1
|
Fan X, Fraaije MW. Flavin transferase ApbE: From discovery to applications. J Biol Chem 2025; 301:108453. [PMID: 40154617 PMCID: PMC12052999 DOI: 10.1016/j.jbc.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible posttranslational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The flavin transferase is typically membrane-anchored and located in the periplasm and it possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes flavin adenine dinucleotide as substrate to attach the flavin mononucleotide moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with flavin mononucleotide or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.
Collapse
Affiliation(s)
- Xiaoman Fan
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Quaye J, Gadda G. Metal-Triggered FAD Reduction in d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. ACS BIO & MED CHEM AU 2025; 5:204-214. [PMID: 39990952 PMCID: PMC11843331 DOI: 10.1021/acsbiomedchemau.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025]
Abstract
Alcohol oxidation is an indispensable chemical reaction in biological systems. This process, biologically catalyzed by alcohol dehydrogenases (ADHs) and alcohol oxidases (AOXs), follows two distinct chemical routes depending on the cofactor. ADHs have been widely demonstrated to require Zn2+- and NAD(P)+-based cosubstrates. Except for galactose oxidase, AOXs achieve their conversion of alcohols to aldehydes or ketones using flavin-based cofactors. The FMN-dependent α-hydroxy acid-oxidizing enzymes and the glucose-methanol-choline (GMC) superfamily abstract their substrate's α-OH proton using a catalytic histidine, leading to substrate oxidation and flavin reduction. However, there is no known alcohol oxidation mechanism for enzymes requiring both a flavin and a metal. The Pseudomonas aeruginosad-2-hydroxyglutarate dehydrogenase (PaD2HGDH) is a recently characterized α-hydroxy acid dehydrogenase that converts d-2-hydroxyglutarate or d-malate to 2-ketoglutarate or oxaloacetate, respectively. PaD2HGDH requires FAD and Zn2+ for catalysis. Previous studies on PaD2HGDH have identified a highly conserved active site histidine residue whose position is topologically conserved for catalytic bases in FMN-dependent α-hydroxy acid-oxidizing enzymes and the GMC superfamily of oxidoreductases. In this study, solvent isotope effects (SIEs) coupled with pL-rate profiles and a viscosity control have been used to probe the role of the Zn2+ cofactor in the C2-OH oxidation of d-malate and flavin reduction of PaD2HGDH. The data revealed an inverse solvent equilibrium isotope effect (SEIE) of 0.51 ± 0.09 consistent with a Zn2+-triggered abstraction of the substrate C2-OH proton that initiates d-malate oxidation and flavin reduction. The system provides insights into the role of Zn2+ in the oxidation mechanism of PaD2HGDH and, by extension, metallo flavoprotein dehydrogenases.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Departments
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
| | - Giovanni Gadda
- Departments
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
- Biology, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
- The
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States of America
| |
Collapse
|
3
|
Gran-Scheuch A, Hanreich S, Keizer I, W Harteveld J, Ruijter E, Drienovská I. Designing Michaelases: exploration of novel protein scaffolds for iminium biocatalysis. Faraday Discuss 2024; 252:279-294. [PMID: 38842386 PMCID: PMC11389850 DOI: 10.1039/d4fd00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Iris Keizer
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Jaap W Harteveld
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Tjallinks G, Mattevi A, Fraaije MW. Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis. Biochemistry 2024; 63:2089-2110. [PMID: 39133819 PMCID: PMC11375781 DOI: 10.1021/acs.biochem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Marco W. Fraaije
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
5
|
Zhang H, Xie S, Yang J, Ye N, Gao F, Gallou F, Gao L, Lei X. Chemoenzymatic Synthesis of 2-Aryl Thiazolines from 4-Hydroxybenzaldehydes Using Vanillyl Alcohol Oxidases. Angew Chem Int Ed Engl 2024; 63:e202405833. [PMID: 38748747 DOI: 10.1002/anie.202405833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 07/16/2024]
Abstract
Nitrogen heterocycles are commonly found in bioactive natural products and drugs. However, the biocatalytic tools for nitrogen heterocycle synthesis are limited. Herein, we report the discovery of vanillyl alcohol oxidases (VAOs) as efficient biocatalysts for the one-pot synthesis of 2-aryl thiazolines from various 4-hydroxybenzaldehydes and aminothiols. The wild-type biocatalyst features a broad scope of 4-hydroxybenzaldehydes. Though the scope of aminothiols is limited, it could be improved via semi-rational protein engineering, generating a variant to produce previously inaccessible cysteine-derived bioactive 2-aryl thiazolines using the wild-type VAO. Benefiting from the derivatizable functional groups in the enzymatic products, we further chemically modified these products to expand the chemical space, offering a new chemoenzymatic strategy for the green and efficient synthesis of structurally diverse 2-aryl-thiazoline derivatives to prompt their use in drug discovery and catalysis.
Collapse
Affiliation(s)
- Haowen Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuhan Xie
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd., Changshu, 215537, People's Republic of China
- Current Address: Rezubio Pharmaceuticals Co., Ltd., Zhuhai, 519070, People's Republic of China
| | - Feng Gao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd., Changshu, 215537, People's Republic of China
| | - Fabrice Gallou
- Chemical and Analytical Development, Novartis Pharma AG, Novartis Campus, Basel, 4056, Switzerland
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
6
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
7
|
Eggerichs D, Weindorf N, Mascotti ML, Welzel N, Fraaije MW, Tischler D. Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives. J Biol Chem 2023; 299:104898. [PMID: 37295774 PMCID: PMC10404669 DOI: 10.1016/j.jbc.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for ɣ-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.
