1
|
Clutario KM, Abdusamad M, Ramirez I, Rich KJ, Gholkar AA, Zaragoza J, Torres JZ. Human REXO4 is Required for Cell Cycle Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631954. [PMID: 39829749 PMCID: PMC11741406 DOI: 10.1101/2025.01.08.631954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Human REXO4 is a poorly characterized exonuclease that is overexpressed in human cancers. To better understand the function of REXO4 and its relationship to cellular proliferation, we have undertaken multidisciplinary approaches to characterize its cell cycle phase-dependent subcellular localization and the cis determinants required for this localization, its importance to cell cycle progression and cell viability, its protein-protein association network, and its activity. We show that the localization of REXO4 to the nucleolus in interphase depends on an N-terminal nucleolar localization sequence and that its localization to the perichromosomal layer of mitotic chromosomes is dependent on Ki67. Depletion of REXO4 led to a G1/S cell cycle arrest, and reduced cell viability. REXO4 associated with ribosome components and other proteins involved in rRNA metabolism. We propose a model where REXO4 is important for proper rRNA processing, which is required for ribosome biogenesis, cell cycle progression, and proliferation.
Collapse
Affiliation(s)
- Kevin M. Clutario
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kayla J. Rich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ankur A. Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian Zaragoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Ma Y, Wang J, He X, Liu Y, Zhen S, An L, Yang Q, Niu F, Wang H, An B, Tai X, Yan Z, Wu C, Yang X, Liu X. Molecular mechanism of human ISG20L2 for the ITS1 cleavage in the processing of 18S precursor ribosomal RNA. Nucleic Acids Res 2024; 52:1878-1895. [PMID: 38153123 PMCID: PMC10899777 DOI: 10.1093/nar/gkad1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
The exonuclease ISG20L2 has been initially characterized for its role in the mammalian 5.8S rRNA 3' end maturation, specifically in the cleavage of ITS2 of 12S precursor ribosomal RNA (pre-rRNA). Here, we show that human ISG20L2 is also involved in 18S pre-rRNA maturation through removing the ITS1 region, and contributes to ribosomal biogenesis and cell proliferation. Furthermore, we determined the crystal structure of the ISG20L2 nuclease domain at 2.9 Å resolution. It exhibits the typical αβα fold of the DEDD 3'-5' exonuclease with a catalytic pocket located in the hollow near the center. The catalytic residues Asp183, Glu185, Asp267, His322 and Asp327 constitute the DEDDh motif in ISG20L2. The active pocket represents conformational flexibility in the absence of an RNA substrate. Using structural superposition and mutagenesis assay, we mapped RNA substrate binding residues in ISG20L2. Finally, cellular assays revealed that ISG20L2 is aberrantly up-regulated in colon adenocarcinoma and promotes colon cancer cell proliferation through regulating ribosome biogenesis. Together, these results reveal that ISG20L2 is a new enzymatic member for 18S pre-rRNA maturation, provide insights into the mechanism of ISG20L2 underlying pre-rRNA processing, and suggest that ISG20L2 is a potential therapeutic target for colon adenocarcinoma.
Collapse
Affiliation(s)
- Yinliang Ma
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Jiaxu Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- College of Life Sciences, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453002 Henan, China
| | - Xingyi He
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Yuhang Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Shuo Zhen
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Lina An
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Qian Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Fumin Niu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Hong Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Boran An
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002 Hebei, China
| | - Xinyue Tai
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Chen Wu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Xiaoyun Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Xiuhua Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| |
Collapse
|
3
|
Stitch M, Boota RZ, Chalkley AS, Keene TD, Simpson JC, Scattergood PA, Elliott PIP, Quinn SJ. Photophysical Properties and DNA Binding of Two Intercalating Osmium Polypyridyl Complexes Showing Light-Switch Effects. Inorg Chem 2022; 61:14947-14961. [PMID: 36094851 PMCID: PMC9516684 DOI: 10.1021/acs.inorgchem.2c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The synthesis and
photophysical characterization of two osmium(II)
polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2′,3′-c]phenazine) and dppp2 (pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene)
ancillary ligands, are reported. The complexes exhibit complex electrochemistry
with five distinct reductive redox couples, the first of which is
assigned to a TAP-based process. The complexes emit in the near-IR
(1 at 761 nm and 2 at 740 nm) with lifetimes
of >35 ns with a low quantum yield of luminescence in aqueous solution
(∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT
and GC oligodeoxynucleotides with high affinities. In the presence
of natural DNA, the visible absorption spectra are found to display
significant hypochromic shifts, which is strongly evident for the
ligand-centered π–π* dppp2 transition at 355 nm,
which undergoes 46% hypochromism. The emission of both complexes increases
upon DNA binding, which is observed to be sensitive to the Δ
or Λ enantiomer and the DNA composition. A striking result is
the sensitivity of Λ-2 to the presence of AT DNA,
where a 6-fold enhancement of luminescence is observed and reflects
the nature of the binding for the enantiomer and the protection from
solution. Thermal denaturation studies show that both complexes are
found to stabilize natural DNA. Finally, cellular studies show that
the complexes are internalized by cultured mammalian cells and localize
in the nucleus. Osmium(II)
polypyridyl complexes comprising extended dipyrido[3,2-a:2′,3′-c]phenazine (1) and pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline (2) intercalating ligands
are shown to be effective DNA binders accompanied by enhanced near-IR
emission. The emission response to B-DNA is found to be sensitive
to the enantiomer and the composition of DNA, with greater emission
observed for AT-rich sequences. Thermal denaturation studies show
that both complexes stabilize natural DNA. Cellular studies show that
the complexes are internalized by cultured mammalian cells and localize
in the nucleus.
