1
|
Adeoye AO, Lobb KA. Malaria parasite cysteine and aspartic proteases as key drug targets for antimalarial therapy. J Mol Model 2025; 31:78. [PMID: 39920505 DOI: 10.1007/s00894-025-06303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
CONTEXT Cysteine and aspartic proteases are enzyme families that play crucial roles in the life cycle of Plasmodium, the parasite responsible for malaria. These proteases are involved in vital biological processes, such as hemoglobin degradation within the host's red blood cells, protein turnover, and regulation of parasite development. Inhibiting these proteases with small molecule drugs can block the parasite's growth and survival. Chemically, these enzymes have specific active sites where inhibitors can bind, preventing the breakdown of key proteins, making them attractive targets for the design of novel antimalarial compounds. Understanding the structure and catalytic mechanisms of these proteases is critical for developing selective and potent inhibitors. The degradation of hemoglobin occurs in the parasite's digestive vacuole, and disruption of this process by targeting these proteases can inhibit parasite development, leading to the death of the parasite. Hence, these proteases are critical for maintaining the parasite's metabolic functions, and inhibiting them can disrupt the parasite's life cycle. Malaria remains a major global health problem, particularly in tropical and subtropical regions, where resistance to existing antimalarial drugs, such as chloroquine and artemisinin-based therapies, is an escalating issue. The emergence of drug-resistant Plasmodium strains highlights the urgent need for new therapeutic strategies. Targeting cysteine and aspartic proteases offers a novel approach to antimalarial drug development, as these enzymes are crucial for parasite survival and have not been widely exploited in current therapies. By inhibiting these proteases, researchers aim to develop new antimalarial treatments that could overcome resistance mechanisms and provide more effective options for malaria control and eradication. METHODS The application of computational methods such as molecular docking, dynamics simulations, and quantum mechanical calculations, combined with powerful molecular modeling tools, provides a comprehensive framework for discovering and optimizing inhibitors targeting Plasmodium cysteine and aspartic proteases. These methods facilitate the rational design of novel antimalarial drugs, offering a pathway to overcome drug resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Biomembrane and Toxicology Unit, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.
- Department of Chemistry, Rhodes University, Grahamstown, South Africa.
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
2
|
Nagar P, Bhowmick K, Chawla A, Malik MZ, Subbarao N, Kaur I, Dhar SK. Plasmodium falciparum cysteine protease Falcipain 3: A potential enzyme for proteolytic processing of histone acetyltransferase PfGCN5. Biotechnol Appl Biochem 2024; 71:1304-1315. [PMID: 38924147 DOI: 10.1002/bab.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.
Collapse
Affiliation(s)
- Poonam Nagar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Aishwarya Chawla
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| |
Collapse
|
3
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
4
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Yang L, Zhou R, Wang C, Xie X, Zhou S, Yin F. Host-parasite interactions: a study on the pathogenicity of different Mesanophrys sp. densities and hemocytes-mediated parasitic resistance of swimming crabs (Portunus trituberculatus). Parasitol Res 2023; 123:13. [PMID: 38060025 DOI: 10.1007/s00436-023-08046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Mesanophrys sp. is a parasitic ciliate that invades and destroys the hemocytes of the swimming crab (Portunus trituberculatus). In the present study, we employed an in vitro model to elucidate how Mesanophrys sp. destroys crab hemocytes. We also evaluated the relationship between the parasite's density, the destruction rate of the hemocytes, and the rapid proliferation pattern of parasites in host crabs. We found that the survival rate and cell integrity of crab hemocytes decreased with an increase in Mesanophrys sp. density, depicting a negative correlation between hemocyte viability and parasite density. Further analyses revealed that crab hemocytes could resist destruction by a low density (10 ind/mL) of Mesanophrys sp. for a long time (60 h). Mesanophrys sp. and its culture medium (containing the ciliate secretions) destroy the host hemocytes. The natural population growth rate of Mesanophrys sp. decreased with an increase in the parasite density, but the Mesanophrys sp. density did not affect the generation time of the parasites. In summary, Mesanophrys sp. can destroy crab hemocytes, and the degree of destruction is directly proportional to the parasite density. The resistance of crab hemocytes to Mesanophrys sp. decreased gradually with an increase in the parasite density.
Collapse
Affiliation(s)
- Lujia Yang
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China
| | - Ruiling Zhou
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China
| | - Chunlin Wang
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China
| | - Xiao Xie
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China
| | - Suming Zhou
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China.
| | - Fei Yin
- School of Marine Sciences, National Demonstration Center for Experimental (Aquaculture) Education, Ningbo University, 169 South Qixing Road, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
6
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Verma K, Lahariya AK, Verma G, Kumari M, Gupta D, Maurya N, Verma AK, Mani A, Schneider KA, Bharti PK. Screening of potential antiplasmodial agents targeting cysteine protease-Falcipain 2: a computational pipeline. J Biomol Struct Dyn 2023; 41:8121-8164. [PMID: 36218071 DOI: 10.1080/07391102.2022.2130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
The spread of antimalarial drug resistance is a substantial challenge in achieving global malaria elimination. Consequently, the identification of novel therapeutic candidates is a global health priority. Malaria parasite necessitates hemoglobin degradation for its survival, which is mediated by Falcipain 2 (FP2), a promising antimalarial target. In particular, FP2 is a key enzyme in the erythrocytic stage of the parasite's life cycle. Here, we report the screening of approved drugs listed in DrugBank using a computational pipeline that includes drug-likeness, toxicity assessments, oral toxicity evaluation, oral bioavailability, docking analysis, maximum common substructure (MCS) and molecular dynamics (MD) Simulations analysis to identify capable FP2 inhibitors, which are hence potential antiplasmodial agents. A total of 45 drugs were identified, which have positive drug-likeness, no toxic features and good bioavailability. Among these, six drugs showed good binding affinity towards FP2 compared to E64, an epoxide known to inhibit FP2. Notably, two of them, Cefalotin and Cefoxitin, shared the highest MCS with E64, which suggests that they possess similar biological activity as E64. In an investigation using MD for 100 ns, Cefalotin and Cefoxitin showed adequate protein compactness as well as satisfactory complex stability. Overall, these computational approach findings can be applied for designing and developing specific inhibitors or new antimalarial agents for the treatment of malaria infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ayush Kumar Lahariya
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Garima Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- School of Studies in Microbiology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Monika Kumari
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biotechnology, St. Aloysius' (Autonomous) College, Affiliated to Rani Durgawati University, Jabalpur, Madhya Pradesh, Jabalpur, India
| | - Divanshi Gupta
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biological Sciences, Rani Durgawati University, Jabalpur, Madhya Pradesh, India
| | - Neha Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Anil Kumar Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | | | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Parasite Host Biology, National Institute of Malaria Research, Delhi, India
| |
Collapse
|
8
|
Florin-Christensen M, Sojka D, Ganzinelli S, Šnebergerová P, Suarez CE, Schnittger L. Degrade to survive: the intricate world of piroplasmid proteases. Trends Parasitol 2023; 39:532-546. [PMID: 37271664 DOI: 10.1016/j.pt.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Piroplasmids of the genera Babesia, Theileria, and Cytauxzoon are tick-transmitted parasites with a high impact on animals and humans. They have complex life cycles in their definitive arthropod and intermediate vertebrate hosts involving numerous processes, including invasion of, and egress from, host cells, parasite growth, transformation, and migration. Like other parasitic protozoa, piroplasmids are equipped with different types of protease to fulfill many of such essential processes. Blockade of some key proteases, using inhibitors or antibodies, hinders piroplasmid growth, highlighting their potential usefulness in drug therapies and vaccine development. A better understanding of the functional significance of these enzymes will contribute to the development of improved control measures for the devastating animal and human diseases caused by these pathogens.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic
| | - Sabrina Ganzinelli
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
| | - Carlos E Suarez
- Washington State University/Animal Disease Research Unit USDA, Pullman, WA, USA
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
9
|
Jonsdottir TK, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Parkyn Schneider M, Charnaud SC, Dans MG, McConville M, Bullen HE, Crabb BS, Gilson PR. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog 2023; 19:e1011006. [PMID: 37523385 PMCID: PMC10414648 DOI: 10.1371/journal.ppat.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/10/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.
