H496A and Y568A lacked them. Purification of active variants H412A, H485A, H578A and H737A, along with inactive variants H492A and H496A, were successful. H412A preferred (7-methoxycoumarin-4-yl)acetyl-L-Lys-L-Pro-L-Leu-Gly-L-Leu-[N3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-L-Ala-L-Arg-NH2 to collagen, while H485A preferred collagen to the peptide, suggesting that His412 and His485 are important for substrate specificity. Purification of the active variant Y497A and inactive variants H426A and Y568A were unsuccessful, suggesting that these three residues were important for stability. Based on the reported crystal structure of clostridial collagenase, Tyr568 of Ghcol is suggested to be involved in catalysis and may be the ionizable residue for pKe2.
Collapse
Affiliation(s)
- Kaichi Hayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeaki Ikeuchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryo Morishita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Qian
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Tanaka
- Research Institute of Biomatrix, Nippi, Incorporated, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Research Institute of Biomatrix, Nippi, Incorporated, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Wang L, Zhao Y, Yang F, Feng M, Zhao Y, Chen X, Mi J, Yao Y, Guan D, Xiao Z, Chen B, Dai J. Biomimetic collagen biomaterial induces in situ lung regeneration by forming functional alveolar. Biomaterials 2020; 236:119825. [PMID: 32044576 DOI: 10.1016/j.biomaterials.2020.119825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/02/2023]
Abstract
In situ restoration of severely damaged lung remains difficult due to its limited regeneration capacity after injury. Artificial lung scaffolds are emerging as potential substitutes, but it is still a challenge to reconstruct lung regeneration microenvironment in scaffold after lung resection injury. Here, a 3D biomimetic porous collagen scaffold with similar structure characteristics as lung is fabricated, and a novel collagen binding hepatocyte growth factor (CBD-HGF) is tethered on the collagen scaffold for maintaining the biomimetic function of HGF to improve the lung regeneration microenvironment. The biomimetic scaffold was implanted into the operative region of a rat partial lung resection model. The results revealed that vascular endothelial cells and endogenous alveolar stem cells entered the scaffold at the early stage of regeneration. At the later stage, inflammation and fibrosis were attenuated, the microvascular and functional alveolar-like structures were formed, and the general morphology of the injured lung was restored. Taken together, the functional 3D biomimetic collagen scaffold facilitates recovery of the injured lung, alveolar regeneration, and angiogenesis after acute lung injury. Particularly, this is the first study of lung regeneration in vivo guided by biomimetic collagen scaffold materials, which supports the concept that tissue engineering is an effective strategy for alveolar regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yannan Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xi Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junwei Mi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanjiang Yao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dongwei Guan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhifeng Xiao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Nakamura S, Ito T, Okamoto K, Mima T, Uchida K, Siddiqui YD, Ito M, Tai M, Okubo K, Yamashiro K, Omori K, Yamamoto T, Matsushita O, Takashiba S. Acceleration of bone regeneration of horizontal bone defect in rats using collagen-binding basic fibroblast growth factor combined with collagen scaffolds. J Periodontol 2019; 90:1043-1052. [PMID: 30889294 PMCID: PMC6850180 DOI: 10.1002/jper.18-0674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/28/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Background Basic fibroblast growth factor (bFGF) has been applied for periodontal regeneration. However, the application depends on bone defect morphology because bFGF diffuses rapidly from defect sites. In a previous study, collagen‐binding bFGF (CB‐bFGF) has been shown to enhance bone formation by collagen‐anchoring in the orthopedic field. The aim of this study is to demonstrate the efficacy of CB‐bFGF with collagen scaffolds in bone regeneration of horizontal bone defect. Methods Cell proliferation activity and collagen binding activity of CB‐bFGF was confirmed by WST‐8 assay and collagen binding assay, respectively. The retention of CB‐bFGF in the collagen sheet (CS) was measured by fluorescence imaging. The rat horizontal alveolar bone defect model was employed to investigate the efficacy of CB‐bFGF with collagen powder (CP). After 4 and 8 weeks, the regenerative efficacy was evaluated by microcomputed tomography, histological, and immunohistochemical analyses. Results CB‐bFGF had a comparable proliferation activity to bFGF and a collagen binding activity. CB‐bFGF was retained in CS longer than bFGF. At 8 weeks postoperation, bone volume, bone mineral content, and new bone area in CB‐bFGF/CP group were significantly increased compared with those in other groups. Furthermore, epithelial downgrowth was significantly suppressed in CB‐bFGF/CP group. At 4 weeks, the numbers of osteocalcin, proliferating cell nuclear antigen, and osteopontin‐positive cells at the regeneration site in CB‐bFGF/CP group were greater than those in other groups. Conclusions CB‐bFGF/CP effectively promoted bone regeneration of horizontal bone defect possibly by sustained release of bFGF. The potential of CB‐bFGF composite material for improved periodontal regeneration in vertical axis was shown.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takashi Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Ministry of Health, Labour and Welfare Medical Politics Economic Section, Medical Equipment Policy Office, Tokyo, Japan
| | - Kentaro Okamoto
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takehiko Mima
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yasir D Siddiqui
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masako Tai
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Okubo
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
16
|
Faisal TR, Adouni M, Dhaher YY. The effect of fibrillar degradation on the mechanics of articular cartilage: a computational model. Biomech Model Mechanobiol 2019; 18:733-751. [DOI: 10.1007/s10237-018-01112-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
|
17
|
Tanaka K, Teramura N, Hayashida O, Iijima K, Okitsu T, Hattori S. The C-terminal segment of collagenase in Grimontia hollisae binds collagen to enhance collagenolysis. FEBS Open Bio 2018; 8:1691-1702. [PMID: 30338219 PMCID: PMC6168687 DOI: 10.1002/2211-5463.12510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The collagenase secreted by Grimontia hollisae strain 1706B is a 74 kDa protein that consists of two parts: the catalytic module and a C‐terminal segment that includes the bacterial pre‐peptidase C‐terminal domain. Here, we produced a recombinant C‐terminal segment protein and examined its ability to bind collagen and other characteristics as compared with collagen‐binding domains (CBDs) derived from Hathewaya histolytica (Clostridium histolyticum) collagenases; these CBDs are the only ones thus far identified in bacterial collagenases. We found that the C‐terminal segment binds to collagen only when the collagen is in its triple‐helical conformation. Moreover, the C‐terminal segment and the CBDs from H. histolytica have comparable characteristics, including binding affinity to type I collagen, substrate spectrum, and binding conditions with respect to salt concentration and pH. However, the C‐terminal segment has a completely different primary structure from those of the CBDs from H. histolytica. As regards secondary structure, in silico prediction indicates that the C‐terminal segment may be homologous to those in CBDs from H. histolytica. Furthermore, we performed collagenase assays using fluorescein isothiocyanate‐labeled type I collagen to show that the C‐terminal segment positively contributes to the collagenolytic activity of the 74 kDa collagenase from G. hollisae.