Collapse
Affiliation(s)
- Mark Stitch
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rayhaan Z Boota
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Alannah S Chalkley
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Tony D Keene
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Paul A Scattergood
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul I P Elliott
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
4
|
Lau KM, To KF. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer. Int J Mol Sci 2016; 17:E1434. [PMID: 27589731 PMCID: PMC5037713 DOI: 10.3390/ijms17091434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.
Collapse
Affiliation(s)
- Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Montano MM, Krishnamurthy N, Sripathy S. TARGETING THE GENOTOXIC EFFECTS OF ESTROGENS. ACTA ACUST UNITED AC 2013; 9:e29-e33. [PMID: 23795205 DOI: 10.1016/j.ddmec.2012.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our studies indicate that expression of antioxidative stress enzymes is upregulated by Selective Estrogen Receptor Modulators (SERMs) in breast epithelial cell lines, providing protection against the genotoxic effects of estrogens and against estrogen-induced mammary tumorigenesis. This upregulation of antioxidative stress enzymes requires Estrogen Receptor beta (ERβ) and human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). Further studies indicate that hPMC2 has a functional exonuclease domain that is required for upregulation of antioxidative stress enzymes by SERMs and repair of estrogen-induced abasic sites.
Collapse
Affiliation(s)
- Monica M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
6
|
Yu J, Zhao Y, Li B, Sun L, Huo H. 17β-estradiol regulates the expression of antioxidant enzymes in myocardial cells by increasing Nrf2 translocation. J Biochem Mol Toxicol 2012; 26:264-9. [PMID: 22730333 DOI: 10.1002/jbt.21417] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/01/2012] [Accepted: 04/25/2012] [Indexed: 11/11/2022]
Abstract
The transcription factor-E2-related factor 2 (Nrf2) is an important regulator against the process of oxidative stress. It can effectively scavenge oxygen-free radicals within cells to maintain homeostasis. In this study, we cultured primary myocardial cells, established the hypoxia/reoxygenation (H/R) model to simulate myocardial ischemia/reperfusion injury, and examined effects of 17β-estradiol (E2) on the quantitative changes of Nrf2 in cytosolic and nuclear extracts, the mRNA expression of heme oxygenase 1 (HO-1), superoxide dismutase (Cu/Zn-SOD), glutathione S transferase (GST), and glutamate cysteine ligase amide (GCL) of each model group by Western blot assays and reverse transcription polymerase chain reaction, to investigate the effects of E2 against H/R/ injury in cultured myocardial cells. The present study shows that E2 can upregulate Nrf2 in nuclear extracts and increase the expression of HO-1, Cu/Zn-SOD, GST, and GCL significantly during H/R injury. Hence, our present findings suggest that E2 exhibits its antioxidant role by upregulating Nrf2 in nuclear extracts.
Collapse
Affiliation(s)
- Jiajia Yu
- School of Life Science Northeast Normal University, Changchun, Jilin 130024, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Krishnamurthy N, Ngam CR, Berdis AJ, Montano MM. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites. Oncogene 2011; 30:4731-9. [PMID: 21602889 PMCID: PMC3161170 DOI: 10.1038/onc.2011.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/28/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
We have previously reported that the expression of antioxidative stress enzymes is upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor β (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'-5' non-processive exonuclease that degrades both single-stranded and double-stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2, indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation (ChIP) assays also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus, our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention.
Collapse
Affiliation(s)
- N Krishnamurthy
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
8
|
Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, Kim HB. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, chungkookjang. Nutr Cancer 2011; 63:645-52. [PMID: 21547849 DOI: 10.1080/01635581.2011.551987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chungkookjang is a Korean fermented soybean containing microorganisms, proteinase, and diverse bioactive compounds, including a high concentration of isoflavones and peptides. Growth of breast cancer MCF7 cells decreased dependent on the concentration of fermented soybean extracts. The effect of fermented soybean on cellular gene expression was determined in a systematic manner comprehensively. DNA microarray analysis was performed using 25,804 probes. Ninety one genes whose expression levels were significantly changed were selected. TGFβI and Smad3 were upregulated. Downregulation of inflammation-related CSF2, CSF2RA, and CSF3 was found. Differential expression of chemokines CCL2, CCL3, CCL3L3, CXCL1, and CXCL2 were observed. Network analysis identified ERβ in the network. Based on the experimental results, taking fermented soybean might be helpful for preventing breast cancer by a mechanism activating TGFβ pathway and depressing inflammation.