Collapse
Affiliation(s)
- Daniel Eggerichs
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Nils Weindorf
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Maria Laura Mascotti
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands; Facultad de Química Bioquímica y Farmacia, IMIBIO-SL CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Natalie Welzel
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Marco W Fraaije
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Dirk Tischler
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Quaye JA, Gadda G. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn 2+ for substrate orientation and activation. J Biol Chem 2023; 299:103008. [PMID: 36775127 PMCID: PMC10034468 DOI: 10.1016/j.jbc.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate (D2HG) dehydrogenase (PaD2HGDH) oxidizes D2HG to 2-ketoglutarate during the vital l-serine biosynthesis and is a potential therapeutic target against P. aeruginosa. PaD2HGDH, which oxidizes d-malate as an alternative substrate, has been demonstrated to be a metallo flavoprotein that requires Zn2+ for activity. However, the role of Zn2+ in the enzyme has not been elucidated, making it difficult to rationalize why nature employs both a redox center and a metal ion for catalysis in PaD2HGDH and other metallo flavoenzymes. In this study, recombinant His-tagged PaD2HGDH was purified to high levels in the presence of Zn2+ or Co2+ to investigate the metal's role in catalysis. We found that the flavin reduction step was reversible and partially rate limiting for the enzyme's turnover at pH 7.4 with either D2HG or d-malate with similar rate constants for both substrates, irrespective of whether Zn2+ or Co2+ was bound to the enzyme. The steady-state pL profiles of the kcat and kcat/Km values with d-malate demonstrate that Zn2+ mediates the activation of water coordinated to the metal. Our data are consistent with a dual role for the metal, which orients the hydroxy acid substrate in the enzyme's active site and rapidly deprotonates the substrate to yield an alkoxide species for hydride transfer to the flavin. Thus, we propose a catalytic mechanism for PaD2HGDH oxidation that establishes Zn2+ as a cofactor required for substrate orientation and activation during enzymatic turnover.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
10
|
Pereira MS, de Araújo SS, Nagem RAP, Richard JP, Brandão TAS. The role of remote flavin adenine dinucleotide pieces in the oxidative decarboxylation catalyzed by salicylate hydroxylase. Bioorg Chem 2022; 119:105561. [PMID: 34965488 PMCID: PMC8824312 DOI: 10.1016/j.bioorg.2021.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
Salicylate hydroxylase (NahG) has a single redox site in which FAD is reduced by NADH, the O2 is activated by the reduced flavin, and salicylate undergoes an oxidative decarboxylation by a C(4a)-hydroperoxyflavin intermediate to give catechol. We report experimental results that show the contribution of individual pieces of the FAD cofactor to the observed enzymatic activity for turnover of the whole cofactor. A comparison of the kinetic parameters and products for the NahG-catalyzed reactions of FMN and riboflavin cofactor fragments reveal that the adenosine monophosphate (AMP) and ribitol phosphate pieces of FAD act to anchor the flavin to the enzyme and to direct the partitioning of the C(4a)-hydroperoxyflavin reaction intermediate towards hydroxylation of salicylate. The addition of AMP or ribitol phosphate pieces to solutions of the truncated flavins results in a partial restoration of the enzymatic activity lost upon truncation of FAD, and the pieces direct the reaction of the C(4a)-hydroperoxyflavin intermediate towards hydroxylation of salicylate.
Collapse
Affiliation(s)
- Mozart S. Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Simara S. de Araújo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ronaldo A. P. Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000,CORRESPONDING AUTHOR: ;
| | - Tiago A. S. Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.,CORRESPONDING AUTHOR: ;
| |
Collapse
|
11
|
Quaye JA, Gadda G. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry 2020; 59:4833-4844. [PMID: 33301690 DOI: 10.1021/acs.biochem.0c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 μM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.
Collapse
|
12
|
Abstract
This review presents a historical outline of the research on vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum, one of the canonical members of the VAO/PCMH flavoprotein family. After describing its discovery and initial biochemical characterization, we discuss the physiological role, substrate scope, and catalytic mechanism of VAO, and review its three-dimensional structure and mechanism of covalent flavinylation. We also explain how protein engineering provided a deeper insight into the role of certain amino acid residues in determining the substrate specificity and enantioselectivity of the enzyme. Finally, we summarize recent computational studies about the migration of substrates and products through the enzyme's structure and the phylogenetic distribution of VAO and related enzymes.
Collapse
Affiliation(s)
- Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gudrun Gygli
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Martins TM, Martins C, Silva Pereira C. Multiple degrees of separation in the central pathways of the catabolism of aromatic compounds in fungi belonging to the Dikarya sub-Kingdom. Adv Microb Physiol 2019; 75:177-203. [PMID: 31655737 DOI: 10.1016/bs.ampbs.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diversity and abundance of aromatic compounds in nature is crucial for proper metabolism in all biological systems, and also impacts greatly the development of many industrial processes. Naturally, understanding their catabolism becomes fundamental for many scientific fields of research, from clinical and environmental to technological. The genetic basis of the central pathways for the catabolism of aromatic compounds in fungi, particularly of benzene derivatives, remains however poorly understood largely overlooking their significance. In some Dikarya species the genes of the central pathways are clustered in the genome, often in an array with peripheral pathway genes, even if the existence of a specific pathway does not necessarily mean that the composing genes are clustered. The current availability of many annotated fungal genomes in the postgenomic era creates conditions to reach a more holistic view of these processes through target analysis of the central pathways gene clusters. Inspired by this, we have critically analyzed the established biochemical and genetic data on the catabolism of aromatic compounds in Dikarya after dissecting the presence and distribution of central catabolic gene clusters (at times including also details on gene diversity, order and orientation) and of peripheral genes. Our methodological approach illustrates the multiple degrees of separation in these central pathways gene clusters across Dikarya. Surprisingly, they show a great degree of similarity irrespectively of the Dikarya division, emphasizing that knowledge established on either phyla can guide the identification of clusters of comparable composition (in-cluster plus peripheral genes) in uncharacterized species.
Collapse
Affiliation(s)
- Tiago M Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| |
Collapse
|
15
|
Gygli G, de Vries RP, van Berkel WJ. On the origin of vanillyl alcohol oxidases. Fungal Genet Biol 2018; 116:24-32. [DOI: 10.1016/j.fgb.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
16
|
Crystal structure of bacterial succinate:quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proc Natl Acad Sci U S A 2018. [PMID: 29514959 DOI: 10.1073/pnas.1800195115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Succinate:quinone oxidoreductase (SQR) functions in energy metabolism, coupling the tricarboxylic acid cycle and electron transport chain in bacteria and mitochondria. The biogenesis of flavinylated SdhA, the catalytic subunit of SQR, is assisted by a highly conserved assembly factor termed SdhE in bacteria via an unknown mechanism. By using X-ray crystallography, we have solved the structure of Escherichia coli SdhE in complex with SdhA to 2.15-Å resolution. Our structure shows that SdhE makes a direct interaction with the flavin adenine dinucleotide-linked residue His45 in SdhA and maintains the capping domain of SdhA in an "open" conformation. This displaces the catalytic residues of the succinate dehydrogenase active site by as much as 9.0 Å compared with SdhA in the assembled SQR complex. These data suggest that bacterial SdhE proteins, and their mitochondrial homologs, are assembly chaperones that constrain the conformation of SdhA to facilitate efficient flavinylation while regulating succinate dehydrogenase activity for productive biogenesis of SQR.