Collapse
Affiliation(s)
| | | | | | | | - Teru Okitsu
- Institute of Industrial Science The University of Tokyo Japan
| | | |
Collapse
|
18
|
Caviness P, Bauer R, Tanaka K, Janowska K, Roeser JR, Harter D, Sanders J, Ruth C, Matsushita O, Sakon J. Ca 2+ -induced orientation of tandem collagen binding domains from clostridial collagenase ColG permits two opposing functions of collagen fibril formation and retardation. FEBS J 2018; 285:3254-3269. [PMID: 30035850 DOI: 10.1111/febs.14611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/24/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022]
Abstract
To penetrate host tissues, histotoxic clostridia secrete virulence factors including enzymes to hydrolyze extracellular matrix. Clostridium histolyticum, recently renamed as Hathewaya histolytica, produces two classes of collagenase (ColG and ColH). The high-speed AFM study showed that ColG collagenase moves unidirectionally to plane collagen fibril and rebundles fibril when stalled . The structural explanation of the roles for the tandem collagen-binding segment (CBDs) is illuminated by its calcium-bound crystal structure at 1.9 Å resolution (Rwork = 15.0%; Rfree = 19.6%). Activation may involve calcium-dependent domain rearrangement supported by both small-angle X-ray scattering and size exclusion chromatography. At pCa ≥ 5 (pCa = -log[Ca2+ ]), the tandem CBD adopts an extended conformation that may facilitate secretion from the bacterium. At pCa ≤ 4, the compact structure seen in the crystal structure is adopted. This arrangement positions the two binding surfaces ~ 55 Å apart, and possibly ushers ColG along tropocollagen molecules that allow for unidirectional movement. A sequential binding mode where tighter binding CBD2 binds first could aid in processivity as well. Switch from processive collagenolysis to fibril rearrangement could be concentration dependent. Collagen fibril formation is retarded at 1 : 1 molar ratio of tandem CBD to collagen. Tandem CBD may help isolate a tropocollagen molecule from a fibril at this ratio. At 0.1 : 1 to 0.5 : 1 molar ratios fibril self-assembly was accelerated. Gain of function as a result of gene duplication of CBD for the M9B enzymes is speculated. The binding and activation modes described here will aid in drug delivery design. ACCESSION CODES The full atomic coordinates of the tandem CBD and its corresponding structure factor amplitudes have been deposited in the Protein Data Bank (PDB accession code 5IKU). Small-angle X-ray scattering data and corresponding ab initio models have been submitted to the Small Angle Scattering Biological Data Bank (SASBDB). Accession codes CL2, collagenase module 2, CN2, CP2 are assigned to envelopes for tandem CBD at -log[Ca2+ ] (pCa) 3, 4, 5, and 6, respectively. Accession code DC64 was assigned to the complex of polycystic kidney disease-CBD1-CBD2 with mini-collagen.
Collapse
Affiliation(s)
- Perry Caviness
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ryan Bauer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Katarzyna Janowska
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Dawn Harter
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jes Sanders
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Christopher Ruth
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
19
|
Basic Fibroblast Growth Factor Fused with Tandem Collagen-Binding Domains from Clostridium histolyticum Collagenase ColG Increases Bone Formation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8393194. [PMID: 29770338 PMCID: PMC5889866 DOI: 10.1155/2018/8393194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022]
Abstract
Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly)10, induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly)12-NH2, a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly)10/bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.