Collapse
Affiliation(s)
- Jae Sung Hwang
- Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University, Asan, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Deroo BJ, Buensuceso AV. Minireview: Estrogen receptor-beta: mechanistic insights from recent studies. Mol Endocrinol 2010; 24:1703-14. [PMID: 20363876 DOI: 10.1210/me.2009-0288] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The discovery of estrogen receptor-beta (ERbeta) in 1996 stimulated great interest in the physiological roles and molecular mechanisms of ERbeta action. We now know that ERbeta plays a major role in mediating estrogen action in several tissues and organ systems, including the ovary, cardiovascular system, brain, and the immune system, and that ERbeta and ERalpha generally play distinct physiological roles in the body. Although significant progress has been made toward understanding the molecular mechanisms of ERbeta action, particularly in vitro, there remains a large gap in our understanding of the mechanisms by which ERbeta elicits its biological functions in a true physiological context.
Collapse
Affiliation(s)
- Bonnie J Deroo
- The University of Western Ontario, Room A4-144, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario, Canada N6C 2V5.
| | | |
Collapse
|
10
|
Swedenborg E, Power KA, Cai W, Pongratz I, Rüegg J. Regulation of estrogen receptor beta activity and implications in health and disease. Cell Mol Life Sci 2009; 66:3873-94. [PMID: 19669093 PMCID: PMC11115682 DOI: 10.1007/s00018-009-0118-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
Together with the estrogen receptor (ER) alpha, estrogen receptor beta (ER beta ) mediates many of the physiological effects of estrogens. As ER beta is crucially involved in a variety of important physiological processes, its activity should be tightly regulated. ER beta regulation is achieved by hormone binding as well as by posttranslational modifications of the receptor. Furthermore, ER beta expression levels are under circadian control and can be regulated by DNA methylation of the ER beta promoter region. There are also a number of factors that can interfere with ER beta activity, such as phytoestrogens, endocrine disruptive chemicals, and growth factors. In this article, we outline different mechanisms of ER beta regulation and how they are implicated in various diseases. We also discuss how these insights might help to specifically target ER beta in drug design.
Collapse
Affiliation(s)
- Elin Swedenborg
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Krista A. Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Wen Cai
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Ingemar Pongratz
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Joëlle Rüegg
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, 141 57 Huddinge, Sweden
| |
Collapse
|
11
|
hPMC2 is required for recruiting an ERbeta coactivator complex to mediate transcriptional upregulation of NQO1 and protection against oxidative DNA damage by tamoxifen. Oncogene 2008; 27:6376-84. [PMID: 18663360 DOI: 10.1038/onc.2008.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the presence of ERbeta, trans-hydroxytamoxifen (TOT) protects cells against 17beta-estradiol (E(2))-induced oxidative DNA damage (ODD) and this correlates with increased expression of the antioxidative enzyme quinone reductase (QR). Here, we investigate the molecular mechanism responsible for ERbeta-mediated protection against ODD. We observe constitutive interaction between ERbeta and the novel protein hPMC2. Using a combination of breast epithelial cell lines that are either positive or negative for ERalpha, we demonstrate TOT-dependent recruitment of both ERbeta and hPMC2 to the EpRE (electrophile response element)-regulated antioxidative enzyme QR. We further demonstrate TOT-dependent corecruitment of the coactivators Nrf2, PARP-1 (poly (ADP-ribose) polymerase 1) and topoisomerase IIbeta, both in the presence and absence of ERalpha. However, absence of either ERbeta or hPMC2 results in nonrecruitment of PARP-1 and topoisomerase IIbeta, loss of antioxidative enzyme induction and attenuated protection against ODD by TOT even in the presence of Nrf2 and ERalpha. These findings indicate minor role for Nrf2 and ERalpha in TOT-dependent antioxidative gene regulation. However, downregulation of PARP-1 attenuates TOT-dependent antioxidative gene induction. We conclude that ERbeta and hPMC2 are required for TOT-dependent recruitment of coactivators such as PARP-1 to the EpRE resulting in the induction of antioxidative enzymes and subsequent protection against ODD.