Collapse
Affiliation(s)
- Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan Elsworth
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Simon Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Ellen Ploeger
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | | | - Sarah C. Charnaud
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Madeline G. Dans
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Ettari R. Cysteine Proteases as Validated Targets for the Treatment of Neglected and Poverty-Related Parasitic Diseases. Int J Mol Sci 2023; 24:10097. [PMID: 37373243 DOI: 10.3390/ijms241210097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Neglected tropical diseases (NTDs) include 20 diverse infections mainly prevalent in tropical areas that mostly affect disadvantaged communities and women and children [...].
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
11
|
Yang N, Matthew MA, Yao C. Roles of Cysteine Proteases in Biology and Pathogenesis of Parasites. Microorganisms 2023; 11:1397. [PMID: 37374899 DOI: 10.3390/microorganisms11061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cysteine proteases, also known as thiol proteases, are a class of nucleophilic proteolytic enzymes containing cysteine residues in the enzymatic domain. These proteases generally play a pivotal role in many biological reactions, such as catabolic functions and protein processing, in all living organisms. They specifically take part in many important biological processes, especially in the absorption of nutrients, invasion, virulence, and immune evasion of parasitic organisms from unicellular protozoa to multicellular helminths. They can also be used as parasite diagnostic antigens and targets for gene modification and chemotherapy, as well as vaccine candidates, due to their species and even life-cycle stage specificity. This article highlights current knowledge on parasitic cysteine protease types, biological functions, and their applications in immunodiagnosis and chemotherapy.
Collapse
Affiliation(s)
- Nawu Yang
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Maurice A Matthew
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
12
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
13
|
Chakraborty S, Biswas S. Structure-Based Optimization of Protease-Inhibitor Interactions to Enhance Specificity of Human Stefin-A against Falcipain-2 from the Plasmodium falciparum 3D7 Strain. Biochemistry 2023; 62:1053-1069. [PMID: 36763907 DOI: 10.1021/acs.biochem.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2), involved in host hemoglobin degradation and instrumental in parasite survival, has long been proposed as a promising malarial drug target. However, designing active-site-targeted small-molecule inhibitors of FP2 becomes challenging due to their off-target specificity toward highly homologous human cysteine cathepsins. The use of proteinaceous inhibitors, which have nonconserved exosite interactions and larger interface area, can effectively circumvent this problem. In this study, we report for the first time that human stefin-A (STFA) efficiently inhibits FP2 with Ki values in the nanomolar range. The FP2-STFA complex crystal structure, determined in this study, and sequence analyses identify a unique nonconserved exosite interaction, compared to human cathepsins. Designing a mutation Lys68 > Arg in STFA amplifies its selectivity garnering a 3.3-fold lower Ki value against FP2, and the crystal structure of the FP2-STFAK68R complex shows stronger electrostatic interaction between side-chains of Arg68 (STFAK68R) and Asp109 (FP2). Comparative structural analyses and molecular dynamics (MD) simulation studies of the complexes further confirm higher buried surface areas, better interaction energies for FP2-STFAK68R, and consistency of the newly developed electrostatic interaction (STFA-R68-FP2-D109) in the MD trajectory. The STFA-K68R mutant also shows higher Ki values against human cathepsin-L and stefin, a step toward eliminating off-target specificity. Hence, this work underlines the design of host-based proteinaceous inhibitors against FP2, with further optimization to render them more potent and selective.
Collapse
Affiliation(s)
- Subhoja Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
14
|
Chauke E, Pelle R, Coetzer THT. A single exon-encoded Theileria parva strain Muguga cysteine protease (ThpCP): Molecular modelling and characterisation. Biochimie 2023; 206:24-35. [PMID: 36198333 DOI: 10.1016/j.biochi.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
The tick-transmitted apicomplexan Theileria parva causes East Coast fever, a bovine disease of great economic and veterinary importance in Africa. Papain-like cysteine proteases play important roles in protozoan parasite host cell entry and egress, nutrition and host immune evasion. This study reports the identification and characterisation of a T. parva strain Muguga cathepsin L-like (C1A subfamily) cysteine protease (ThpCP). Molecular modelling confirmed the papain-like fold of ThpCP, hydrophobic character of the S2 substrate binding pocket and non-covalent interaction between the pro- and catalytic domains preceding low pH autoactivation. ThpCP was recombinantly expressed in a protease deficient E. coli (Rosetta (DE3)pLysS strain) expression host as a 46 kDa proenzyme. Following Ni-chelate affinity chromatography and acidification, the 27 kDa mature ThpCP was purified by cation-exchange chromatography. Purified ThpCP hydrolysed typical cathepsin L substrates N-α-benzyloxycarbonyl (Z)-Phe-Arg-7-amino-4-methyl-coumarin (AMC) (kcat/Km = 4.49 × 105 s-1M-1) and Z-Leu-Arg-AMC (kcat/Km = 4.20 × 105 s-1M-1), but showed no activity against the cathepsin B-selective substrate Z-Arg-Arg-AMC. Recombinant ThpCP was active over a broad pH range from pH 4.5 to 7.5, thereby showing potential activity in the acidic parasite food vacuole and close to neutral pH of the host lymphocyte cytoplasm. Recombinant ThpCP was inhibited by the cysteine protease inhibitors E64, iodoacetate, leupeptin, chymostatin, Z-Phe-Ala-diazomethylketone (DMK) and Z-Phe-Phe-DMK and hydrolysed bovine proteins: haemoglobin, immunoglobulin G, serum albumin and fibrinogen as well as goat IgG at pH 6 and 7. Functional expression and characterisation of Theileria cysteine proteases should enable high throughput screening of cysteine protease inhibitor libraries against these proteases.