Collapse
|
20
|
Takita T, Qian J, Geng H, He Z, Nemoto S, Mori M, Tanaka K, Hattori S, Kojima K, Yasukawa K. Comparative studies on the activities of collagenases from Grimontia hollisae and Clostridium hystoliticum in the hydrolysis of synthetic substrates. J Biochem 2018; 163:425-431. [DOI: 10.1093/jb/mvy009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Qian
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hongmin Geng
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Zejian He
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sho Nemoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mariko Mori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Li JA, Zhao CF, Li SJ, Zhang J, Li ZH, Zhang Q, Yang XY, Zan CF. Modified insulin-like growth factor 1 containing collagen-binding domain for nerve regeneration. Neural Regen Res 2018; 13:298-303. [PMID: 29557380 PMCID: PMC5879902 DOI: 10.4103/1673-5374.226400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a potential nutrient for nerve repair. However, it is impractical as a therapy because of its limited half-life, rapid clearance, and limited target specificity. To achieve targeted and long-lasting treatment, we investigated the addition of a binding structure by fusing a collagen-binding domain to IGF-1. After confirming its affinity for collagen, the biological activity of this construct was examined by measuring cell proliferation after transfection into PC12 and Schwann cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Immunofluorescence staining was conducted to detect neurofilament and microtubule-associated protein 2 expression, while real time-polymerase chain reaction was utilized to determine IGF-1 receptor and nerve growth factor mRNA expression. Our results demonstrate a significant increase in collagen-binding activity of the recombinant protein compared with IGF-1. Moreover, the recombinant protein promoted proliferation of PC12 and Schwann cells, and increased the expression of neurofilament and microtubule-associated protein 2. Importantly, the recombinant protein also stimulated sustained expression of IGF-1 receptor and nerve growth factor mRNA for days. These results show that the recombinant protein achieved the goal of targeting and long-lasting treatment, and thus could become a clinically used factor for promoting nerve regeneration with a prolonged therapeutic effect.
Collapse
Affiliation(s)
- Jian-An Li
- Department of Orthopedics, Second Hospital of Jilin University; Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Chang-Fu Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Shao-Jun Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Jun Zhang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Hua Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China
| | - Qiao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Fang Zan
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
22
|
Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates. Mar Drugs 2017; 15:md15120377. [PMID: 29207560 PMCID: PMC5742837 DOI: 10.3390/md15120377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Collagenases are the most important group of commercially-produced enzymes. However, even though biological resources are abundant in the sea, very few of these commercially popular enzymes are from marine sources, especially from marine bacteria. We optimized the production of marine collagenases by Pseudoalteromonas sp. SJN2 and investigated the antioxidant activities of the hydrolysates. Media components and culture conditions associated with marine collagenase production by Pseudoalteromonas sp. SJN2 were optimized by statistical methods, namely Plackett–Burman design and response surface methodology (RSM). Furthermore, the marine collagenases produced by Pseudoalteromonas sp. SJN2 were seen to efficiently hydrolyze marine collagens extracted from fish by-products, and remarkable antioxidant capacities of the enzymatic hydrolysates were shown by DPPH radical scavenging and oxygen radical absorbance capacity (ORAC) tests. The final optimized fermentation conditions were as follows: soybean powder, 34.23 g·L−1; culture time, 3.72 d; and temperature, 17.32 °C. Under the optimal fermentation conditions, the experimental collagenase yield obtained was 322.58 ± 9.61 U·mL−1, which was in agreement with the predicted yield of 306.68 U·mL−1. Collagen from Spanish mackerel bone, seabream scale and octopus flesh also showed higher DPPH radical scavenging rates and ORAC values after hydrolysis by the collagenase. This study may have implications for the development and use of marine collagenases. Moreover, seafood waste containing beneficial collagen could be used to produce antioxidant peptides by proteolysis.
Collapse
|
23
|
Effect of Freeze-Dried Allograft Bone With Human Basic Fibroblast Growth Factor Containing a Collagen-Binding Domain From Clostridium histolyticum Collagenase on Bone Formation After Lumbar Posterolateral Fusion Surgery in Rats. Spine (Phila Pa 1976) 2017; 42:E995-E1001. [PMID: 28098745 DOI: 10.1097/brs.0000000000002074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental study. OBJECTIVE To evaluate the effectiveness of freeze-dried bone allograft (FDBA) with basic fibroblast growth factor (bFGF) fused with the polycystic kidney disease domain (PKD) and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase, for the acceleration of lumbar posterolateral fusion in rats. SUMMARY OF BACKGROUND DATA Reports indicate bFGF is an effective growth factor with osteogenic potential for promoting bone regeneration, although its efficiency decreases rapidly following its diffusion in body fluid from the host site. We developed a bFGF fusion protein containing the PKD and the CBD of C histolyticum collagenase (bFGF-PKD-CBD), which markedly enhanced bone formation at a relatively low concentration when applied to the surface of rat femurs in a previous study. The potential of this novel protein to accelerate bone fusion in a rat model of lumbar posterolateral fusion has yet to be investigated. METHODS Bilateral L4-L5 posterolateral fusions were performed, using 150 mg of FDBA powder per side. A total of 20 male Sprague-Dawley rats weighing 200 to 250 g/each were divided into two groups of 10 rats: FDBA was incubated with either phosphate-buffered saline (control group) or 0.58 nmol bFGF-PKD-CBD (bFGF-PKD-CBD group) before fusion surgery. The effect of bFGF-PKD-CBD was estimated using radiographs, microcomputed tomography, and histology (hematoxylin-eosin and von Kossa staining). RESULTS Both grafted bone volume in the posterolateral lesion and the volume of new bone formation on the surface of laminae and spinal processes were significantly higher in the bFGF-PKD-CBD group than in the control group. Histologically, new bone formation and surrounding chondrocytes and fibroblasts were prominent in the bFGF-PKD-CBD group. CONCLUSION FDBA infused with bFGF-PKD-CBD may be a promising material for accelerating spinal fusion, and the FDBA-based delivery system for localizing bFGF-PKD-CBD may offer novel therapeutic approaches to augment spinal fusion. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Schönauer E, Kany AM, Haupenthal J, Hüsecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsässer B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc 2017; 139:12696-12703. [PMID: 28820255 PMCID: PMC5607459 DOI: 10.1021/jacs.7b06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Secreted virulence
factors like bacterial collagenases are conceptually
attractive targets for fighting microbial infections. However, previous
attempts to develop potent compounds against these metalloproteases
failed to achieve selectivity against human matrix metalloproteinases
(MMPs). Using a surface plasmon resonance-based screening complemented
with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed
sub-micromolar affinities toward collagenase H (ColH) from the human
pathogen Clostridium histolyticum. Moreover, these
inhibitors also efficiently blocked the homologous bacterial collagenases,
ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1,
while showing negligible activity toward human MMPs-1, -2, -3, -7,
-8, and -14. The most active compound displayed a more than 1000-fold
selectivity over human MMPs. This selectivity can be rationalized
by the crystal structure of ColH with this compound, revealing a distinct
non-primed binding mode to the active site. The non-primed binding
mode presented here paves the way for the development of selective
broad-spectrum bacterial collagenase inhibitors with potential therapeutic
application in humans.