Collapse
|
12
|
Couté Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, Bezin L, Sanchez JC, Diaz JJ. ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Mol Cell Proteomics 2007; 7:546-59. [PMID: 18065403 DOI: 10.1074/mcp.m700510-mcp200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proteomics analyses of human nucleoli provided molecular bases for an understanding of the multiple functions fulfilled by these nuclear domains. However, the biological roles of about 100 of the identified proteins are unpredictable. The present study describes the functional characterization of one of these proteins, ISG20L2. We demonstrate that ISG20L2 is a 3' to 5' exoribonuclease involved in ribosome biogenesis at the level of 5.8 S rRNA maturation, more specifically in the processing of the 12 S precursor rRNA. The use of truncated forms of ISG20L2 demonstrated that its N-terminal half promotes the nucleolar localization and suggested that its C-terminal half bears the exoribonuclease activity. Identification of the binding partners of ISG20L2 confirmed its involvement in the biogenesis of the large ribosomal subunit. These results strongly support the notion that, in human, as it was demonstrated in yeast, 5.8 S rRNA maturation requires several proteins in addition to the exosome complex. Furthermore this observation greatly sustains the idea that the extremely conserved need for correctly processed rRNAs in vertebrates and yeast is achieved by close but different mechanisms.
Collapse
Affiliation(s)
- Yohann Couté
- Biomedical Proteomics Research Group, Département de Biologie Structurale et Bioinformatique, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ricke WA, Wang Y, Cunha GR. Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation 2007; 75:871-82. [PMID: 17924963 DOI: 10.1111/j.1432-0436.2007.00224.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgens have long been known to be the major sex hormones that target the prostate during development, maturation, and carcinogenesis. It is now apparent that estrogens, both those synthesized by the body as well as those from our environment, also target the prostate during all stages of development. Little is known about the mechanisms involved in estrogen stimulation of carcinogenesis and less is known about how to prevent or treat prostate cancer through estrogenic pathways. To better understand how estrogens mediate their carcinogenic effects, the respective roles of estrogen receptor (ER)-alpha and ER-beta must be elucidated in the epithelial and stromal cells that constitute the prostate. Lastly, the significance of ER signaling during various ontogenic periods must be determined. Answers to these questions will further our understanding of the mechanisms of estrogen/ER signaling and will serve as a basis for chemopreventive and/or chemotherapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- William A Ricke
- Department of Urology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
14
|
Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol 2006; 73:314-20. [PMID: 16715232 DOI: 10.1007/s00253-006-0474-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 04/14/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Hydrolysis of isoflavone glycosides by Bacillus subtilis natto NTU-18 in black soymilk is reported. At the concentration of 3-5% (w/v), black soymilk in flask cultures, the isoflavones, daidzin, and genistin were highly deglycosylated within 24 h. Deglycosylation of isoflavones was further carried out in a 7-l fermenter with 5% black soymilk. During the fermentation, viable cells increased from 10(3) to 10(9) CFU ml(-1) in 15 h, and the activity of beta-glucosidase appeared at 8 h after inoculation and reached a maximum (3.3 U/ml) at 12 h, then decreased rapidly. Deglycosylation of isoflavone glycosides was observed at the same period, the deglycosylation rate of daidzin and genistin at 24 h was 100 and 75%, respectively. It is significantly higher than the previous reports of fermentation with lactic acid bacteria. In accordance with the deglycosylation of isoflavone glycosides, the estrogenic activity of the 24 h fermented black soymilk for ERbeta estrogen receptor increased to threefold; meanwhile, the fermented broth activated ERalpha estrogen receptor to a less extent than ERbeta. These results suggest that this fermentation effectively hydrolyzed the glycosides from isoflavone in black soymilk and the fermented black soymilk has the potential to be applied to selective estrogen receptor modulator products.
Collapse
Affiliation(s)
- Lun-Cheng Kuo
- Institute of Microbiology and Biochemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
15
|
Ho SM, Leung YK, Chung I. Estrogens and Antiestrogens as Etiological Factors and Therapeutics for Prostate Cancer. Ann N Y Acad Sci 2006; 1089:177-93. [PMID: 17261766 DOI: 10.1196/annals.1386.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mounting evidence supports a key role played by estrogen or estrogen in synergy with an androgen, in the pathogenesis of prostate cancer (PCa). New experimental data suggest that this process could begin as early as prenatal life. During adulthood, estrogen carcinogenicity is believed to be mediated by the combined effects of hormone-induced, unscheduled cell proliferation and bioactivation of estrogens to genotoxic carcinogens. Increased bioavailability of estrogen through age-dependent increases in conversion from androgen could also be a contributing factor. Individual variations and race-/ethnic-based differences in circulating or locally formed estrogens or in tissue estrogen responsiveness may explain differential PCa risk among individuals or different populations. Estrogen receptor (ER)-alpha and ER-beta are the main mediators of estrogen action in the prostate. However, ER-beta is the first ER subtype expressed in the fetal prostate. During cancer development, ER-beta expression is first lost as tumors progress into high grade in the primary site. Yet, its reexpression occurs in all metastatic cases of PCa. A change in cytosine methylation in a regulatory CpG island located in the proximal promoter of ER-beta may constitute an "on/off" switch for reversible regulation of ER-beta expression. A variety of estrogenic/antiestrogenic/selective estrogen receptor modulator (SERM)-like compounds have been shown to use non-ERE pathways, such as tethering of ER-beta to NF-kappaB binding proteins, Sp2, or Ap1 for gene transactivation. These findings open new avenues for drug design that now focuses on developing a new generation of estrogen-based PCa therapies with maximal proapoptotic action but few or no side effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