Collapse
Affiliation(s)
- Ephraim Chauke
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box, 30709-00100, Nairobi, Kenya
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
15
|
Santos Correa KC, Moreira AC, Abd El-Raheem Ibrahim AG, Ramos de Jesus HC, Micocci KC, Crizóstomo Kock FV, Bueno OC, Venâncio T, Henrique-Silva F, Souza DHF. Identification and characterization of a recombinant cysteine peptidase (AsCathL) from leaf-cutting ant Atta sexdens Linnaeus, 1758 (Hymenoptera, Formicidae). Protein Expr Purif 2023; 201:106174. [DOI: 10.1016/j.pep.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
16
|
Uddin A, Gupta S, Mohammad T, Shahi D, Hussain A, Alajmi MF, El-Seedi HR, Hassan I, Singh S, Abid M. Target-Based Virtual Screening of Natural Compounds Identifies a Potent Antimalarial With Selective Falcipain-2 Inhibitory Activity. Front Pharmacol 2022; 13:850176. [PMID: 35462917 PMCID: PMC9020225 DOI: 10.3389/fphar.2022.850176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
We employed a comprehensive approach of target-based virtual high-throughput screening to find potential hits from the ZINC database of natural compounds against cysteine proteases falcipain-2 and falcipain-3 (FP2 and FP3). Molecular docking studies showed the initial hits showing high binding affinity and specificity toward FP2 were selected. Furthermore, the enzyme inhibition and surface plasmon resonance assays were performed which resulted in a compound ZINC12900664 (ST72) with potent inhibitory effects on purified FP2. ST72 exhibited strong growth inhibition of chloroquine-sensitive (3D7; EC50 = 2.8 µM) and chloroquine-resistant (RKL-9; EC50 = 6.7 µM) strains of Plasmodium falciparum. Stage-specific inhibition assays revealed a delayed and growth defect during parasite growth and development in parasites treated with ST72. Furthermore, ST72 significantly reduced parasite load and increased host survival in a murine model infected with Plasmodium berghei ANKA. No Evans blue staining in ST72 treatment indicated that ST72 mediated protection of blood–brain barrier integrity in mice infected with P. berghei. ST72 did not show any significant hemolysis or cytotoxicity against human HepG2 cells suggesting a good safety profile. Importantly, ST72 with CQ resulted in improved growth inhibitory activity than individual drugs in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Diksha Shahi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham R. El-Seedi
- Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Mohammad Abid,
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Shailja Singh, ; Mohammad Abid,
| |
Collapse
|
17
|
Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem 2022; 232:114199. [DOI: 10.1016/j.ejmech.2022.114199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
18
|
Lê HG, Kang JM, Võ TC, Yoo WG, Lee KH, Na BK. Biochemical Properties of Two Plasmodium malariae Cysteine Proteases, Malapain-2 and Malapain-4. Microorganisms 2022; 10:microorganisms10010193. [PMID: 35056641 PMCID: PMC8780100 DOI: 10.3390/microorganisms10010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Cysteine proteases belonging to the falcipain (FP) family play a pivotal role in the biology of malaria parasites and have been extensively investigated as potential antimalarial drug targets. Three paralogous FP-family cysteine proteases of Plasmodium malariae, termed malapains 2–4 (MP2–4), were identified in PlasmoDB. The three MPs share similar structural properties with the FP-2/FP-3 subfamily enzymes and exhibit a close phylogenetic lineage with vivapains (VXs) and knowpains (KPs), FP orthologues of P. vivax and P. knowlesi. Recombinant MP-2 and MP-4 were produced in a bacterial expression system, and their biochemical properties were characterized. Both recombinant MP-2 and MP-4 showed enzyme activity across a broad range of pH values with an optimum activity at pH 5.0 and relative stability at neutral pHs. Similar to the FP-2/FP-3 subfamily enzymes in other Plasmodium species, recombinant MP-2 and MP-4 effectively hydrolyzed hemoglobin at acidic pHs. They also degraded erythrocyte cytoskeletal proteins, such as spectrin and band 3, at a neutral pH. These results imply that MP-2 and MP-4 are redundant hemoglobinases of P. malariae and may also participate in merozoite egression by degrading erythrocyte cytoskeletal proteins. However, compared with other FP-2/FP-3 enzymes, MP-2 showed a strong preference for arginine at the P2 position. Meanwhile, MP-4 showed a primary preference for leucine at the P2 position but a partial preference for phenylalanine. These different substrate preferences of MPs underscore careful consideration in the design of optimized inhibitors targeting the FP-family cysteine proteases of human malaria parasites.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Kon Ho Lee
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Department of Microbiology, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
19
|
da Silva Neto GJ, Silva LR, de Omena RJM, Aguiar ACC, Annunciato Y, Rossetto BS, Gazarini ML, Heimfarth L, Quintans-Júnior LJ, da Silva-Júnior EF, Meneghetti MR. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. NEW J CHEM 2022; 46:6502-6518. [DOI: 10.1039/d1nj05598d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although we have at our disposal relatively low-cost drugs that can be prescribed for the treatment of malaria, the prevalence of resistant strains of the causative parasite has required the development of new drugs.
Collapse
Affiliation(s)
- Geraldo José da Silva Neto
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Rafael Jorge Melo de Omena
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Anna Caroline Campos Aguiar
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Bárbara Santos Rossetto
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mario Roberto Meneghetti
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| |
Collapse
|
20
|
Ettari R, Previti S, Di Chio C, Zappalà M. Falcipain-2 and Falcipain-3 Inhibitors as Promising Antimalarial Agents. Curr Med Chem 2021; 28:3010-3031. [PMID: 32744954 DOI: 10.2174/0929867327666200730215316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
Abstract
Malaria remains a serious problem in global public health, particularly widespread in South America and in tropical regions of Africa and Asia. Chemotherapy is actually the only way to treat this poverty-related disease, since an effective vaccine is not currently available. However, the onset of resistance to the most common antimalarial drugs sometimes makes the current therapeutic regimen problematic. Therefore, the identification of new targets for a new drug discovery process is an urgent priority. In this context, falcipain-2 and falcipain- 3 of P. falciparum represent the key enzymes in the life-cycle of the parasite. Both falcipain- 2 and falcipain-3 are involved in hemoglobin hydrolysis, an essential pathway to provide free amino acids for the parasite metabolic needs. In addition, falcipain-2 is involved in cleaving ankirin and band 4.1 protein, which are cytoskeletal elements essential for the stability of the red cell membrane. This review article is focused on the most recent and effective inhibitors of falcipain-2 and falcipain-3, with particular attention to peptide, peptidomimetic or nonpeptide inhibitors, which targeted one or both the malarial cysteine proteases, endowed with a consistent activity against P. falciparum.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
21
|
Aratikatla EK, Kalamuddin M, Rana KC, Datta G, Asad M, Sundararaman S, Malhotra P, Mohmmed A, Bhattacharya AK. Combating multi-drug resistant malaria parasite by inhibiting falcipain-2 and heme-polymerization: Artemisinin-peptidyl vinyl phosphonate hybrid molecules as new antimalarials. Eur J Med Chem 2021; 220:113454. [PMID: 33901900 DOI: 10.1016/j.ejmech.2021.113454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC50 in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.