Collapse
Affiliation(s)
- Esther Schönauer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kristina Hüsecken
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabel J Hoppe
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Brigitta Elsässer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
A Sensitive, Rapid, and Specific Technique for the Detection of Collagenase Using Zymography. Methods Mol Biol 2017. [PMID: 28608204 DOI: 10.1007/978-1-4939-7111-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In-gel zymography is a commonly employed tool to identify active enzymes in a quantitative and qualitative manner. In this work, apart from the incorporation of substrate which is traditionally employed in zymography, the identification of collagenase by incubation of the enzyme resolved on a polyacrylamide gel with substrate solution is described. The two methods are quite fast and result in specific detection of bacterial collagenase.
Collapse
|
26
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
27
|
Contemporary Review of Treatment Options for Peyronie's Disease. Urology 2016; 95:16-24. [DOI: 10.1016/j.urology.2016.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
|
28
|
Watanabe-Nakayama T, Itami M, Kodera N, Ando T, Konno H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci Rep 2016; 6:28975. [PMID: 27373458 PMCID: PMC4931465 DOI: 10.1038/srep28975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/08/2016] [Indexed: 01/03/2023] Open
Abstract
Bacterial collagenases involved in donor infection are widely applied in many fields due to their high activity and specificity; however, little is known regarding the mechanisms by which bacterial collagenases degrade insoluble collagen in host tissues. Using high-speed atomic force microscopy, we simultaneously visualized the hierarchical structure of collagen fibrils and the movement of a representative bacterial collagenase, Clostridium histolyticum type I collagenase (ColG), to determine the relationship between collagen structure and collagenase movement. Notably, ColG moved ~14.5 nm toward the collagen N terminus in ~3.8 s in a manner dependent on a catalytic zinc ion. While ColG was engaged, collagen molecules were not only degraded but also occasionally rearranged to thicken neighboring collagen fibrils. Importantly, we found a similarity of relationship between the enzyme-substrate interface structure and enzyme migration in collagen-collagenase and DNA-nuclease systems, which share a helical substrate structure, suggesting a common strategy in enzyme evolution.
Collapse
Affiliation(s)
- Takahiro Watanabe-Nakayama
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masahiro Itami
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
29
|
Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13:77-90. [PMID: 26666363 PMCID: PMC7097604 DOI: 10.1038/nrurol.2015.292] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies.
Collapse
Affiliation(s)
- Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Via Dunant 3, 21100 Varese Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences, Pathology Unit, L. Sacco Hospital, Università degli Studi di Milano, Via Giovanni Battista Grassi 74, 20157 Milan Italy
| | - Massimo Clementi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Francesco Montorsi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| |
Collapse
|
30
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
31
|
Pal GK, PV S. Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv 2016. [DOI: 10.1039/c5ra23316j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial collagenases are promising enzymes in view of their extensive industrial and biological applications.
Collapse
Affiliation(s)
- Gaurav Kumar Pal
- Academy of Scientific and Innovative Research
- Meat and Marine Sciences Department
- CSIR-Central Food Technological Research Institute
- Mysuru-570020
- India
| | - Suresh PV
- Academy of Scientific and Innovative Research
- Meat and Marine Sciences Department
- CSIR-Central Food Technological Research Institute
- Mysuru-570020
- India
| |
Collapse
|
32
|
Shima H, Inagaki A, Imura T, Yamagata Y, Watanabe K, Igarashi K, Goto M, Murayama K. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation. J Diabetes Res 2016; 2016:4396756. [PMID: 27195301 PMCID: PMC4852369 DOI: 10.1155/2016/4396756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023] Open
Abstract
The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Youhei Yamagata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kimiko Watanabe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- *Kazutaka Murayama:
| |
Collapse
|
33
|
Schönauer E, Brandstetter H. Inhibition and Activity Regulation of Bacterial Collagenases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Sherer BA, Godlewski KF, Levine LA. Pharmacologic therapy for Peyronie's disease: what should we prescribe? Expert Opin Pharmacother 2015; 16:1299-311. [PMID: 25927285 DOI: 10.1517/14656566.2015.1041503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Peyronie's disease (PD) is a wound healing disorder of the penis with a myriad of proposed treatment options reported in the literature. Evaluating the available data and therapeutic management of PD can be challenging and confusing, even for the most experienced treating physician. This review provides a comprehensive overview of pharmacologic treatment options for PD, focusing on the best available evidence. AREAS COVERED A comprehensive literature search for published articles evaluating oral, topical, and injectable pharmacologic agents for PD was completed. Prospective, controlled trials were given precedence for inclusion. EXPERT OPINION Although a multitude of oral agents have been proposed and evaluated in PD patients, results vary widely and a reproducible objective benefit has not yet been strongly established for any single oral agent. Well-designed, large-scale, randomized controlled trials evaluating oral agents in PD patients are lacking. Consistent objective benefit from injectable agents has been supported for years by various non-controlled trials. Recently, injectable collagenase Clostridium histolyticum became the first pharmacologic agent to obtain FDA approval for use in PD patients, supported by data from a large-scale, Phase III randomized controlled trial. Further elucidation of the genetic and mechanistic pathways involved in the development and progression of PD will help define future therapeutic targets.