Collapse
|
17
|
Gygli G, Lucas MF, Guallar V, van Berkel WJH. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Comput Biol 2017; 13:e1005787. [PMID: 28985219 PMCID: PMC5646868 DOI: 10.1371/journal.pcbi.1005787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/18/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023] Open
Abstract
Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process. Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.
Collapse
Affiliation(s)
- Gudrun Gygli
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Huijbers MME, Martínez-Júlvez M, Westphal AH, Delgado-Arciniega E, Medina M, van Berkel WJH. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Sci Rep 2017; 7:43880. [PMID: 28256579 PMCID: PMC5335563 DOI: 10.1038/srep43880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered.
Collapse
Affiliation(s)
- Mieke M. E. Huijbers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marta Martínez-Júlvez
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Estela Delgado-Arciniega
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Milagros Medina
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
19
|
Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Aboobucker SI, Lorence A. Recent progress on the characterization of aldonolactone oxidoreductases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:171-85. [PMID: 26696130 PMCID: PMC4725720 DOI: 10.1016/j.plaphy.2015.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
L-Ascorbic acid (ascorbate, AsA, vitamin C) is essential for animal and plant health. Despite our dependence on fruits and vegetables to fulfill our requirement for this vitamin, the metabolic network leading to its formation in plants is just being fully elucidated. There is evidence supporting the operation of at least four biosynthetic pathways leading to AsA formation in plants. These routes use D-mannose/L-galactose, L-gulose, D-galacturonate, and myo-inositol as the main precursors. This review focuses on aldonolactone oxidoreductases, a subgroup of the vanillyl alcohol oxidase (VAO; EC 1.1.3.38) superfamily, enzymes that catalyze the terminal step in AsA biosynthesis in bacteria, protozoa, animals, and plants. In this report, we review the properties of well characterized aldonolactone oxidoreductases to date. A shared feature in these proteins is the presence of a flavin cofactor as well as a thiol group. The flavin cofactor in many cases is bound to the N terminus of the enzymes or to a recently discovered HWXK motif in the C terminus. The binding between the flavin moiety and the protein can be either covalent or non-covalent. Substrate specificity and subcellular localization differ among the isozymes of each kingdom. All oxidases among these enzymes possess dehydrogenase activity, however, exclusive dehydrogenases are also found. We also discuss recent evidence indicating that plants have both L-gulono-1,4-lactone oxidases and L-galactono-1,4-lactone dehydrogenases involved in AsA biosynthesis.
Collapse
Affiliation(s)
- Siddique I Aboobucker
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA; Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA.
| |
Collapse
|
21
|
Wübbeler JH, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters. J Biotechnol 2015; 209:85-95. [PMID: 26073999 DOI: 10.1016/j.jbiotec.2015.06.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
22
|
Krondorfer I, Brugger D, Paukner R, Scheiblbrandner S, Pirker KF, Hofbauer S, Furtmüller PG, Obinger C, Haltrich D, Peterbauer CK. Agaricus meleagris pyranose dehydrogenase: influence of covalent FAD linkage on catalysis and stability. Arch Biochem Biophys 2014; 558:111-9. [PMID: 25043975 PMCID: PMC4148704 DOI: 10.1016/j.abb.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Pyranose dehydrogenase (PDH) is a monomeric flavoprotein belonging to the glucose-methanol-choline (GMC) family of oxidoreductases. It catalyzes the oxidation of free, non-phosphorylated sugars to the corresponding keto sugars. The enzyme harbors an FAD cofactor that is covalently attached to histidine 103 via an 8α-N(3) histidyl linkage. Our previous work showed that variant H103Y was still able to bind FAD (non-covalently) and perform catalysis but steady-state kinetic parameters for several substrates were negatively affected. In order to investigate the impact of the covalent FAD attachment in Agaricus meleagris PDH in more detail, pre-steady-state kinetics, reduction potential and stability of the variant H103Y in comparison to the wild-type enzyme were probed. Stopped-flow analysis revealed that the mutation slowed down the reductive half-reaction by around three orders of magnitude whereas the oxidative half-reaction was affected only to a minor degree. This was reflected by a decrease in the standard reduction potential of variant H103Y compared to the wild-type protein. The existence of an anionic semiquinone radical in the resting state of both the wild-type and variant H103Y was demonstrated using electron paramagnetic resonance (EPR) spectroscopy and suggested a higher mobility of the cofactor in the variant H103Y. Unfolding studies showed significant negative effects of the disruption of the covalent bond on thermal and conformational stability. The results are discussed with respect to the role of covalently bound FAD in catalysis and stability.
Collapse
Affiliation(s)
- Iris Krondorfer
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Dagmar Brugger
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Regina Paukner
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens K Peterbauer
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
23
|
Analysis of covalent flavinylation using thermostable succinate dehydrogenase from Thermus thermophilus and Sulfolobus tokodaii lacking SdhE homologs. FEBS Lett 2014; 588:1058-63. [PMID: 24566086 DOI: 10.1016/j.febslet.2014.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
Recent studies have indicated that post-translational flavinylation of succinate dehydrogenase subunit A (SdhA) in eukaryotes and bacteria require the chaperone-like proteins Sdh5 and SdhE, respectively. How does covalent flavinylation occur in prokaryotes, which lack SdhE homologs? In this study, I showed that covalent flavinylation in two hyperthermophilic bacteria/archaea lacking SdhE, Thermus thermophilus and Sulfolobus tokodaii, requires heat and dicarboxylic acid. These thermophilic bacteria/archaea inhabit hot environments and are said to be genetically far removed from mesophilic bacteria which possess SdhE. Since mesophilic bacteria have been effective at covalent bonding in temperate environments, they may have caused the evolution of SdhE.