Collapse
Affiliation(s)
- Eswar K Aratikatla
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune, 411 008, India
| | - Md Kalamuddin
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Kalpeshkumar C Rana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Gaurav Datta
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Srividhya Sundararaman
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India.
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune, 411 008, India.
| |
Collapse
|
22
|
Singh A, Kalamuddin M, Maqbool M, Mohmmed A, Malhotra P, Hoda N. Quinoline carboxamide core moiety-based compounds inhibit P. falciparumfalcipain-2: Design, synthesis and antimalarial efficacy studies. Bioorg Chem 2020; 108:104514. [PMID: 33280833 DOI: 10.1016/j.bioorg.2020.104514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Targeting Falcipain-2 (FP2) for the development of antimalarials is a promising and established concept in antimalarial drug discovery and development. FP2, a member of papain-family cysteine protease of the malaria parasite Plasmodium falciparum holds an important role in hemoglobin degradation pathway. A new series of quinoline carboxamide-based compounds was designed, synthesized and evaluated for antimalarial activity. We integrated molecular hybridization strategy with in-silico drug design to develop FP2 inhibitors. In-vitro results of FP2 inhibition by Qs17, Qs18, Qs20 and Qs21 were found to be in low micromolar range with IC50 4.78, 7.37, 2.14 and 2.64 µM, respectively. Among the 25 synthesized compounds, four compounds showed significant antimalarial activities. These compounds also depicted morphological and food-vacuole abnormalities much better than that of E-64, an established FP2 inhibitor. Overall these aromatic substituted quinoline carboxamides can serve as promising leads for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Anju Singh
- Drug Design and Synthesis Lab., Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Kalamuddin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mudasir Maqbool
- Drug Design and Synthesis Lab., Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Lab., Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
23
|
Hernández González JE, Hernández Alvarez L, Leite VBP, Pascutti PG. Water Bridges Play a Key Role in Affinity and Selectivity for Malarial Protease Falcipain-2. J Chem Inf Model 2020; 60:5499-5512. [PMID: 32634311 DOI: 10.1021/acs.jcim.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Falcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of Plasmodium falciparum. Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth in vitro and no cytotoxicity against human cell lines. However, the structural determinants underlying the selectivity of the 3Pyr-containing nitriles for FP-2 remain unknown. In this work, we conduct a thorough computational study combining MD simulations and free energy calculations to decipher the bases of the selectivity of the aforementioned nitriles. Our results reveal that water bridges involving the nitrogen and one carboxyl oxygen of I85 and D234 of FP-2, respectively, and the nitrogen of the neutral 3Pyr moiety, which are either less prevalent or nonexistent in the other complexes, explain the experimental activity profiles. The presence of crystallographic waters close to the bridging water positions in the studied proteases strongly supports the occurrence of such interactions. Overall, our findings suggest that selective FP-2 inhibitors can be designed by promoting water bridge formation at the bottom of the S2 subsite and/or by introducing complementary groups that displace the bridging water.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lilian Hernández Alvarez
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil.,Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor B P Leite
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
24
|
Aratikatla E, Kalamuddin M, Malhotra P, Mohmmed A, Bhattacharya AK. Enantioselective Synthesis of γ-Phenyl-γ-amino Vinyl Phosphonates and Sulfones and Their Application to the Synthesis of Novel Highly Potent Antimalarials. ACS OMEGA 2020; 5:29025-29037. [PMID: 33225134 PMCID: PMC7675543 DOI: 10.1021/acsomega.0c03470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Racemic and enantioselective syntheses of γ-phenyl-γ-amino vinyl phosphonates and sulfones have been achieved using Horner-Wadsworth-Emmons olefination of trityl protected α-phenyl-α-amino aldehydes with tetraethyl methylenediphosphonate and diethyl ((phenylsulfonyl)methyl)phosphonate, respectively, without any racemization. The present strategy has also been successfully applied to the synthesis of peptidyl vinyl phosphonate and peptidyl vinyl sulfone derivatives as potential cysteine protease inhibitors of Chagas disease, K11002, with 100% de. The developed synthetic protocol was further utilized to synthesize hybrid molecules consisting of artemisinin as an inhibitor of major cysteine protease falcipain-2 present in the food vacuole of the malarial parasite. The synthesized artemisinin-dipeptidyl vinyl sulfone hybrid compounds showed effective in vitro inhibition of falcipain-2 and potent parasiticidal efficacies against Plasmodium falciparum in nanomolar ranges. Overall, the developed synthetic protocol could be effectively utilized to design cysteine protease inhibitors not only as novel antimalarial compounds but also to be involved in other life-threatening diseases.
Collapse
Affiliation(s)
- Eswar
K. Aratikatla
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune 411 008, India
| | - Md Kalamuddin
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Asish K. Bhattacharya
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune 411 008, India
| |
Collapse
|
25
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
26
|
A Novel Series of [1,2,4]Triazolo[4,3-a]Pyridine Sulfonamides as Potential Antimalarial Agents: In Silico Studies, Synthesis and In Vitro Evaluation. Molecules 2020; 25:molecules25194485. [PMID: 33007887 PMCID: PMC7582516 DOI: 10.3390/molecules25194485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
For the development of new and potent antimalarial drugs, we designed the virtual library with three points of randomization of novel [1,2,4]triazolo[4,3-a]pyridines bearing a sulfonamide fragment. The library of 1561 compounds has been investigated by both virtual screening and molecular docking methods using falcipain-2 as a target enzyme. 25 chosen hits were synthesized and evaluated for their antimalarial activity in vitro against Plasmodium falciparum. 3-Ethyl-N-(3-fluorobenzyl)-N-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine-6-sulfonamide and 2-(3-chlorobenzyl)-8-(piperidin-1-ylsulfonyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one showed in vitro good antimalarial activity with inhibitory concentration IC50 = 2.24 and 4.98 μM, respectively. This new series of compounds may serve as a starting point for future antimalarial drug discovery programs.