Collapse
Affiliation(s)
- Benjamin A Sherer
- Rush University Medical Center , 1725 W Harrison St, Chicago, IL 60612, Suite 348 , USA +1 312 563 3480 ; +1 312 563 5007 ;
| | | | | |
Collapse
|
35
|
Uchida K, Matsushita O, Nishi N, Inoue G, Horikawa K, Takaso M. Enhancement of periosteal bone formation by basic fibroblast-derived growth factor containing polycystic kidney disease and collagen-binding domains fromClostridium histolyticumcollagenase. J Tissue Eng Regen Med 2015; 11:1165-1172. [DOI: 10.1002/term.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kentaro Uchida
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama University; 2-5-1 Shikata-cho Kita-ku Okayama Japan
| | - Nozomu Nishi
- Life Science Research Centre; Kagawa University; 1750-1 Kita-gun Miki-cho Kagawa Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| | - Kyosuke Horikawa
- Okayama University Medical School; 2-5-1 Shikata-cho Kita-ku Okayama Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Sagamihara Kanagawa Japan
| |
Collapse
|
36
|
Bauer R, Janowska K, Taylor K, Jordan B, Gann S, Janowski T, Latimer EC, Matsushita O, Sakon J. Structures of three polycystic kidney disease-like domains from Clostridium histolyticum collagenases ColG and ColH. ACTA ACUST UNITED AC 2015; 71:565-77. [PMID: 25760606 PMCID: PMC4356367 DOI: 10.1107/s1399004714027722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/19/2014] [Indexed: 11/25/2022]
Abstract
The surface properties and dynamics of PKD-like domains from ColG and ColH differ. Clostridium histolyticum collagenases ColG and ColH are segmental enzymes that are thought to be activated by Ca2+-triggered domain reorientation to cause extensive tissue destruction. The collagenases consist of a collagenase module (s1), a variable number of polycystic kidney disease-like (PKD-like) domains (s2a and s2b in ColH and s2 in ColG) and a variable number of collagen-binding domains (s3 in ColH and s3a and s3b in ColG). The X-ray crystal structures of Ca2+-bound holo s2b (1.4 Å resolution, R = 15.0%, Rfree = 19.1%) and holo s2a (1.9 Å resolution, R = 16.3%, Rfree = 20.7%), as well as of Ca2+-free apo s2a (1.8 Å resolution, R = 20.7%, Rfree = 27.2%) and two new forms of N-terminally truncated apo s2 (1.4 Å resolution, R = 16.9%, Rfree = 21.2%; 1.6 Å resolution, R = 16.2%, Rfree = 19.2%), are reported. The structurally similar PKD-like domains resemble the V-set Ig fold. In addition to a conserved β-bulge, the PKD-like domains feature a second bulge that also changes the allegiance of the subsequent β-strand. This β-bulge and the genesis of a Ca2+ pocket in the archaeal PKD-like domain suggest a close kinship between bacterial and archaeal PKD-like domains. Different surface properties and indications of different dynamics suggest unique roles for the PKD-like domains in ColG and in ColH. Surface aromatic residues found on ColH s2a-s2b, but not on ColG s2, may provide the weak interaction in the biphasic collagen-binding mode previously found in s2b-s3. B-factor analyses suggest that in the presence of Ca2+ the midsection of s2 becomes more flexible but the midsections of s2a and s2b stay rigid. The different surface properties and dynamics of the domains suggest that the PKD-like domains of M9B bacterial collagenase can be grouped into either a ColG subset or a ColH subset. The conserved properties of PKD-like domains in ColG and in ColH include Ca2+ binding. Conserved residues not only interact with Ca2+, but also position the Ca2+-interacting water molecule. Ca2+ aligns the N-terminal linker approximately parallel to the major axis of the domain. Ca2+ binding also increases stability against heat and guanidine hydrochloride, and may improve the longevity in the extracellular matrix. The results of this study will further assist in developing collagen-targeting vehicles for various signal molecules.