Collapse
|
24
|
FAD binding properties of a cytosolic version of Escherichia coli NADH dehydrogenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:576-84. [PMID: 24418395 DOI: 10.1016/j.bbapap.2013.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 12/18/2022]
Abstract
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA=7.0(±0.8)×10(4)M(-1). Taken together, the FAD-protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.
Collapse
|
25
|
Kim HJ, Winge DR. Emerging concepts in the flavinylation of succinate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:627-36. [PMID: 23380393 DOI: 10.1016/j.bbabio.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
The Succinate Dehydrogenase (SDH) heterotetrameric complex catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and in the aerobic respiratory chains of eukaryotes and bacteria. Essential in this catalysis is the covalently-linked cofactor flavin adenine dinucleotide (FAD) in subunit1 (Sdh1) of the SDH enzyme complex. The mechanism of FAD insertion and covalent attachment to Sdh1 is unknown. Our working concept of this flavinylation process has relied mostly on foundational works from the 1990s and by applying the principles learned from other enzymes containing a similarly linked FAD. The discovery of the flavinylation factor Sdh5, however, has provided new insight into the possible mechanism associated with Sdh1 flavinylation. This review focuses on encapsulating prior and recent advances towards understanding the mechanism associated with flavinylation of Sdh1 and how this flavinylation process affects the overall assembly of SDH. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
26
|
Kim HJ, Jeong MY, Na U, Winge DR. Flavinylation and assembly of succinate dehydrogenase are dependent on the C-terminal tail of the flavoprotein subunit. J Biol Chem 2012; 287:40670-9. [PMID: 23043141 DOI: 10.1074/jbc.m112.405704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Succinate dehydrogenase (SDH) requires a covalent addition of FAD for catalytic function. RESULTS Mutational analyses of Sdh1 implicate C-terminal region Arg residues involvement in covalent flavinylation and SDH assembly. CONCLUSION SDH assembly is dependent on FAD binding to Sdh1 but not covalent binding. SIGNIFICANCE These results document the basis for the SDH deficiency and pathology seen with mutations in human Sdh1. The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ~70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg(582) in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg(638) compromises SDH function only when present in combination with a Cys(630) substitution. Mutations of either Arg(582) or Arg(638)/Cys(630) do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Leishmania donovani encodes a functional enzyme involved in vitamin c biosynthesis: Arabino-1,4-lactone oxidase. Mol Biochem Parasitol 2011; 180:76-85. [DOI: 10.1016/j.molbiopara.2011.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
|
29
|
Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1155-68. [PMID: 21081665 DOI: 10.1093/jxb/erq341] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. All so far characterized PAOs from monocotyledonous plants, such as the apoplastic maize PAO, oxidize spermine (Spm) and spermidine (Spd) to produce 1,3-diaminopropane, H(2)O(2), and an aminoaldehyde, and are thus considered to be involved in a terminal catabolic pathway. Mammalian PAOs oxidize Spm or Spd (and/or their acetyl derivatives) differently from monocotyledonous PAOs, producing Spd or putrescine, respectively, in addition to H(2)O(2) and an aminoaldehyde, and are therefore involved in a polyamine back-conversion pathway. In Arabidopsis thaliana, five PAOs (AtPAO1-AtPAO5) are present with cytosolic or peroxisomal localization and three of them (the peroxisomal AtPAO2, AtPAO3, and AtPAO4) form a distinct PAO subfamily. Here, a comparative study of the catalytic properties of recombinant AtPAO1, AtPAO2, AtPAO3, and AtPAO4 is presented, which shows that all four enzymes strongly resemble their mammalian counterparts, being able to oxidize the common polyamines Spd and/or Spm through a polyamine back-conversion pathway. The existence of this pathway in Arabidopsis plants is also evidenced in vivo. These enzymes are also able to oxidize the naturally occurring uncommon polyamines norspermine and thermospermine, the latter being involved in important plant developmental processes. Furthermore, data herein reveal some important differences in substrate specificity among the various AtPAOs, which suggest functional diversity inside the AtPAO gene family. These results represent a new starting point for further understanding of the physiological role(s) of the polyamine catabolic pathways in plants.
Collapse
Affiliation(s)
- Paola Fincato
- Department of Biology, University Roma Tre, 00146 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kuratani M, Tanaka K, Terashima K, Muraguchi H, Nakazawa T, Nakahori K, Kamada T. The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain. Fungal Genet Biol 2009; 47:152-8. [PMID: 19850145 DOI: 10.1016/j.fgb.2009.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023]
Abstract
The fruiting-body primordium of Coprinopsis cinerea exhibits remarkable photomorphogenesis. Under a 12-h light/12-h dark regime, the primordium proceeds to the fruiting-body maturation phase in which the primordium successively undergoes basidiospore formation, stipe elongation and pileus expansion, resulting in the mature fruiting-body. In continuous darkness, however, the primordium never proceeds to the maturation phase: the pileus and stipe tissues at the upper part of the primordium remain rudimentary while the basal part of the primordium elongates, producing the etiolated "dark stipe" phenotype. In our previous studies, blind mutants, which produce dark stipes under light conditions that promote fruiting-body maturation in the wild-type, have been isolated, and two genes, dst1 and dst2, responsible for the mutant phenotype have been identified. In this study we show that the dst2-1 mutant exhibits a blind phenotype during asexual spore production in addition to that in fruiting-body photomorphogenesis. We also reveal that dst2 is predicted to encode a protein with a putative flavin adenine dinucleotide (FAD)-binding-4 domain. The two blind phenotypes, together with the existence of an FAD-binding domain in Dst2, suggest that Dst2 may play a role in perceiving blue light.