16
|
Krieg AJ, Hammond EM, Giaccia AJ. Functional analysis of p53 binding under differential stresses. Mol Cell Biol 2006; 26:7030-45. [PMID: 16980608 PMCID: PMC1592883 DOI: 10.1128/mcb.00322-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia and DNA damage stabilize the p53 protein, but the subsequent effect that each stress has on transcriptional regulation of known p53 target genes is variable. We have used chromatin immunoprecipitation followed by CpG island (CGI) microarray hybridization to identify promoters bound by p53 under both DNA-damaging and non-DNA-damaging conditions in HCT116 cells. Using gene-specific PCR analysis, we have verified an association with CGIs of the highest enrichment (> 2.5-fold) (REV3L, XPMC2H, HNRPUL1, TOR1AIP1, glutathione peroxidase 1, and SCFD2), with CGIs of intermediate enrichment (> 2.2-fold) (COX7A2L, SYVN1, and JAG2), and with CGIs of low enrichment (> 2.0-fold) (MYC and PCNA). We found little difference in promoter binding when p53 is stabilized by these two distinctly different stresses. However, expression of these genes varies a great deal: while a few genes exhibit classical induction with adriamycin, the majority of the genes are unchanged or are mildly repressed by either hypoxia or adriamycin. Further analysis using p53 mutated in the core DNA binding domain revealed that the interaction of p53 with CGIs may be occurring through both sequence-dependent and -independent mechanisms. Taken together, these experiments describe the identification of novel p53 target genes and the subsequent discovery of distinctly different expression phenomena for p53 target genes under different stress scenarios.
Collapse
Affiliation(s)
- Adam J Krieg
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA
| | | | | |
Collapse
|
17
|
Miller KP, Ramos KS. DNA sequence determinants of nuclear protein binding to the c-Ha-ras antioxidant/electrophile response element in vascular smooth muscle cells: identification of Nrf2 and heat shock protein 90 beta as heterocomplex components. Cell Stress Chaperones 2006; 10:114-25. [PMID: 16038408 PMCID: PMC1176470 DOI: 10.1379/csc-73r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The antioxidant/electrophile response element (ARE/EpRE) is a cis-acting element involved in redox regulation of c-Ha-ras gene. Protein binding to the ARE/EpRE may be credited to deoxyribonucleic acid sequence; therefore, studies were conducted to evaluate the influence of internal and flanking regions to the 10-bp human c-Ha-ras ARE/EpRE core (hHaras10) on nuclear protein binding in oxidant-treated vascular smooth muscle cells. A protein doublet bound to an extended oligonucleotide comprising the ARE/EpRE core in genomic context (hHaras27), whereas a single complex bound to hHarasl0. Protein binding involved specific interactions of 25- and 23-kDa proteins with hHarasl0, and binding of 80-, 65-, and 55-kDa proteins to hHaras27. Competition assays with hNQO1 and rGSTA2 confirmed the specificity of deoxyribonucleic acid-protein interactions and indicated preferred binding of p25 and p23 to the c-Ha-ras ARE/EpRE. "NNN" sequences within the core afforded unique protein-binding profiles to the c-Ha-ras ARE/EpRE. In addition, Nrf2 and heat shock protein 90beta (p80) were identified as components of the c-Ha-ras ARE/EpRE heterocomplex. We conclude that both internal bases and flanking sequences regulate nuclear protein recruitment and complex assembly on the c-Ha-ras ARE/EpRE.
Collapse
Affiliation(s)
- Kimberly P Miller
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
18
|
Bianco N, Chaplin L, Montano M. Differential induction of quinone reductase by phytoestrogens and protection against oestrogen-induced DNA damage. Biochem J 2005; 385:279-87. [PMID: 15456407 PMCID: PMC1134696 DOI: 10.1042/bj20040959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quinone reductase (QR) is a phase II detoxification enzyme that plays an important role in detoxifying quinones and may help maintain the antioxidant function of the cell. We have previously observed that QR is up-regulated by anti-oestrogens, but not oestrogen, in breast cancer cells via ERbeta (oestrogen receptor beta) transactivation. Such QR induction appears to protect breast cells against oestrogen-induced oxidative DNA damage, most likely by reducing reactive oestrogen metabolites termed catecholestrogen-quinones back to the hydroxy-catecholestrogens which may be conjugated. We now report that the phytoestrogens biochanin A, genistein and resveratrol also up-regulate QR expression in breast cancer cells. We observe that regulation can occur at the transcriptional level, preferentially through ERbeta transactivation at the electrophile response element of the QR gene promoter. By chromatin immunoprecipitation analysis, we show binding of ERalpha and ERbeta to the QR promoter, with increased ERbeta binding in the presence of resveratrol. Functional studies show that biochanin A and resveratrol, but not genistein, can significantly protect against oestrogen-induced oxidative DNA damage in breast cancer cells. Antisense technology was used to determine whether such protection was dependent on ERbeta or QR. Our results with resveratrol are consistent with our hypothesis that the protective ability of resveratrol is partially dependent on the presence of ERbeta and QR. In conclusion, we postulate that phytoestrogen-mediated induction of QR may represent an additional mechanism for breast cancer protection, although the effects may be specific for a given phytoestrogen.