Collapse
Affiliation(s)
- Ryan Bauer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Katarzyna Janowska
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kelly Taylor
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brad Jordan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Steve Gann
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tomasz Janowski
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ethan C Latimer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
37
|
Singh N, Bhattacharyya D. Collagenases in an ether extract of bacterial metabolites used as an immunostimulator induces TNF-α and IFN-γ. Int Immunopharmacol 2014; 23:211-21. [PMID: 25203593 DOI: 10.1016/j.intimp.2014.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Non-specific immunostimulation by bacterial extracts and their components are widely accepted for the prevention and treatment of several infectious diseases. An ether extract of the metabolites of ß-streptococcus, Staphylcoccus albus, Staphylcoccus aureus, Escherichia coli, Haemophilus influenza, Moraxella caterhalis, Salmonella typhi (standard O & H), Salmonella paratyphi (A & B) and Diptheroid bacilli along with bile lipids is used as a licensed drug for immunostimulation. While characterizing the drug, we observed gelatinolytic/collagenolytic activity in the ether extract by zymography. This activity was contributed by each bacterial species as observed by collagen zymography of individual extract. Immuno-blot also confirmed the presence of collagenases in the pooled extract whose activity was estimated to be 0.081 U/ml ± 0.005 by DQ-gelatin assay. The enzyme was purified by immuno-affinity chromatography. Homogeneity of the preparation was demonstrated by SDS-PAGE and SE-HPLC. Degradation of collagen by purified collagenases was visualized by atomic force microscopy and transmission electron microscopy wherein, fragmentation of collagen leading to loss of network structure occurred under physiological conditions. Results indicated that purified collagenases can trigger the release of pro-inflammatory cytokines TNF-α and IFN-γ in-vitro and in-vivo without inducing detectable stress and toxicity on both models. The findings suggest that bacterial collagenases remain stable and biological functional in an organic solvent validating its potential for industrial and medical applications as the enzymes are key regulators of inflammatory and immune responses.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
38
|
Ueno M, Uchida K, Saito W, Matsushita O, Yogoro M, Nishi N, Ogura T, Hattori S, Inoue G, Tanaka K, Takahira N, Takaso M. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects. Biomed Mater 2014; 9:035014. [DOI: 10.1088/1748-6041/9/3/035014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Abstract
Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.
Collapse
Affiliation(s)
- Ana Sofia Duarte
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Antonio Correia
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Ana Cristina Esteves
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| |
Collapse
|
40
|
Djukic M, Brzuszkiewicz E, Fünfhaus A, Voss J, Gollnow K, Poppinga L, Liesegang H, Garcia-Gonzalez E, Genersch E, Daniel R. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS One 2014; 9:e90914. [PMID: 24599066 PMCID: PMC3944939 DOI: 10.1371/journal.pone.0090914] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.
Collapse
Affiliation(s)
- Marvin Djukic
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anne Fünfhaus
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Jörn Voss
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Kathleen Gollnow
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lena Poppinga
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Eva Garcia-Gonzalez
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Elke Genersch
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Fukata Y, Itoh A, Nonaka Y, Ogawa T, Nakamura T, Matsushita O, Nishi N. Direct cytocidal effect of galectin-9 localized on collagen matrices on human immune cell lines. Biochim Biophys Acta Gen Subj 2014; 1840:1892-901. [PMID: 24462947 DOI: 10.1016/j.bbagen.2014.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a continuous demand for new immunosuppressive agents for organ transplantation. Galectin-9, a member of the galactoside-binding animal lectin family, has been shown to suppress pathogenic T-cell responses in autoimmune disease models and experimental allograft transplantation. In this study, an attempt has been made to develop new collagen matrices, which can cause local, contact-dependent immune suppression, using galectin-9 and collagen-binding galectin-9 fusion proteins as active ingredients. METHODS Galectin-9 and galectin-9 fusion proteins having collagen-binding domains (CBDs) derived from bacterial collagenases and a collagen-binding peptide (CBP) were tested for their ability to bind to collagen matrices, and to induce Jurkat cell death in solution and in the collagen-bound state. RESULTS Galectin-9-CBD fusion proteins exhibited collagen-binding activity comparable to or lower than that of the respective CBDs, while their cytocidal activity toward Jurkat cells in solution was 80~10% that of galectin-9. Galectin-9 itself exhibited oligosaccharide-dependent collagen-binding activity. The growth of Jurkat cells cultured on collagen membranes treated with galectin-9 was inhibited by~90%. The effect was dependent on direct cell-to-membrane contact. Galectin-9-CBD/CBP fusion proteins bound to collagen membranes via CBD/CBP moieties showed a low or negligible effect on Jurkat cell growth. CONCLUSIONS Among the proteins tested, galectin-9 exhibited the highest cytocidal effect on Jurkat cells in the collagen-bound state. The effect was not due to galectin-9 released into the culture medium but was dependent on direct cell-to-membrane contact. GENERAL SIGNIFICANCE The study demonstrates the possible use of galectin-9-modified collagen matrices for local, contact-dependent immune suppression in transplantation.
Collapse
Affiliation(s)
- Youko Fukata
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Aiko Itoh
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan.