Collapse
Affiliation(s)
- Masaki Kuratani
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 2009; 276:3405-27. [PMID: 19438712 DOI: 10.1111/j.1742-4658.2009.07053.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many enzymes use one or more cofactors, such as biotin, heme, or flavin. These cofactors may be bound to the enzyme in a noncovalent or covalent manner. Although most flavoproteins contain a noncovalently bound flavin cofactor (FMN or FAD), a large number have these cofactors covalently linked to the polypeptide chain. Most covalent flavin-protein linkages involve a single cofactor attachment via a histidyl, tyrosyl, cysteinyl or threonyl linkage. However, some flavoproteins contain a flavin that is tethered to two amino acids. In the last decade, many studies have focused on elucidating the mechanism(s) of covalent flavin incorporation (flavinylation) and the possible role(s) of covalent protein-flavin bonds. These endeavors have revealed that covalent flavinylation is a post-translational and self-catalytic process. This review presents an overview of the known types of covalent flavin bonds and the proposed mechanisms and roles of covalent flavinylation.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Salaheddin C, Spadiut O, Ludwig R, Tan TC, Divne C, Haltrich D, Peterbauer C. Probing active-site residues of pyranose 2-oxidase from Trametes multicolor by semi-rational protein design. Biotechnol J 2009; 4:535-43. [PMID: 19370721 DOI: 10.1002/biot.200800265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
D-Tagatose is a sweetener with low caloric and non-glycemic characteristics. It can be produced by an enzymatic oxidation of D-galactose specifically at C2 followed by chemical hydrogenation. Pyranose 2-oxidase (P2Ox) from Trametes multicolor catalyzes the oxidation of many aldopyranoses to their corresponding 2-keto derivatives. Since D-galactose is not the preferred substrate of P2Ox, semi-rational design was employed to improve the catalytic efficiency with this poor substrate. Saturation mutagenesis was applied on all positions in the active site of the enzyme, resulting in a library of mutants, which were screened for improved activity in a 96-well microtiter plate format. Mutants with higher activity than wild-type P2Ox were chosen for further kinetic investigations. Variant V546C was found to show a 2.5-fold increase of k(cat) with both D-glucose and D-galactose when oxygen was used as electron acceptor. Because of weak substrate binding, however, k(cat)/K(M) is lower for both sugar substrates compared to wild-type TmP2Ox. Furthermore, variants at position T169, i.e., T169S and T169N, showed an improvement of the catalytic characteristics of P2Ox with D-galactose. Batch conversion experiments of D-galactose to 2-keto-D-galactose were performed with wild-type TmP2O as well as with variants T169S, T169N, V546C and V546C/T169N to corroborate the kinetic properties determined by Michaelis-Menten kinetics.
Collapse
Affiliation(s)
- Clara Salaheddin
- Department of Food Sciences and Technology, BOKU, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Fruk L, Kuo CH, Torres E, Niemeyer CM. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed Engl 2009; 48:1550-74. [PMID: 19165853 DOI: 10.1002/anie.200803098] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many enzymes contain a nondiffusible organic cofactor, often termed a prosthetic group, which is located in the active site and essential for the catalytic activity of the enzyme. These cofactors can often be extracted from the protein to yield the respective apoenzyme, which can subsequently be reconstituted with an artificial analogue of the native cofactor. Nowadays a large variety of synthetic cofactors can be used for the reconstitution of apoenzymes and, thus, generate novel semisynthetic enzymes. This approach has been refined over the past decades to become a versatile tool of structural enzymology to elucidate structure-function relationships of enzymes. Moreover, the reconstitution of apoenzymes can also be used to generate enzymes possessing enhanced or even entirely new functionality. This Review gives an overview on historical developments and the current state-of-the-art on apoenzyme reconstitution.
Collapse
Affiliation(s)
- Ljiljana Fruk
- Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
34
|
Fruk L, Kuo CH, Torres E, Niemeyer C. Rekonstitution von Apoenzymen als chemisches Werkzeug für die strukturelle Enzymologie und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Huang CH, Winkler A, Chen CL, Lai WL, Tsai YC, Macheroux P, Liaw SH. Functional roles of the 6-S-cysteinyl, 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum. J Biol Chem 2008; 283:30990-6. [PMID: 18768475 PMCID: PMC2662170 DOI: 10.1074/jbc.m804331200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/01/2008] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of glucooligosaccharide oxidase from Acremonium strictum was demonstrated to contain a bicovalent flavinylation, with the 6- and 8alpha-positions of the flavin isoalloxazine ring cross-linked to Cys(130) and His(70), respectively. The H70A and C130A single mutants still retain the covalent FAD, indicating that flavinylation at these two residues is independent. Both mutants exhibit a decreased midpoint potential of approximately +69 and +61 mV, respectively, compared with +126 mV for the wild type, and possess lower activities with k(cat) values reduced to approximately 2 and 5%, and the flavin reduction rate reduced to 0.6 and 14%. This indicates that both covalent linkages increase the flavin redox potential and alter the redox properties to promote catalytic efficiency. In addition, the isolated H70A/C130A double mutant does not contain FAD, and addition of exogenous FAD was not able to restore any detectable activity. This demonstrates that the covalent attachment is essential for the binding of the oxidized cofactor. Furthermore, the crystal structure of the C130A mutant displays conformational changes in several cofactor and substrate-interacting residues and hence provides direct evidence for novel functions of flavinylation in assistance of cofactor and substrate binding. Finally, the wild-type enzyme is more heat and guanidine HCl-resistant than the mutants. Therefore, the bicovalent flavin linkage not only tunes the redox potential and contributes to cofactor and substrate binding but also increases structural stability.
Collapse
Affiliation(s)
- Chun-Hsiang Huang
- Department of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Jin J, Mazon H, van den Heuvel RHH, Heck AJ, Janssen DB, Fraaije MW. Covalent flavinylation of vanillyl-alcohol oxidase is an autocatalytic process. FEBS J 2008; 275:5191-200. [PMID: 18793324 DOI: 10.1111/j.1742-4658.2008.06649.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vanillyl-alcohol oxidase (VAO; EC 1.1.3.38) contains a covalently 8alpha-histidyl bound FAD, which represents the most frequently encountered covalent flavin-protein linkage. To elucidate the mechanism by which VAO covalently incorporates the FAD cofactor, apo VAO was produced by using a riboflavin auxotrophic Escherichia coli strain. Incubation of apo VAO with FAD resulted in full restoration of enzyme activity. The rate of activity restoration was dependent on FAD concentration, displaying a hyperbolic relationship (K(FAD )= 2.3 microM, k(activation) = 0.13 min(-1)). The time-dependent increase in enzyme activity was accompanied by full covalent incorporation of FAD, as determined by SDS/PAGE and ESI-MS analysis. The results obtained show that formation of the covalent flavin-protein bond is an autocatalytic process, which proceeds via a reduced flavin intermediate. Furthermore, ESI-MS experiments revealed that, although apo VAO mainly exists as monomers and dimers, FAD binding promotes the formation of VAO dimers and octamers. Tandem ESI-MS experiments revealed that octamerization is not dependent on full covalent flavinylation.