Collapse
Affiliation(s)
- Nicole R. Bianco
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
| | - Laura J. Chaplin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Ansell PJ, Espinosa-Nicholas C, Curran EM, Judy BM, Philips BJ, Hannink M, Lubahn DB. In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens. Endocrinology 2004; 145:311-7. [PMID: 14551226 DOI: 10.1210/en.2003-0817] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding estrogen's regulation of phase II detoxification enzymes is important in explaining how estrogen exposure increases the risk of developing certain cancers. Phase II enzymes such as glutathione-S-transferases (GST) and quinone reductase protect against developing chemically induced cancers by metabolizing reactive oxygen species. Phase II enzyme expression is regulated by a cis-acting DNA sequence, the antioxidant response element (ARE). It has previously been reported that several antiestrogens, but not 17beta-estradiol, could regulate ARE-mediated gene transcription. Our goal was to determine whether additional estrogenic compounds could regulate ARE-mediated gene expression both in vitro and in vivo. We discovered that physiological concentrations (10 nm) of 17beta-estradiol repressed GST Ya ARE-dependent gene expression in vitro. Treatment with other endogenous and anti-, xeno-, and phytoestrogens showed that estrogen receptor/ARE signaling is ligand, receptor subtype, and cell type specific. Additionally, GST and quinone reductase activities were significantly lowered in a dose-dependent manner after 17beta-estradiol exposure in the uteri of mice. In conclusion, we have shown that 17beta-estradiol, and other estrogens, down-regulate phase II enzyme activities. We propose estrogen-mediated repression of phase II enzyme activities may increase cellular oxidative DNA damage that ultimately can result in the formation of cancer in some estrogen-responsive tissues.
Collapse
Affiliation(s)
- P J Ansell
- Department of Biochemistry, MU Center for Phytonutrient and Phytochemical Studies, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ho SM. Estrogens and anti-estrogens: Key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 2004; 91:491-503. [PMID: 14755680 DOI: 10.1002/jcb.10759] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the historical use of estrogens in the treatment of prostate cancer (PCa) little is known about their direct biological effects on the prostate, their role in carcinogenesis, and what mechanisms mediate their therapeutic effects on PCa. It is now known that estrogens alone, or in synergism with an androgen, are potent inducers of aberrant growth and neoplastic transformation in the prostate. The mechanisms of estrogen carcinogenicity could be mediated via induction of unscheduled cell proliferation or through metabolic activation of estrogens to genotoxic metabolites. Age-related changes and race-/ethnic-based differences in circulating or locally formed estrogens may explain differential PCa risk among different populations. Loss of expression of estrogen receptor (ER)-beta expression during prostate carcinogenesis and prevention of estrogen-mediated oxidative damage could be exploited in future PCa prevention strategies. Re-expression of ER-beta in metastatic PCa cells raises the possibility of using ER-beta-specific ligands in triggering cell death in these malignant cells. A variety of new estrogenic/anti-estrogenic/selective estrogen receptor modulator (SERM)-like compounds, including 2-methoxyestradiol, genistein, resveratrol, licochalcone, Raloxifene, ICI 182,780, and estramustine are being evaluated for their potential in the next generation of PCa therapies. Increasing numbers of patients self-medicate with herbal formulations such as PC-SPES. Some of these compounds are selective ER-beta ligands, while most of them have minimal interaction with ER-alpha. Although many may inhibit testosterone production by blockade of the hypothalamal-pituitary-testis axis, the most effective agents also exhibit direct cytostatic, cytotoxic, or apoptotic action on PCa cells. Some of them are potent in interfering with tubulin polymerization, blocking angiogenesis and cell motility, suppressing DNA synthesis, and inhibiting specific kinase activities. Further discovery of other compounds with potent apoptotic activities but minimal estrogen action should promote development of a new generation of effective PCa preventive or treatment regimens with few or no side-effects due to estrogenicity. Further advancement of our knowledge of the role of estrogens in prostate carcinogenesis through metabolic activation of estrogens and/or ER-mediated pathways will certainly result in better preventive or therapeutic modalities for PCa.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Surgery, Division of Urology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
21
|
Montano MM, Deng H, Liu M, Sun X, Singal R. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene 2003; 23:2442-53. [PMID: 14676828 DOI: 10.1038/sj.onc.1207358] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that antiestrogen-liganded estrogen receptor beta (ERbeta) transcriptionally activates the major detoxifying enzyme quinone reductase (QR) (NAD(P)H:quinone oxidoreductase). Our studies also indicate that upregulation of QR, either by overexpression or induction by tamoxifen, can protect breast cells against oxidative DNA damage caused by estrogen metabolites. We now report on the upregulation of glutathione S-transferases Pi (GST-Pi) and gamma-glutamylcysteine synthetase heavy subunit (GCSh) expression by antiestrogens. Studies indicate the regulation of GST-Pi and GCSh transcriptional activity by ER. While ER regulation is mediated by an electrophile response element (EpRE), we identified mechanistic differences in the involvement of other transcription factors. Regardless of these differences, ER beta-mediated regulation of GST-Pi and GCSh point towards an important role for ER beta in cellular protection against oxidative stress. A protective role is supported by our observation of inhibition of estrogen-induced DNA damage upon upregulation of GST-Pi and GCSh expression.