Collapse
|
27
|
Kinetic characterization of a novel cysteine peptidase from the protozoan Babesia bovis, a potential target for drug design. Biochimie 2020; 179:127-134. [PMID: 32946988 DOI: 10.1016/j.biochi.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
C1A cysteine peptidases have been shown to play an important role during apicomplexan invasion and egress of host red blood cells (RBCs) and therefore have been exploited as targets for drug development, in which peptidase specificity is deterministic. Babesia bovis genome is currently available and from the 17 putative cysteine peptidases annotated four belong to the C1A subfamily. In this study, we describe the biochemical characterization of a C1A cysteine peptidase, named here BbCp (B. bovis cysteine peptidase) and evaluate its possible participation in the parasite asexual cycle in host RBCs. The recombinant protein was obtained in bacterial inclusion bodies and after a refolding process, presented typical kinetic features of the cysteine peptidase family, enhanced activity in the presence of a reducing agent, optimum pH between 6.5 and 7.0 and was inhibited by cystatins from R. microplus. Moreover, rBbCp substrate specificity evaluation using a peptide phage display library showed a preference for Val > Leu > Phe. Finally, antibodies anti-rBbCp were able to interfere with B. bovis growth in vitro, which highlights the BbCp as a potential target for drug design.
Collapse
|
28
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
29
|
Zhu L, Shan L, Zhu J, Li L, Li S, Wang L, Wang J, Zhang S, Zhou H, Zhang W, Li H. Discovery of a natural fluorescent probe targeting the Plasmodium falciparum cysteine protease falcipain-2. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1016-1025. [PMID: 32048162 DOI: 10.1007/s11427-019-1581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023]
Abstract
The Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is an attractive antimalarial target. Here, we discovered that the natural compound NP1024 is a nonpeptidic inhibitor of FP-2 with an IC50 value of 0.44 μmol L-1. The most exciting finding is that both in vitro and in vivo, NP1024 directly targets FP-2 in malaria parasite-infected erythrocytes as a natural fluorescent probe, thereby paving the way for an integration of malaria diagnosis and treatment.
Collapse
Affiliation(s)
- Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Shan
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Junsheng Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Li
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liyan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shoude Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hongchang Zhou
- School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, 313000, China
| | - Weidong Zhang
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
30
|
Rosenthal PJ. Falcipain cysteine proteases of malaria parasites: An update. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140362. [DOI: 10.1016/j.bbapap.2020.140362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
31
|
Helton LG, Kennedy EJ. Targeting Plasmodium with constrained peptides and peptidomimetics. IUBMB Life 2020; 72:1103-1114. [PMID: 32037730 DOI: 10.1002/iub.2244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023]
Abstract
Malaria remains a worldwide health concern with an estimated quarter of a billion people infected and nearly half a million deaths annually. Malaria is caused by a parasite infection from Plasmodium strains which are transmitted from mosquitoes into the human host. Although several small molecule inhibitors have been found to target the early stages of transmission and prevent parasite proliferation, multiple drug resistant parasite strains have emerged and drug resistance remains a major hurdle. As an alternative to small molecule inhibition, several peptide-based therapeutics have been explored for their potential as antimalarial compounds. Chemically constrained peptides or peptidomimetics were developed to target large binding interfaces of parasite-based proteins that have historically been difficult to selectively inhibit using small molecules. Here, we review ongoing research aimed at developing constrained peptides targeting protein-protein interactions pertinent to malaria pathogenesis. These targets include Falcipain-2, the J domain of CDPK1, myosin A tail domain interacting protein, the PKA signaling pathway, and an unclear signaling pathway involving angiotensin-derived peptides. Diverse synthetic methods were also used for each target. Merging parasite biology with synthetic strategies may provide new opportunities to develop alternative methods for uncovering novel antimalarials and may offer an alternate source for targeting drug-resistant parasite strains.
Collapse
Affiliation(s)
- Leah G Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| |
Collapse
|
32
|
Tan MSY, Davison D, Sanchez MI, Anderson BM, Howell S, Snijders A, Edgington-Mitchell LE, Deu E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One 2020; 15:e0227341. [PMID: 31923258 PMCID: PMC6953825 DOI: 10.1371/journal.pone.0227341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Clan CA cysteine proteases, also known as papain-like proteases, play important roles throughout the malaria parasite life cycle and are therefore potential drug targets to treat this disease and prevent its transmission. In order to study the biological function of these proteases and to chemically validate some of them as viable drug targets, highly specific inhibitors need to be developed. This is especially challenging given the large number of clan CA proteases present in Plasmodium species (ten in Plasmodium falciparum), and the difficulty of designing selective inhibitors that do not cross-react with other members of the same family. Additionally, any efforts to develop antimalarial drugs targeting these proteases will also have to take into account potential off-target effects against the 11 human cysteine cathepsins. Activity-based protein profiling has been a very useful tool to determine the specificity of inhibitors against all members of an enzyme family. However, current clan CA proteases broad-spectrum activity-based probes either target endopeptidases or dipeptidyl aminopeptidases, but not both subfamilies efficiently. In this study, we present a new series of dipeptydic vinyl sulfone probes containing a free N-terminal tryptophan and a fluorophore at the P1 position that are able to label both subfamilies efficiently, both in Plasmodium falciparum and in mammalian cells, thus making them better broad-spectrum activity-based probes. We also show that some of these probes are cell permeable and can therefore be used to determine the specificity of inhibitors in living cells. Interestingly, we show that the choice of fluorophore greatly influences the specificity of the probes as well as their cell permeability.