Collapse
Affiliation(s)
- Jianfeng Jin
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH. The growing VAO flavoprotein family. Arch Biochem Biophys 2008; 474:292-301. [PMID: 18280246 DOI: 10.1016/j.abb.2008.01.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
The VAO flavoprotein family is a rapidly growing family of oxidoreductases that favor the covalent binding of the FAD cofactor. In this review we report on the catalytic properties of some newly discovered VAO family members and their mode of flavin binding. Covalent binding of the flavin is a self-catalytic post-translational modification primarily taking place in oxidases. Covalent flavinylation increases the redox potential of the cofactor and thus its oxidation power. Recent findings have revealed that some members of the VAO family anchor the flavin via a dual covalent linkage (6-S-cysteinyl-8alpha-N1-histidyl FAD). Some VAO-type aldonolactone oxidoreductases favor the non-covalent binding of the flavin cofactor. These enzymes act as dehydrogenases, using cytochrome c as electron acceptor.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Leferink NGH, van den Berg WAM, van Berkel WJH. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 2008; 275:713-26. [PMID: 18190525 DOI: 10.1111/j.1742-4658.2007.06233.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant Arabidopsis thaliana GALDH (AtGALDH). AtGALDH oxidizes, in addition to l-galactono-1,4-lactone (K(m) = 0.17 mm, k(cat) = 134 s(-1)), l-gulono-1,4-lactone (K(m) = 13.1 mm, k(cat) = 4.0 s(-1)) using cytochrome c as an electron acceptor. Aerobic reduction of AtGALDH with the lactone substrate generates the flavin hydroquinone. The two-electron reduced enzyme reacts poorly with molecular oxygen (k(ox) = 6 x 10(2) m(-1).s(-1)). Unlike most flavoprotein dehydrogenases, AtGALDH forms a flavin N5 sulfite adduct. Anaerobic photoreduction involves the transient stabilization of the anionic flavin semiquinone. Most aldonolactone oxidoreductases contain a histidyl-FAD as a covalently bound prosthetic group. AtGALDH lacks the histidine involved in covalent FAD binding, but contains a leucine instead (Leu56). Leu56 replacements did not result in covalent flavinylation but revealed the importance of Leu56 for both FAD-binding and catalysis. The Leu56 variants showed remarkable differences in Michaelis constants for both l-galactono-1,4-lactone and l-gulono-1,4-lactone and released their FAD cofactor more easily than wild-type AtGALDH. The present study provides the first biochemical characterization of AtGALDH and some active site variants. The role of GALDH and the possible involvement of other aldonolactone oxidoreductases in the biosynthesis of vitamin C in A. thaliana are also discussed.
Collapse
|
39
|
Logan F, Taylor M, Wilkinson S, Kaur H, Kelly J. The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. Biochem J 2007; 407:419-26. [PMID: 17627608 PMCID: PMC2275072 DOI: 10.1042/bj20070766] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans lack the ability to synthesize vitamin C (ascorbate) due to the absence of gulonolactone oxidase, the last enzyme in the biosynthetic pathway in most other mammals. The corresponding oxidoreductase in trypanosomes therefore represents a target that may be therapeutically exploitable. This is reinforced by our observation that Trypanosoma cruzi, the causative agent of Chagas' disease, lacks the capacity to scavenge ascorbate from its environment and is therefore dependent on biosynthesis to maintain intracellular levels of this vitamin. Here, we show that T. cruzi galactonolactone oxidase (TcGAL) can utilize both L-galactono-gamma-lactone and D-arabinono-gamma-lactone as substrates for synthesis of vitamin C, in reactions that obey Michaelis-Menten kinetics. It is >20-fold more active than the analogous enzyme from the African trypanosome Trypanosoma brucei. FMN is an essential cofactor for enzyme activity and binds to TcGAL non-covalently. In other flavoproteins, a histidine residue located within the N-terminal flavin-binding motif has been shown to be crucial for cofactor binding. Using site-directed mutagenesis, we show that the corresponding residue in TcGAL (Lys-55) is not essential for this interaction. In contrast, we find that histidine and tryptophan residues (His-447 and Trp-448), localized within a C-terminal motif (HWXK) that is a feature of ascorbate-synthesizing enzymes, are necessary for the FMN association. The conserved lysine residue within this motif (Lys-450) is not required for cofactor binding, but its replacement by glycine renders the protein completely inactive.
Collapse
Affiliation(s)
- Flora J. Logan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Martin C. Taylor
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Shane R. Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Harparkash Kaur
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - John M. Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Jin J, Mazon H, van den Heuvel RHH, Janssen DB, Fraaije MW. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 2007; 274:2311-21. [PMID: 17419730 DOI: 10.1111/j.1742-4658.2007.05767.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.