Collapse
Affiliation(s)
- Monica M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44102, USA.
| | | | | | | | | |
Collapse
|
22
|
Lee JM, Anderson PC, Padgitt JK, Hanson JM, Waters CM, Johnson JA. Nrf2, not the estrogen receptor, mediates catechol estrogen-induced activation of the antioxidant responsive element. ACTA ACUST UNITED AC 2003; 1629:92-101. [PMID: 14522084 DOI: 10.1016/j.bbaexp.2003.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The antioxidant responsive element (ARE) plays an important role in the gene expression of phase II detoxification enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1), and NF-E2-related factor2 (Nrf2) is the transcription factor for the ARE-driven genes. Interestingly, estrogen receptor (ER) was reported to increase NQO1 gene expression through the ARE. In this study, we investigated the role of ER and Nrf2 in ARE activation using IMR-32 cells and mouse primary astrocytes. Among tested estrogen-related compounds, only catechol estrogens (i.e. 4-hydroxyestradiol) activated the ARE. Since 4-hydroxyestradiol-induced ARE activation was not inhibited by either 17beta-estradiol or tamoxifen, and overexpression of ER-alpha decreased 4-hydroxyestradiol-induced ARE activation, ARE activation by catechol estrogen was independent of ER. Nrf2, however, was very important in the 4-hydroxyestradiol-induced ARE activation. 4-Hydroxyestradiol did not activate the ARE in Nrf2 knockout (-/-) primary astrocytes, but did activate the ARE when Nrf2 was transfected into Nrf2-/- astrocytes. In addition, dominant negative Nrf2 completely blocked 4-hydroxyestradiol-induced ARE activation in Nrf2+/+ astrocytes, and only 4-hydroxyestradiol induced Nrf2 nuclear translocation in IMR-32 cells. A selective phosphatidylinositol 3-kinase (PI3-kinase) inhibitor (LY294002) blocked 4-hydroxyestradiol-induced Nrf2 nuclear translocation and NQO1 activity induction in IMR-32 cells. Taken together, these observations suggest that 4-hydroxyestradiol activates the ARE by a PI3-kinase-Nrf2 dependent mechanism, not involving ER.
Collapse
Affiliation(s)
- Jong-Min Lee
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
23
|
Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 2002; 277:42769-74. [PMID: 12198130 DOI: 10.1074/jbc.m206911200] [Citation(s) in RCA: 833] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2, a basic leucine zipper transcription factor, is an essential activator of the coordinated transcription of genes encoding antioxidant enzymes and phase II detoxifying enzymes through the regulatory sequence termed antioxidant response element (ARE). Recently we reported evidence for the involvement of protein kinase C (PKC) in phosphorylating Nrf2 and triggering its nuclear translocation in response to oxidative stress. We show here that phosphorylation of purified rat Nrf2 by the catalytic subunit of PKC was blocked by a synthetic peptide mimicking one of the potential PKC sites. Accordingly, Nrf2 bearing a Ser to Ala mutation at amino acid 40 (S40A) could not be phosphorylated by PKC. The S40A mutation did not affect in vitro binding of Nrf2/MafK to the ARE. However, it partially impaired Nrf2 activation of ARE-driven transcription in a reporter gene assay when Keap1 was overexpressed. In vitro transcribed/translated Keap1 could be coimmunoprecipitated with Nrf2. Phosphorylation of wild-type Nrf2 by PKC promoted its dissociation from Keap1, whereas the Nrf2-S40A mutant remained associated. These findings together with our prior studies suggest that the PKC-catalyzed phosphorylation of Nrf2 at Ser-40 is a critical signaling event leading to ARE-mediated cellular antioxidant response.