Collapse
Affiliation(s)
| | - Dara Davison
- The Francis Crick Institute, London, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
| | | | | | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Edgar Deu
- The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Identification of antimalarial leads with dual falcipain-2 and falcipain-3 inhibitory activity. Bioorg Med Chem 2020; 28:115155. [DOI: 10.1016/j.bmc.2019.115155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
|
34
|
de J Parra Y, Andueza L FD, Ferrer M RE, Bruno Colmenarez J, Acosta ME, Charris J, Rosenthal PJ, Gut J. [(7-chloroquinolin-4-yl)amino]acetophenones and their copper(II) derivatives: Synthesis, characterization, computational studies and antimalarial activity. EXCLI JOURNAL 2019; 18:962-987. [PMID: 31762723 PMCID: PMC6868921 DOI: 10.17179/excli2019-1805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022]
Abstract
The synthesis of the compounds [(7-chloroquinolin-4-yl)amino]acetophenones (4, 5) and their copper(II) complexes (4a, 5a) is reported. The compounds were characterized using a wide range of spectroscopic and spectrometric techniques, such as FTIR, UV-vis, NMR, EPR, ESI-CID-MS2. The spectral results suggested that the ligand acted as chelating species coordinating the metal through the endocyclic nitrogen of the quinoline ring in both complexes, with general formulae expressed in two ways, according to the phase in which they are: [Cu(L)2Cl2] for solid phase and [Cu(L)2][2Cl] for liquid phase. The EPR study of the Cu (II) complexes indicated a probable distorted tetrahedral coordination geometry. This result was confirmed by the calculated optimized structures at the DFT/B3LYP method with the 6-31G (d,p) basis set. The characterization of the fragmentation pattern of protonated free ligands was extended here to fragments as low as m/z 43, while for coordination complexes it extends to fragments at m/z 80 and m/z 111. The antimalarial activity of the compounds was determined through three different tests: inhibitory activity against in vitro growth of Plasmodium falciparum (W2), inhibition of hemozoin formation (β-hematin) and in vitro inhibitory activity against recombinant falcipain-2, where compound 5 showed considerable activity. However, the activity of free ligands against P. falciparum was increased by complexing with the Cu (II) metal ion. The values of the HOMO-LUMO energy gap of 3.847 eV (4a) and 3.932 eV (5a) were interpreted with high chemical activity and thus, could influence on biological activity. In both compounds, the total electron density surface mapped with electrostatic potential clearly revealed the presence of high negative charge on the Cu atom. Also, this study reported the molecular docking of free ligands (4, 5) using software package ArgusLab 4.0.1. The results revealed the importance of water molecules as interaction bridges through hydrogen bonds between free ligands and β-hematin; at the same time, the hypothesis that π-π interaction between quinoline derivatives and the electronic system of hematin governs the formation of adducts was confirmed.
Collapse
Affiliation(s)
- Yonathan de J Parra
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Felix D Andueza L
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rosa E Ferrer M
- Departamento de Química, Facultad de Humanidades y Educación, Universidad del Zulia, Apartado 526, Maracaibo, Estado Zulia, Venezuela
| | - Julia Bruno Colmenarez
- Centro de Investigación y Tecnología de Materiales (CITeMa), Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Altos de Pipe 1020-A Estado Miranda, Venezuela
| | - María E Acosta
- Laboratorio de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, 1041-A Caracas, Venezuela
| | - Jaime Charris
- Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, 1041-A Caracas, Venezuela
| | - Philip J Rosenthal
- Department of Medicine, University of California, Box 0811, San Francisco, California 94143, USA
| | - Jiri Gut
- Department of Medicine, University of California, Box 0811, San Francisco, California 94143, USA
| |
Collapse
|
35
|
Musyoka T, Bishop ÖT. South African Abietane Diterpenoids and Their Analogs as Potential Antimalarials: Novel Insights from Hybrid Computational Approaches. Molecules 2019; 24:E4036. [PMID: 31703388 PMCID: PMC6891524 DOI: 10.3390/molecules24224036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
The hemoglobin degradation process in Plasmodium parasites is vital for nutrient acquisition required for their growth and proliferation. In P. falciparum, falcipains (FP-2 and FP-3) are the major hemoglobinases, and remain attractive antimalarial drug targets. Other Plasmodium species also possess highly homologous proteins to FP-2 and FP-3. Although several inhibitors have been designed against these proteins, none has been commercialized due to associated toxicity on human cathepsins (Cat-K, Cat-L and Cat-S). Despite the two enzyme groups sharing a common structural fold and catalytic mechanism, distinct active site variations have been identified, and can be exploited for drug development. Here, we utilize in silico approaches to screen 628 compounds from the South African natural sources to identify potential hits that can selectively inhibit the plasmodial proteases. Using docking studies, seven abietane diterpenoids, binding strongly to the plasmodial proteases, and three additional analogs from PubChem were identified. Important residues involved in ligand stabilization were identified for all potential hits through binding pose analysis and their energetic contribution determined by binding free energy calculations. The identified compounds present important scaffolds that could be further developed as plasmodial protease inhibitors. Previous laboratory assays showed the effect of the seven diterpenoids as antimalarials. Here, for the first time, we demonstrate that their possible mechanism of action could be by interacting with falcipains and their plasmodial homologs. Dynamic residue network (DRN) analysis on the plasmodial proteases identified functionally important residues, including a region with high betweenness centrality, which had previously been proposed as a potential allosteric site in FP-2.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
36
|
Design, synthesis and evaluation of 2-(4-(substituted benzoyl)-1,4-diazepan-1-yl)-N-phenylacetamide derivatives as a new class of falcipain-2 inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
37
|
Aguiar AC, de Sousa LR, Garcia CR, Oliva G, Guido RV. New Molecular Targets and Strategies for Antimalarial Discovery. Curr Med Chem 2019; 26:4380-4402. [DOI: 10.2174/0929867324666170830103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Malaria remains a major health problem, especially because of the emergence
of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable
antimalarial drugs are desperately needed. New proteins have been investigated
as molecular targets for research and development of innovative compounds with welldefined
mechanism of action. In this review, we highlight genetically and clinically validated
plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes
described herein are involved in hemoglobin hydrolysis, the invasion process,
elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications
such as prenylation, phosphorylation and histone acetylation, generation of ATP
in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics,
genetics, structural biology, computational and biophysical methods provided
invaluable molecular and structural information about these drug targets. Based on this,
several strategies and models have been applied to identify and improve lead compounds.
This review presents the recent progresses in the discovery of antimalarial drug candidates,
highlighting the approaches, challenges, and perspectives to deliver affordable, safe
and low single-dose medicines to treat malaria.