Collapse
Affiliation(s)
- Jianfeng Jin
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Alexeev I, Sultana A, Mäntsälä P, Niemi J, Schneider G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc Natl Acad Sci U S A 2007; 104:6170-5. [PMID: 17395717 PMCID: PMC1851095 DOI: 10.1073/pnas.0700579104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aclacinomycin (Acl) oxidoreductase (AknOx) catalyzes the last two steps in the biosynthesis of polyketide antibiotics of the Acl group, the oxidation of the terminal sugar moiety rhodinose to l-aculose. We present the crystal structure of AknOx with bound FAD and the product AclY, refined to 1.65-A resolution. The overall fold of AknOx identifies the enzyme as a member of the p-cresol methylhydroxylase superfamily. The cofactor is bicovalently attached to His-70 and Cys-130 as 8alpha-Ndelta1-histidyl, 6-S-cysteinyl FAD. The polyketide ligand is bound in a deep cleft in the substrate-binding domain, with the tetracyclic ring system close to the enzyme surface and the three-sugar chain extending into the protein interior. The terminal sugar residue packs against the isoalloxazine ring of FAD and positions the carbon atoms that are oxidized close to the N5 atom of FAD. The structure and site-directed mutagenesis data presented here are consistent with a mechanism where the two different reactions of AknOx are catalyzed in the same active site but by different active site residues. Tyr-450 is responsible for proton removal from the C-4 hydroxyl group in the first reaction, the oxidation of rhodinose to cinerulose A. Tyr-378 acts as a catalytic base involved in proton abstraction from C3 of cinerulose A in the second reaction, for formation L-aculose. Replacement of this residue, however, does not impair the conversion of rhodinose to cinerulose A.
Collapse
Affiliation(s)
- Igor Alexeev
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
| | - Azmiri Sultana
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Pekka Mäntsälä
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
| | - Jarmo Niemi
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
- To whom correspondence may be addressed. E-mail: or
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
42
|
Abstract
A series (C1-C12) of alkyl gallates was examined for their effects on the activity of xanthine oxidase. Octyl (C8), decyl (C10), and dodecyl (C12) gallates competitively inhibited uric acid formation generated by xanthine oxidase, and the inhibition increased upon increasing the alkyl chain length. Interestingly, neither menthyl nor bornyl gallates inhibited uric acid formation. These data indicate that the hydrophobic alkyl portion is associated with the xanthine-binding site in the Mo-binding domain. It is likely that the linear alkyl portion interacts with the hydrophobic domain close to the binding site, and the hydrophobic interaction is crucial to inhibit the xanthine oxidase reaction. On the other hand, all of gallic acid and its esters equally suppress superoxide anion generation catalyzed by xanthine oxidase at low concentration. The suppression is not due to scavenging activity of these gallates but due to reduction of xanthine oxidase by these gallates. The reduced enzyme catalyzes the reaction to generate hydrogen peroxide and uric acid.
Collapse
Affiliation(s)
- Noriyoshi Masuoka
- Department of Life Science, Okayama University of Science, Ridai-cho, Okayama, Japan.
| | | | | |
Collapse
|
43
|
Stevens JM, Uchida T, Daltrop O, Ferguson SJ. Covalent cofactor attachment to proteins: cytochrome c biogenesis. Biochem Soc Trans 2005; 33:792-5. [PMID: 16042600 DOI: 10.1042/bst0330792] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Haem (Fe-protoporphyrin IX) is a cofactor found in a wide variety of proteins. It confers diverse functions, including electron transfer, the binding and sensing of gases, and many types of catalysis. The majority of cofactors are non-covalently attached to proteins. There are, however, some proteins in which the cofactor binds covalently and one of the major protein classes characterized by covalent cofactor attachment is the c-type cytochromes. The characteristic haem-binding mode of c-type cytochromes requires the formation of two covalent bonds between two cysteine residues in the protein and the two vinyl groups of haem. Haem attachment is a complex post-translational process that, in bacteria such as Escherichia coli, occurs in the periplasmic space and involves the participation of many proteins. Unexpectedly, it has been found that the haem chaperone CcmE (cytochrome c maturation), which is an essential intermediate in the process, also binds haem covalently before transferring the haem to apocytochromes. A single covalent bond is involved and occurs between a haem vinyl group and a histidine residue of CcmE. Several in vitro and in vivo studies have provided insight into the function of this protein and into the overall process of cytochrome c biogenesis.
Collapse
Affiliation(s)
- J M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
44
|
Huang CH, Lai WL, Lee MH, Chen CJ, Vasella A, Tsai YC, Liaw SH. Crystal Structure of Glucooligosaccharide Oxidase from Acremonium strictum. J Biol Chem 2005; 280:38831-8. [PMID: 16154992 DOI: 10.1074/jbc.m506078200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucooligosaccharide oxidase from Acremonium strictum has been screened for potential applications in oligosaccharide acid production and alternative carbohydrate detection, because it catalyzes the oxidation of glucose, maltose, lactose, cellobiose and cello- and maltooligosaccharides. We report the crystal structures of the enzyme and of its complex with an inhibitor, 5-amino-5-deoxy- cellobiono-1,5-lactam at 1.55- and 1.98-A resolution, respectively. Unexpectedly, the protein structure demonstrates the first known double attachment flavinylation, 6-S-cysteinyl, 8alpha-N1-histidyl FAD. The FAD cofactor is cross-linked to the enzyme via the C(6) atom and the 8alpha-methyl group of the isoalloxazine ring with Cys(130) and His(70), respectively. This sugar oxidase possesses an open carbohydrate-binding groove, allowing the accommodation of higher oligosaccharides. The complex structure suggests that this enzyme may prefer a beta-d-glucosyl residue at the reducing end with the conserved Tyr(429) acting as a general base to abstract the OH(1) proton in concert with the H(1) hydride transfer to the flavin N(5). Finally, a detailed comparison illustrates the structural conservation as well as the divergence between this protein and its related flavoenzymes.
Collapse
Affiliation(s)
- Chun-Hsiang Huang
- Structural Biology Program, Institute of Biochemistry, and Faculty of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Anderson S, Dragnea V, Masuda S, Ybe J, Moffat K, Bauer C. Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 2005; 44:7998-8005. [PMID: 15924418 PMCID: PMC2774740 DOI: 10.1021/bi0502691] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavin-binding BLUF domain of AppA represents a new class of blue light photoreceptors that are present in a number of bacterial and algal species. The dark state X-ray structure of this domain was determined at 2.3 A resolution. The domain demonstrates a new function for the common ferredoxin-like fold; two long alpha-helices flank the flavin, which is bound with its isoalloxazine ring perpendicular to a five-stranded beta-sheet. The hydrogen bond network and the overall protein topology of the BLUF domain (but not its sequence) bear some resemblance to LOV domains, a subset of PAS domains widely involved in signaling. Nearly all residues conserved in BLUF domains surround the flavin chromophore, many of which are involved in an intricate hydrogen bond network. Photoactivation may induce a rearrangement in this network via reorientation of the Gln63 side chain to form a new hydrogen bond to the flavin O4 position. This shift would also break a hydrogen bond to the Trp104 side chain, which may be critical in induction of global structural change in AppA.
