1
|
Valberg SJ. Sporadic and Recurrent Exertional Rhabdomyolysis. Vet Clin North Am Equine Pract 2025; 41:111-124. [PMID: 39880734 DOI: 10.1016/j.cveq.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Horses are particularly susceptible to developing exertional rhabdomyolysis (ER) characterized by muscle stiffness, pain, and reluctance to move. Diagnosis requires establishing abnormal increases in serum creatine kinase activity when horses exhibit clinical signs. The 2 main categories of ER include sporadic ER arising from extrinsic causes and chronic ER that arises from intrinsic continuous or episodic abnormalities in muscle function. This article focuses on treatment of acute ER and causes and management of sporadic ER. Differential diagnoses for chronic ER as well as the pathophysiology, diagnosis, and management of recurrent ER, and malignant hyperthermia are also discussed in this article.
Collapse
Affiliation(s)
- Stephanie J Valberg
- Michigan State University, Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, MI, USA.
| |
Collapse
|
2
|
Valberg SJ. Nonexertional Rhabdomyolysis. Vet Clin North Am Equine Pract 2025; 41:95-110. [PMID: 39893125 DOI: 10.1016/j.cveq.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Although horses most commonly develop exertional rhabdomyolysis, there are numerous causes for nonexertional rhabdomyolysis (nonER) that pose a serious health threat to horses. Their etiologies can be broadly categorized as toxic, genetic, inflammatory/infectious, nutritional, and traumatic and a variety of diagnostic tests are available to discern among them. This study discusses causes of nonER as well as diagnostics and treatments that are specific to each etiology. General treatment of acute rhabdomyolysis is covered in detail in the study in this issue on sporadic and recurrent exertional rhabdomyolysis.
Collapse
Affiliation(s)
- Stephanie J Valberg
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Yamaguchi H, Guagliardo NA, Bell LA, Yamaguchi M, Matsuoka D, Xu F, Smith JP, Diagne M, Almeida LF, Medrano S, Barrett PQ, Nieh EH, Gomez RA, Sequeira-Lopez MLS. Inhibition of Renin Release, a Crucial Event in Homeostasis, is Mediated by Coordinated Calcium Oscillations within Juxtaglomerular Cell Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.629519. [PMID: 39763801 PMCID: PMC11703171 DOI: 10.1101/2024.12.23.629519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
BACKGROUND Juxtaglomerular (JG) cells are sensors that control blood pressure (BP) and fluid-electrolyte homeostasis. They are arranged as clusters at the tip of each afferent arteriole. In response to a decrease in BP or extracellular fluid volume, JG cells secrete renin, initiating an enzymatic cascade that culminates in the production of angiotensin II (AngII), a potent vasoconstrictor that restores BP and fluid-electrolyte homeostasis. In turn, AngII exerts negative feedback on renin release concomitantly with increased intracellular Ca2+, preventing excessive circulating renin and hypertension. However, within their native structural organization, the intricacies of intracellular Ca2+ signaling dynamics and their sources remain uncharacterized. METHODS We generated mice expressing the JG cell-specific genetically encoded Ca2+ indicator (GCaMP6f) to investigate Ca2+ dynamics within JG cell clusters ex vivo and in vivo. For ex vivo Ca2+ imaging, acutely prepared kidney slices were perfused continuously with a buffer containing variable Ca2+ and AngII concentrations ± Ca2+ channel inhibitors. For in vivo Ca2+ image capture, native mouse kidneys were imaged in situ using multi-photon microscopy with and without AngII administration. ELISA measurements of renin concentrations determined acute renin secretion ex vivo and in vivo, respectively. RESULTS Ex vivo Ca2+ imaging revealed that JG cells exhibit robust and coordinated intracellular oscillatory signals with cell-cell propagation following AngII stimulation. AngII dose-dependently induced stereotypical burst patterns characterized by consecutive Ca2+ spikes, which inversely correlated with renin secretion. Pharmacological channel inhibition identified key sources of these oscillations: endoplasmic reticulum Ca2+ storage and release, extracellular Ca2+ uptake via ORAI channels, and intercellular communication through gap junctions. Blocking ORAI channels and gap junctions reduced AngII inhibitory effect on renin secretion. In vivo Ca2+ imaging demonstrated robust intracellular and intercellular Ca2+ oscillations within JG cell clusters under physiological conditions, exhibiting spike patterns consistent with those measured in ex vivo preparations. Administration of AngII enhanced the Ca2+ oscillatory signals and suppressed acute renin secretion in vivo. CONCLUSION AngII elicits coordinated intracellular and intercellular Ca2+ oscillations within JG cell clusters, ex vivo and in vivo. The effect is driven by endoplasmic reticulum-derived Ca2+ release, ORAI channels, and gap junctions, leading to suppressed renin secretion.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laura A. Bell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Manako Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daisuke Matsuoka
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Fang Xu
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jason P. Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mohamed Diagne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lucas F. Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Edward H. Nieh
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
4
|
Iyer KA, Kobayashi T, Murayama T, Samsó M. Dantrolene inhibition of ryanodine receptor 1 carrying the severe malignant hyperthermia mutation Y522S visualized by cryo-EM. Structure 2025; 33:338-348.e4. [PMID: 39708816 PMCID: PMC11805659 DOI: 10.1016/j.str.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Mutations in the skeletal isoform of the ryanodine receptor 1 (RyR1) pose grave risks during anesthesia or treatment with succinylcholine muscle relaxants. These can trigger a potentially lethal malignant hyperthermia (MH) episode via intracellular calcium increase mainly from RyR1 channel leakage. Dantrolene is the only known treatment option to prevent death. The main target of dantrolene is RyR1; however, little is known about the mechanism of inhibition. Cryoelectron microscopy (cryo-EM) structures of dantrolene bound to the severe MH Y522S RyR1 mutant in the closed and open states at 2.5-3.3 Å resolution revealed that the drug binds to the channel's cytoplasmic assembly, far from the ion gate, interacting with residues W882, W996, and R1000 in the P1 domain. The finding was validated by Ca2+ imaging and [3H]ryanodine binding in wild-type (WT) and alanine mutants. Dantrolene reduced channel opening probability by restricting the central activation module, "cooling down" the primed conformation caused by the mutation.