Collapse
Affiliation(s)
- Anna Caroline Aguiar
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Lorena R.F. de Sousa
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Celia R.S. Garcia
- Physiology Department, Bioscience Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Rafael V.C. Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
38
|
Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z, Miao J, Chookajorn T, Yang Z, Cao Y, Dong G, Rosenthal PJ, Cui L. Plasmodium falciparum Falcipain-2a Polymorphisms in Southeast Asia and Their Association With Artemisinin Resistance. J Infect Dis 2019; 218:434-442. [PMID: 29659945 DOI: 10.1093/infdis/jiy188] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/14/2022] Open
Abstract
Background Falcipain-2a ([FP2a] PF3D7_1115700) is a Plasmodium falciparum cysteine protease and hemoglobinase. Functional FP2a is required for potent activity of artemisinin, and in vitro selection for artemisinin resistance selected for an FP2a nonsense mutation. Methods To investigate associations between FP2a polymorphisms and artemisinin resistance and to characterize the diversity of the enzyme in parasites from the China-Myanmar border, we sequenced the full-length FP2a gene in 140 P falciparum isolates collected during 2004-2011. Results The isolates were grouped into 8 different haplotype groups. Haplotype group I appeared in samples obtained after 2008, coinciding with implementation of artemisinin-based combination therapy in this region. In functional studies, compared with wild-type parasites, the FP2a haplotypes demonstrated increased ring survival, and all haplotype groups exhibited significantly reduced FP2a activity, with group I showing the slowest protease kinetics and reduced parasite fitness. Conclusions These results suggest that altered hemoglobin digestion due to FP2a mutations may contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park
| | - Mynthia Cabrera
- Department of Entomology, Pennsylvania State University, University Park
| | - Meilian Wang
- College of Basic Medical Sciences, China Medical University, Shenyang
| | - Awtum Brashear
- Department of Entomology, Pennsylvania State University, University Park
| | - Karen Kemirembe
- Department of Entomology, Pennsylvania State University, University Park
| | - Zenglei Wang
- Department of Entomology, Pennsylvania State University, University Park
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, China
| | - Yaming Cao
- College of Basic Medical Sciences, China Medical University, Shenyang
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Austria
| | | | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park
| |
Collapse
|
39
|
Aggarwal S, Paliwal D, Kaushik D, Gupta GK, Kumar A. Synthesis, Antimalarial Evaluation and SAR Study of Some 1,3,5-Trisubstituted Pyrazoline Derivatives. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190212145754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of a novel series of 1,3,5-trisubstitiuted pyrazoline was achieved by refluxing
chalcone derivative with different heteroaryl hydrazines. The newly synthesized compounds were
characterized by 1H NMR, 13CNMR, mass spectral and elemental analysis data. The synthetic series of
novel pyrazoline hybrids was screened for in vitro schizont maturation assay against chloroquine sensitive
3D7 strain of Plasmodium falciparum. Most of the compounds showed promising in vitro antimalarial
activity against CQ sensitive strain. The preliminary structure-activity relationship study showed
that quinoline substituted analog at position N-1 showed maximum activity followed by benzothiazole
substitution, while phenyl substitution lowers the antimalarial activity. The observed activity was persistent
by the docking study on P. falciparum cystein protease falcipain-2. The pharmacokinetic properties
were also studied using ADME prediction.
Collapse
Affiliation(s)
| | - Deepika Paliwal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Dhirender Kaushik
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, M.M. College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala 133203, India
| | - Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| |
Collapse
|
40
|
Hernández González JE, Hernández Alvarez L, Pascutti PG, Leite VBP. Prediction of Noncompetitive Inhibitor Binding Mode Reveals Promising Site for Allosteric Modulation of Falcipain-2. J Phys Chem B 2019; 123:7327-7342. [DOI: 10.1021/acs.jpcb.9b05021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo,
2265, Jardim Nazareth, São José do Rio Preto, São Paulo, CEP 15054-000, Brazil
| | - Lilian Hernández Alvarez
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo,
2265, Jardim Nazareth, São José do Rio Preto, São Paulo, CEP 15054-000, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Dinâmica e Modelagem Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos
Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária
Ilha de Fundão, Rio de Janeiro, CEP 21941-902, Brazil
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo,
2265, Jardim Nazareth, São José do Rio Preto, São Paulo, CEP 15054-000, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
41
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
42
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C. Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
43
|
Alam B, Biswas S. Inhibition of Plasmodium falciparum cysteine protease falcipain-2 by a human cross-class inhibitor serpinB3: A mechanistic insight. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:854-865. [PMID: 31247344 DOI: 10.1016/j.bbapap.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
Abstract
Falcipain-2(FP2), a cysteine protease from Plasmodium falciparum, cleaves host erythrocyte hemoglobin and specific membrane skeleton components during the parasite life cycle. Therefore its inhibition has been considered as an attractive approach to combat the disease. SerpinB3 (SPB3) belongs to the ovalbumin-serpin family and is a potent cross-class inhibitor of cysteine cathepsins L, K, S and papain. This study explored the possibility of inhibition of FP2 by SPB3. It turned out that general proteolytic activities as well as specific hemoglobinolytic activity of FP2 have been inhibited by SPB3. Furthermore, studies have been designed to investigate and characterize the mechanism of inhibition in comparison with proteases Cathepsin L (CTSL) and papain. The Ki value of inhibition for FP2, measured against its specific substrate (VLK-pNA), is 338.11 nM and stoichiometry (I/E ratio) of inhibition is 1. These values are comparable to CTSL and papain. Analytical gel filtration profile and CD spectroscopy data confirm FP2-SPB3 complex formation. Our studies revealed that interaction of SPB3 with FP2 is non-covalent type like that of CTSL and papain but unlike other serine protease-inhibiting serpins. An in-silico docking and simulation study have been performed with FP2 as well as CTSL and results suggest different binding mode for FP2 and CTSL, though both the complexes are stable with significant contribution from electrostatic energy of interaction. We further showed a disease state mutant SPB3-Gly351Ala performed better anti-protease activity against FP2. This study, for the first time, has shown a serpin family inhibitor from human could efficiently inhibit activity of FP2.
Collapse
Affiliation(s)
- Benazir Alam
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India; Homi Bhaba National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
44
|
Stoye A, Juillard A, Tang AH, Legac J, Gut J, White KL, Charman SA, Rosenthal PJ, Grau GER, Hunt NH, Payne RJ. Falcipain Inhibitors Based on the Natural Product Gallinamide A Are Potent in Vitro and in Vivo Antimalarials. J Med Chem 2019; 62:5562-5578. [PMID: 31062592 DOI: 10.1021/acs.jmedchem.9b00504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of analogues of the cyanobacterium-derived depsipeptide natural product gallinamide A were designed and prepared using a highly efficient and convergent synthetic route. Analogues were shown to exhibit potent inhibitory activity against the Plasmodium falciparum cysteine proteases falcipain 2 and falcipain 3 and against cultured chloroquine-sensitive (3D7) and chloroquine-resistant (W2) strains of P. falciparum. Three lead compounds were selected for evaluation of in vivo efficacy against Plasmodium berghei infection in mice on the basis of their improved blood, plasma, and microsomal stability profiles compared with the parent natural product. One of the lead analogues cured P. berghei-infected mice in the Peters 4 day-suppressive test when administered 25 mg kg-1 intraperitoneally daily for 4 days. The compound was also capable of clearing parasites in established infections at 50 mg kg-1 intraperitoneally daily for 4 days and exhibited moderate activity when administered as four oral doses of 100 mg kg-1.
Collapse
Affiliation(s)
- Alexander Stoye
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Annette Juillard
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Arthur H Tang
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Jennifer Legac
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Karen L White
- Centre for Drug Candidate Optimisation , Monash University , Victoria 3052 , Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation , Monash University , Victoria 3052 , Australia
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Georges E R Grau
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Nicholas H Hunt
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Richard J Payne
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| |
Collapse
|
45
|
Musyoka TM, Njuguna JN, Tastan Bishop Ö. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar J 2019; 18:159. [PMID: 31053072 PMCID: PMC6500056 DOI: 10.1186/s12936-019-2790-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Collapse
Affiliation(s)
- Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Joyce Njoki Njuguna
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
46
|
Sharma K, Srivastava A, Tiwari P, Sharma S, Shaquiquzzaman M, Alam MM, Akhter M. 3D QSAR Based Virtual Screening of Pyrido[1,2-a] Benzimidazoles as Potent Antimalarial Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180502115147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Development of novel antimalarial agents has been one of the sought areas in
medicinal chemistry. In this study the same was done by virtual screening of in-house database on
developed QSAR model.