Collapse
Affiliation(s)
- Spencer Anderson
- Consortium for Advanced Radiation Sources, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
46
|
van den Heuvel RHH, Tahallah N, Kamerbeek NM, Fraaije MW, van Berkel WJH, Janssen DB, Heck AJR. Coenzyme binding during catalysis is beneficial for the stability of 4-hydroxyacetophenone monooxygenase. J Biol Chem 2005; 280:32115-21. [PMID: 16049018 DOI: 10.1074/jbc.m503758200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADPH-dependent dimeric flavoenzyme 4-hydroxyacetophenone monooxygenase (HAPMO) catalyzes Baeyer-Villiger oxidations of a wide range of ketones, thereby generating esters or lactones. In the current work, we probed HAPMO-coenzyme complexes present during the enzyme catalytic cycle with the aim to gain mechanistic insight. Moreover, we investigated the structural role of the nicotinamide coenzyme. For these studies, we used (i) wild type HAPMO, (ii) the R339A variant, which is active but has a low affinity toward NADPH, and (iii) the R440A variant, which is inactive but has a high affinity toward NADPH. Electrospray ionization mass spectrometry was used as the primary tool to directly observe noncovalent protein-coenzyme complexes in real time. These analyzes showed for the first time that the nicotinamide coenzyme remains bound to HAPMO during the entire catalytic cycle of the NADPH oxidase reaction. This may also have implications for other homologous Baeyer-Villiger monooxygenases. Together with the observations that NADP(+) only weakly interacts with oxidized enzyme and that HAPMO is mainly in the reduced form during catalysis, we concluded that NADP(+) interacts tightly with the reduced form of HAPMO. We also demonstrated that the association with the coenzyme is crucial for enzyme stability. The interaction with the coenzyme analog 3-aminopyridine adenine dinucleotide phosphate (AADP(+)) strongly enhanced the thermal stability of wild type HAPMO. This coenzyme-induced stabilization may also be important for related enzymes.
Collapse
Affiliation(s)
- Robert H H van den Heuvel
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chiribau CB, Sandu C, Fraaije M, Schiltz E, Brandsch R. A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. ACTA ACUST UNITED AC 2005; 271:4677-84. [PMID: 15606755 DOI: 10.1111/j.1432-1033.2004.04432.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotine catabolism, linked in Arthrobacter nicotinovorans to the presence of the megaplasmid pAO1, leads to the formation of gamma-N-methylaminobutyrate from the pyrrolidine ring of the alkaloid. Until now the metabolic fate of gamma-N-methylaminobutyrate has been unknown. pAO1 carries a cluster of ORFs with similarity to sarcosine and dimethylglycine dehydrogenases and oxidases, to the bifunctional enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase and to formyltetrahydrofolate deformylase. We cloned and expressed the gene carrying the sarcosine dehydrogenase-like ORF and showed, by enzyme activity, spectrophotometric methods and identification of the reaction product as gamma-aminobutyrate, that the predicted 89 395 Da flavoprotein is a demethylating gamma-N-methylaminobutyrate oxidase. Site-directed mutagenesis identified His67 as the site of covalent attachment of FAD and confirmed Trp66 as essential for FAD binding, for enzyme activity and for the spectral properties of the wild-type enzyme. A Km of 140 microm and a kcat of 800 s(-1) was determined when gamma-N-methylaminobutyrate was used as the substrate. Sarcosine was also turned over by the enzyme, but at a rate 200-fold slower than gamma-N-methylaminobutyrate. This novel enzyme activity revealed that the first step in channelling the gamma-N-methylaminobutyrate generated from nicotine into the cell metabolism proceeds by its oxidative demethylation.
Collapse
Affiliation(s)
- Calin B Chiribau
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Hassan-Abdallah A, Bruckner RC, Zhao G, Jorns MS. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. Biochemistry 2005; 44:6452-62. [PMID: 15850379 PMCID: PMC1993914 DOI: 10.1021/bi047271x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.
Collapse
Affiliation(s)
| | | | | | - Marilyn Schuman Jorns
- *To whom requests for reprints should be addressed. Phone: (215) 762-7495 FAX: (215) 762-4452, E-mail:
| |
Collapse
|
49
|
Hewinson J, Stevens CR, Millar TM. Vascular physiology and pathology of circulating xanthine oxidoreductase: from nucleotide sequence to functional enzyme. Redox Rep 2005; 9:71-9. [PMID: 15231061 DOI: 10.1179/135100004225004797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The evolutionarily conserved, cofactor-dependent, enzyme xanthine oxidoreductase exists in both cell-associated and circulatory forms. The exact role of the circulating form is not known; however, several putative physiological and pathological functions have been suggested that range from purine catabolism to a mediator of acute respiratory distress syndrome. Regulation of gene expression, cofactor synthesis and insertion, post-translational conversion, entry into the circulation, and putative physiological and pathological roles for human circulating xanthine oxidoreductase are discussed.
Collapse
|
50
|
Heck AJR, Van Den Heuvel RHH. Investigation of intact protein complexes by mass spectrometry. MASS SPECTROMETRY REVIEWS 2004; 23:368-89. [PMID: 15264235 DOI: 10.1002/mas.10081] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mass spectrometry has grown in recent years to a well-accepted and increasingly important complementary technique in structural biology. Especially electrospray ionization mass spectrometry is well suited for the detection of non-covalent protein complexes and their interactions with DNA, RNA, ligands, and cofactors. Over the last decade, significant advances have been made in the ionization and mass analysis techniques, which makes the investigation of even larger and more heterogeneous intact assemblies feasible. These technological developments have paved the way to study intact non-covalent protein-protein interactions, assembly and disassembly in real time, subunit exchange, cooperativity effects, and effects of cofactors, allowing us a better understanding of proteins in cellular processes. In this review, we describe some of the latest developments and several highlights.
Collapse
Affiliation(s)
- Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | |
Collapse
|