| |
Collapse
|
42
|
Stratford R, Vu C, Sakon J, Katikaneni R, Gensure R, Ponnapakkam T. Pharmacokinetics in rats of a long-acting human parathyroid hormone-collagen binding domain peptide construct. J Pharm Sci 2014; 103:768-75. [PMID: 24399637 DOI: 10.1002/jps.23843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/16/2023]
Abstract
The pharmacokinetics of a hybrid peptide consisting of the N-terminal biologically active region of human parathyroid hormone (PTH) linked to a collagen-binding domain (CBD) were evaluated in female Sprague-Dawley rats. The peptide, PTH-CBD, consists of the first 33 amino acids of PTH linked as an extension of the amino acid chain to the CBD peptide derived from ColH collagenase of Clostridium histolyticum. Serum concentrations arising from single dose administration by the subcutaneous and intravenous routes were compared with those measured following route-specific mole equivalent doses of PTH(1-34). Population-based modeling demonstrated similar systemic absorption kinetics and bioavailability for both peptides. Exposure to PTH-CBD was sixfold higher because of a systemic clearance of approximately 20% relative to PTH(1-34); however, these kinetics were consistent with more than 95% of a dose being eliminated from serum within 24 h. Results obtained support continued investigation of PTH-CBD as a bone-targeted anabolic agent for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Robert Stratford
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, 70130
| | | | | | | | | | | |
Collapse
|
43
|
Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J. Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 2013; 209:1105-15. [PMID: 24277745 DOI: 10.1093/infdis/jit659] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic disease. Transmission of Leptospira from animals to humans occurs through contact with water contaminated with leptospire-containing urine of infected animals. However, the molecular basis for the invasiveness of Leptospira and transmission of leptospirosis remains unknown. METHODS Activity of Leptospira interrogans strain Lai colA gene product (ColA) to hydrolyze different collagenic substrates was determined by spectrophotometry. Expression and secretion of ColA during infection were detected by reverse-transcription quantitative polymerase chain reaction and Western blot assay. The colA gene-deleted (ΔcolA) and colA gene-complemented (CΔcolA) mutants were generated to determine the roles of ColA in transcytosis in vitro and virulence in hamsters. RESULTS Recombinant or native ColA hydrolyzed all the tested substrates in which type III collagen was the favorite substrate with 2.16 mg/mL Km and 35.6 h(-)(1) Kcat values. Coincubation of the spirochete with HUVEC or HEK293 cells directly caused the significant elevation of ColA expression and secretion. Compared with wild-type strain, ΔcolA mutant displayed much-attenuated transcytosis through HEK293 and HUVEC monolayers, and less leptospires in blood, lung, liver, kidney and urine and 25-fold-decreased 50% lethal dose and milder histopathological injury in hamsters. CONCLUSIONS The product of colA gene is a collagenase as a crucial virulence factor in the invasiveness and transmission of L. interrogans.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saito W, Uchida K, Ueno M, Matsushita O, Inoue G, Nishi N, Ogura T, Hattori S, Fujimaki H, Tanaka K, Takaso M. Acceleration of bone formation during fracture healing by injectable collagen powder and human basic fibroblast growth factor containing a collagen-binding domain fromClostridium histolyticumcollagenase. J Biomed Mater Res A 2013; 102:3049-55. [DOI: 10.1002/jbm.a.34974] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Wataru Saito
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| | - Masaki Ueno
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| | - Osamu Matsushita
- Department of Bacteriology; Okayama University Graduate School of Medicine; 2-5-1 Kita-ku Shikata-cho Okayama Japan
| | - Gen Inoue
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| | - Nozomu Nishi
- Life Science Research Center; Kagawa University; 1750-1 Kita-gun Miki-cho Kagawa Japan
| | - Takayuki Ogura
- Nippi Research Institute of Biomatrix and Protein Engineering Project; 520-11 Kuwabara Toride-shi Ibaraki-ken Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix and Protein Engineering Project; 520-11 Kuwabara Toride-shi Ibaraki-ken Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix and Protein Engineering Project; 520-11 Kuwabara Toride-shi Ibaraki-ken Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery; Kitasato University School of Medicine; 1-15-1 Minami-ku Kitasato Kanagawa Japan
| |
Collapse
|
45
|
Huang X, Li X, Wang Q, Dai J, Hou J, Chen L. Single-molecule level binding force between collagen and collagen binding domain-growth factor conjugates. Biomaterials 2013; 34:6139-46. [PMID: 23706541 DOI: 10.1016/j.biomaterials.2013.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/27/2013] [Indexed: 11/19/2022]
Abstract
Biological studies have shown that collagen/collagen binding domain (CBD)-growth factor composites are effective biomaterials systems for tissue engineering and regeneration. Here we present atomic force spectroscopy (AFM)-based investigations at the single molecule level to address fundamental biophysical questions such as CBD binding sites distribution and the mechanism for controlled release of growth factors from the collagen scaffold. Non-uniformly distributed CBD binding sites on collagen membrane are directly visualized with a quantum dot-based bimodal imaging method. AFM force spectroscopy unbinding experiments reveal that modest unbinding force and dissociation constant of the CBD/collagen interaction could be the key for its successful application in controlled release systems.
Collapse
Affiliation(s)
- Xun Huang
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | |
Collapse
|
46
|
Jeon E, Yun YR, Kim HW, Jang JH. Engineering and application of collagen-binding fibroblast growth factor 2 for sustained release. J Biomed Mater Res A 2013; 102:1-7. [DOI: 10.1002/jbm.a.34689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Eunyi Jeon
- Department of Biochemistry; Inha University School of Medicine; Incheon 400-712 Korea
| | - Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan South Korea
- Department of Nanobiomedical Science and WCU Research Center; Dankook University Graduate School; Cheonan 330-714 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan South Korea
- Department of Nanobiomedical Science and WCU Research Center; Dankook University Graduate School; Cheonan 330-714 Korea
- Department of Biomaterials Science; School of Dentistry; Dankook University; Cheonan 330-714 Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry; Inha University School of Medicine; Incheon 400-712 Korea
| |
Collapse
|
47
|
Ohbayashi N, Matsumoto T, Shima H, Goto M, Watanabe K, Yamano A, Katoh Y, Igarashi K, Yamagata Y, Murayama K. Solution structure of clostridial collagenase H and its calcium-dependent global conformation change. Biophys J 2013; 104:1538-45. [PMID: 23561530 PMCID: PMC3617444 DOI: 10.1016/j.bpj.2013.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 01/09/2023] Open
Abstract
Collagenase H (ColH) from Clostridium histolyticum is a multimodular protein composed of a collagenase module (activator and peptidase domains), two polycystic kidney disease-like domains, and a collagen-binding domain. The interdomain conformation and its changes are very important for understanding the functions of ColH. In this study, small angle x-ray scattering and limited proteolysis were employed to reveal the interdomain arrangement of ColH in solution. The ab initio beads model indicated that ColH adopted a tapered shape with a swollen head. Under calcium-chelated conditions (with EGTA), the overall structure was further elongated. The rigid body model indicated that the closed form of the collagenase module was preferred in solution. The limited proteolysis demonstrated that the protease sensitivity of ColH was significantly increased under the calcium-chelated conditions, and that the digestion mainly occurred in the domain linker regions. Fluorescence measurements with a fluorescent dye were performed with the limited proteolysis products after separation. The results indicated that the limited proteolysis products exhibited fluorescence similar to that of the full-length ColH. These findings suggested that the conformation of full-length ColH in solution is the elongated form, and this form is calcium-dependently maintained at the domain linker regions.