</P><P>
Methods: A six point pharmacophore model was generated (AADHRR.56) from 41 compounds using
PHASE module of Schrodinger software and used for pharmacophore based search. Docking studies of
the obtained hits were performed using GLIDE. Most promising hit was synthesized & biologically
evaluated for antimalarial activity.
</P><P>
Result: The best generated model was found to be statistically significant as it had a high correlation
coefficient r2= 0.989 and q2 =0.76 at 3 component PLS factor. The significance of hypothesis was also
confirmed by high Fisher ratio (F = 675.1) and RMSE of 0.2745. The model developed had good
predicted coefficient (Pearson R = 0.8826). The virtual screening on this model resulted in six hits,
which were docked against FP-2 enzyme. The synthesized compound displayed IC50 value of
0.27µg/ml against CQS (3D7) and 0.57μg/ml against CQR (RKL9).
</P><P>
Conclusion: 3D QSAR studies reviled that hydrophobic groups are important for anti-malarial activity
while H-donor is less desirable for the same. Electron withdrawing groups at R1 position favours the
activity. The biological activity data of the synthesized hit proved that the pharmacophore hypothesis
developed could be utilized for developing novel anti-malarial drugs.
Collapse
Affiliation(s)
- Kalicharan Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Apeksha Srivastava
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Tiwari
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462036, India
| | - Shweta Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M. Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
47
|
Dziekan JM, Yu H, Chen D, Dai L, Wirjanata G, Larsson A, Prabhu N, Sobota RM, Bozdech Z, Nordlund P. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med 2019; 11. [DOI: 10.1126/scitranslmed.aau3174] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A cellular thermal shift assay (CETSA) protocol identifies and resolves antimalarial drug targets in
P. falciparum
.
Collapse
Affiliation(s)
- Jerzy M. Dziekan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Dan Chen
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Andreas Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Radoslaw M. Sobota
- Institute of Molecular and Cell Biology, Functional Proteomics Laboratory, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17177, Sweden
- Institute of Molecular and Cell Biology, Functional Proteomics Laboratory, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| |
Collapse
|
48
|
Singh A, Kalamuddin M, Mohmmed A, Malhotra P, Hoda N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development ofPlasmodium falciparumat the trophozoite stage. RSC Adv 2019; 9:39410-39421. [PMID: 35540629 PMCID: PMC9076119 DOI: 10.1039/c9ra06571g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022] Open
Abstract
The present study involves development of novel quinoline triazole-containing cysteine protease inhibitors which arrest the development ofP. falciparumat the trophozoite stage.
Collapse
Affiliation(s)
- Anju Singh
- Drug Design and Synthesis Lab
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Md Kalamuddin
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Nasimul Hoda
- Drug Design and Synthesis Lab
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
49
|
In Silico Study Reveals How E64 Approaches, Binds to, and Inhibits Falcipain-2 of Plasmodium falciparum that Causes Malaria in Humans. Sci Rep 2018; 8:16380. [PMID: 30401806 PMCID: PMC6219542 DOI: 10.1038/s41598-018-34622-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/23/2018] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum malaria, which degrades haemoglobin through falcipain-2 (FP2), is a serious disease killing 445 thousand people annually. Since the P. falciparum's survival in humans depends on its ability to degrade human's haemoglobin, stoppage or hindrance of FP2 has antimalarial effects. Therefore, we studied the atomic details of how E64 approaches, binds to, and inhibits FP2. We found that E64 (1) gradually approaches FP2 by first interacting with FP2's D170 and Q171 or N81, N77, and K76; (2) binds FP2 tightly (ΔGbinding = -12.2 ± 1.1 kJ/mol); and (3) persistently blocks access to FP2's catalytic residues regardless of whether or not E64 has already been able to form a covalent bond with FP2's C42. Furthermore, the results suggest that S41, D234, D170, N38, N173, and L172 (which are located in or near the FP2's catalytic site's binding pocket) contribute the most towards the favourable binding of E64 to FP2. Their in silico mutations adversely affect E64-FP2 binding affinity with D234L/A, N173L/A, W43F/A, D234L/A, H174F/A, and N38L/A having the most significant adverse effects on E64-FP2 binding and interactions. The findings presented in this article, which has antimalarial implications, suggest that hydrogen bonding and electrostatic interactions play important roles in E64-FP2 binding, and that a potential FP2-blocking E64-based/E64-like antimalarial drug should be capable of being both hydrogen-bond donor and acceptor, and/or have the ability to favourably interact with polar amino acids (such as S41, S149, N38, N173, N77, Q171) and with charged amino acids (such as D234, D170, H174) of FP2. The abilities to favourably interact with ASN, ASP, and SER appears to be important characteristics that such potential drug should have.
Collapse
|
50
|
Pant A, Kumar R, Wani NA, Verma S, Sharma R, Pande V, Saxena AK, Dixit R, Rai R, Pandey KC. Allosteric Site Inhibitor Disrupting Auto-Processing of Malarial Cysteine Proteases. Sci Rep 2018; 8:16193. [PMID: 30385827 PMCID: PMC6212536 DOI: 10.1038/s41598-018-34564-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 10/16/2018] [Indexed: 02/08/2023] Open
Abstract
Falcipains are major haemoglobinases of Plasmodium falciparum required for parasite growth and development. They consist of pro- and mature domains that interact via 'hot-spot' interactions and maintain the structural integrity of enzyme in zymogen state. Upon sensing the acidic environment, these interactions dissociate and active enzyme is released. For inhibiting falcipains, several active site inhibitors exist, however, compounds that target via allosteric mechanism remains uncharacterized. Therefore, we designed and synthesized six azapeptide compounds, among which, NA-01 & NA-03 arrested parasite growth by specifically blocking the auto-processing of falcipains. Inhibitors showed high affinity for enzymes in presence of the prodomain without affecting the secondary structure. Binding of NA-03 at the interface induced rigidity in the prodomain preventing structural reorganization. We further reported a histidine-dependent activation of falcipain. Collectively, for the first time we provide a framework for blocking the allosteric site of crucial haemoglobinases of the human malaria parasite. Targeting the allosteric site could provide high selectivity and less vulnerable to drug resistance.
Collapse
Affiliation(s)
- A Pant
- ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - R Kumar
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - N A Wani
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - S Verma
- ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - R Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - V Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - A K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - R Dixit
- ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - R Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - K C Pandey
- ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India.
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, MP - 462001, India.
| |
Collapse
|