Collapse
Affiliation(s)
- H-C Huang
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | |
Collapse
|
24
|
Bianco NR, Montano MM. Regulation of prothymosin alpha by estrogen receptor alpha: molecular mechanisms and relevance in estrogen-mediated breast cell growth. Oncogene 2002; 21:5233-44. [PMID: 12149645 DOI: 10.1038/sj.onc.1205645] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 05/03/2002] [Accepted: 05/07/2002] [Indexed: 12/25/2022]
Abstract
Prothymosin alpha (PTalpha) is a small highly acidic protein found in the nuclei of virtually all mammalian tissues. Its high conservation in mammals and wide tissue distribution suggest an essential biological role. While the exact mechanism of action of PTalpha remains elusive, the one constant has been its relationship with the proliferative state of the cell and its requirement for cellular growth and survival. Recently PTalpha was found to promote transcriptional activity by sequestering the anticoactivator, REA from the Estrogen Receptor (ER) complex. We now report that Estradiol (E2) upregulates PTalpha mRNA and protein expression. Further studies indicate that ERalpha regulates PTalpha gene transcriptional activity. We have also delimited the region of PTalpha gene promoter involved in ERalpha-mediated transcriptional regulation and identified a novel ERalpha-binding element. Increased intracellular PTalpha expression in the presence of estrogens is accompanied by increased nuclear/decreased cytoplasmic localization. Increased nuclear expression of PTalpha is correlated with increased proliferation as measured by expression of Ki67 nuclear antigen. Conversely, inhibition of nuclear PTalpha expression in breast cancer cells using antisense methodology resulted in the inhibition of E2-induced breast cancer cell proliferation. Overall these studies underscore the importance of PTalpha in estrogen-induced breast cell proliferation.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/metabolism
- Cell Division/physiology
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA Primers/chemistry
- Electrophoretic Mobility Shift Assay
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Gene Deletion
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Mutagenesis, Site-Directed
- Polymerase Chain Reaction
- Prohibitins
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/metabolism
- Receptors, Estrogen/physiology
- Retroviridae
- Thymosin/analogs & derivatives
- Thymosin/genetics
- Thymosin/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Nicole R Bianco
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, OH 44122, USA
| | | |
Collapse
|
25
|
Holderman MT, Miller KP, Dangott LJ, Ramos KS. Identification of albumin precursor protein, Phi AP3, and alpha-smooth muscle actin as novel components of redox sensing machinery in vascular smooth muscle cells. Mol Pharmacol 2002; 61:1174-83. [PMID: 11961136 DOI: 10.1124/mol.61.5.1174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerobic organisms are continually subjected to environmental stressors that compromise redox homeostasis and induce cellular injury. In vascular smooth muscle cells (vSMCs), the activation/repression of redox-regulated genes after environmental stress often involves protein binding to cis-acting antioxidant response elements (AREs). The present study was conducted to identify proteins that participate in redox-regulated protein binding to human c-Ha-ras and mouse glutathione S-transferase A1 AREs in vSMCs after oxidant injury. Challenge of vSMCs with 0.3 or 3 microM hydrogen peroxide, 3-methylcholanthrene, benzo[a]pyrene-7,8-diol, 3-hydroxy benzo[a]pyrene, and benzo[a]pyrene-3,6-quinone induced concentration-related increases in ARE protein binding. The profiles of ARE complex assembly were comparable, but exhibited chemical specificity. Pretreatment with 0.5 mM N-acetylcysteine inhibited activation of ARE protein binding in hydrogen peroxide-treated cells. Preparative electrophoretic mobility shift assays coupled to Western analysis identified NF-E2-related proteins 1 and 2 and JunD in complexes assembled on AREs. Polyethylenimine affinity and sequence-specific serial immobilized DNA affinity chromatography followed by N-terminal sequencing identified albumin precursor protein, phi AP3, and alpha-smooth muscle actin as members of the ARE signaling pathway. Sequence analysis of albumin protein revealed homology to the redox-regulated transcription factors Bach1 and 2, as well as cytoskeletal and molecular motor proteins. These results implicate albumin precursor protein, phi AP3, and alpha-smooth muscle actin as participants in redox sensing in vSMCs, and suggest that protein complex assembly involves interactions between leucine zipper and zinc finger transcription factors with cytoskeletal proteins.
Collapse
MESH Headings
- Actins/metabolism
- Albumins/metabolism
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatography, Affinity
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- NF-E2-Related Factor 2
- Nuclear Respiratory Factors
- Organophosphorus Compounds/chemistry
- Oxidation-Reduction
- Polyethyleneimine/chemistry
- Protein Precursors/metabolism
- Protein Structure, Tertiary
- Sequence Analysis, Protein
- Signal Transduction
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- M T Holderman
- Department of Physiology and Pharmacology, Center for Environmental and Rural Health, Texas A&M University, College Station, Texas 77843-4455, USA
| | | | | | | |
Collapse
|