Collapse
Affiliation(s)
- Naomi Ohbayashi
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan
| | | | - Hiroki Shima
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Kimiko Watanabe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | | | - Yasutake Katoh
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Youhei Yamagata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
|
49
|
Bauer R, Wilson JJ, Philominathan STL, Davis D, Matsushita O, Sakon J. Structural comparison of ColH and ColG collagen-binding domains from Clostridium histolyticum. J Bacteriol 2013; 195:318-27. [PMID: 23144249 PMCID: PMC3553835 DOI: 10.1128/jb.00010-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 11/02/2012] [Indexed: 12/29/2022] Open
Abstract
Clostridium histolyticum secretes collagenases, ColG and ColH, that cause extensive tissue destruction in myonecrosis. The C-terminal collagen-binding domain (CBD) of collagenase is required for insoluble collagen fibril binding and subsequent collagenolysis. The high-resolution crystal structures of ColG-CBD (s3b) and ColH-CBD (s3) are reported in this paper. The new X-ray structure of s3 was solved at 2.0-Å resolution (R = 17.4%; R(free) = 23.3%), while the resolution of the previously determined s3b was extended to 1.4 Å (R = 17.9%; R(free) = 21.0%). Despite sharing only 30% sequence identity, the molecules resemble one another closely (root mean square deviation [RMSD] C(α) = 1.5 Å). All but one residue, whose side chain chelates with Ca(2+), are conserved. The dual Ca(2+) binding site in s3 is completed by an unconserved aspartate. Differential scanning calorimetric measurements showed that s3 gains thermal stability, comparable to s3b, by binding to Ca(2+) (holo T(m) = 94.1°C; apo T(m) = 70.2°C). holo s3 is also stabilized against chemical denaturants urea and guanidine HCl. The three most critical residues for collagen interaction in s3b are conserved in s3. The general shape of the binding pocket is retained by altered loop structures and side chain positions. Small-angle X-ray scattering data revealed that s3 also binds asymmetrically to minicollagen. Besides the calcium-binding sites and the collagen-binding pocket, architecturally important hydrophobic residues and the hydrogen-bonding network around the cis-peptide bond are well conserved within the metallopeptidase subfamily M9B. CBDs were previously shown to bind to the extracellular matrix of various tissues. Compactness and extreme stability in physiological Ca(2+) concentration possibly make both CBDs suitable for targeted growth factor delivery.
Collapse
Affiliation(s)
- Ryan Bauer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey J. Wilson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Dan Davis
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Medical School, Okayama, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
50
|
Witthaut J, Jones G, Skrepnik N, Kushner H, Houston A, Lindau TR. Efficacy and safety of collagenase clostridium histolyticum injection for Dupuytren contracture: short-term results from 2 open-label studies. J Hand Surg Am 2013; 38:2-11. [PMID: 23218556 DOI: 10.1016/j.jhsa.2012.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE The JOINT I (United States) and JOINT II (Australia and Europe) studies evaluated the efficacy and safety of collagenase clostridium histolyticum (CCH) injection for the treatment of Dupuytren contracture. METHODS Both studies used identical open-label protocols. Patients with fixed-flexion contractures of metacarpophalangeal (MCP) (20° to 100°) or proximal interphalangeal (PIP) joints (20° to 80°) could receive up to three 0.58-mg CCH injections per cord (up to 5 total injections per patient). We performed standardized finger extension procedures to disrupt injected cords the next day, with follow-up 1, 2, 6, and 9 months thereafter. The primary end point (clinical success) was reduction in contracture to within 0° to 5° of full extension 30 days after the last injection. Clinical improvement was defined as 50% or more reduction from baseline contracture. RESULTS Dupuytren cords affecting 879 joints (531 MCP and 348 PIP) in 587 patients were administered CCH injections at 14 U.S. and 20 Australian/European sites, with similar outcomes in both studies. Clinical success was achieved in 497 (57%) of treated joints using 1.2 ± 0.5 (mean ± SD) CCH injections per cord. More MCP than PIP joints achieved clinical success (70% and 37%, respectively) or clinical improvement (89% and 58%, respectively). Less severely contracted joints responded better than those more severely contracted. Mean change in contracture was 55° for MCP joints and 25° for PIP joints. With average contracture reductions of 73% and improvements in range of motion by 30°, most patients (92%) were "very satisfied" (71%) or "quite satisfied" (21%) with treatment. Physicians rated change from baseline as "very much improved" (47%) or "much improved" (35%). The CCH injections were well tolerated, causing no tendon ruptures or systemic reactions. CONCLUSIONS Collagenase clostridium histolyticum was an effective, minimally invasive option for the treatment of Dupuytren contracture of a broad range of severities. Most treated joints (625 of 879) required a single injection. Treatment earlier in the course of disease provided improved outcomes. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic IV.
Collapse
Affiliation(s)
- Jörg Witthaut
- Department of Hand Surgery, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|