Collapse
Affiliation(s)
- Kavita A Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
6
|
Do TQ, Knollmann BC. Inhibitors of Intracellular RyR2 Calcium Release Channels as Therapeutic Agents in Arrhythmogenic Heart Diseases. Annu Rev Pharmacol Toxicol 2025; 65:443-463. [PMID: 39374431 DOI: 10.1146/annurev-pharmtox-061724-080739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. RYR2 gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.
Collapse
Affiliation(s)
- Tri Q Do
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
7
|
García-García L, Gómez-Oliver F, Fernández de la Rosa R, Pozo MÁ. Dantrolene paradoxically exacerbates short-term brain glucose hypometabolism, hippocampal damage and neuroinflammation induced by status epilepticus in the rat lithium-pilocarpine model. Eur J Pharmacol 2024; 985:177073. [PMID: 39481630 DOI: 10.1016/j.ejphar.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Status epilepticus (SE) is a neurologic emergency characterized by prolonged or rapidly recurring seizures. Increased intracellular calcium concentration ([Ca2+]i) occurring after SE is a key mediator of excitotoxicity that contributes to the brain damage associated with the development of epilepsy. Accumulated evidence indicates that dantrolene, a ryanodine receptor (RyR) blocker may have protective effects against the SE-induced damage. We evaluated whether dantrolene (10 mg/kg, i.p.) administered twice, 5 min and 24 h after the lithium-pilocarpine-induced SE in rats, had neuroprotective effects. Dantrolene by itself had no effects on control rats. However, it exacerbated the signs of damage in rats that underwent SE, increasing brain glucose hypometabolism as measured by PET neuroimaging 3 days after SE. Likewise, the neurohistochemical studies revealed that dantrolene aggravated signs of hippocampal neurodegeneration, neuronal death and microglia-induced neuroinflammation. Besides, the damaging effects were reflected by severe body weight loss. Overall, our results point towards a deleterious effect of dantrolene in the lithium-pilocarpine-induced SE model. Nonetheless, our results are in opposition to the reported neuroprotective effects of dantrolene. Whether the mechanisms underlying [Ca2+]i increase might significantly differ depending on the particularities of the model of epilepsy used and general experimental conditions need further studies. Besides, it is yet to be determined which isoform of RyRs significantly contributes to Ca2+-induced excitotoxicity in the lithium-pilocarpine SE rat model.
Collapse
Affiliation(s)
- Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Francisca Gómez-Oliver
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; ICTS Bioimagen Complutense (BIOIMAC), Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
8
|
Xiao F, Guan Y, Liu T, Zeng Y, Zhu H, Yang K. Oxalate-upregulated annexin A6 promotes the formation of calcium oxalate kidney stones by exacerbating calcium release-mediated oxidative stress injury in renal tubular epithelial cells and crystal-cell adhesion. Arch Biochem Biophys 2024; 761:110187. [PMID: 39490615 DOI: 10.1016/j.abb.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Kidney stones result from abnormal biomineralization, although the mechanism behind their formation remains unclear. Annexin A6 (AnxA6), a calcium-dependent lipid-binding protein, is associated with several mineralization-related diseases, but its role in kidney stones is unknown. This study aimed to explore the role and mechanism of AnxA6 in calcium oxalate (CaOx) kidney stones. An in vitro model in which renal tubular epithelial cells (RTECs) were treated with 1 mmol/L oxalate was established, and AnxA6 protein and mRNA expression were examined. Genetic engineering, drug intervention, and biochemical assays were used to investigate the role of AnxA6. The results revealed that AnxA6 was significantly overexpressed in the CaOx model. AnxA6 knockdown in RTECs reduced oxalate-induced oxidative stress, ROS accumulation, and mitochondrial damage, whereas AnxA6 overexpression exacerbated these effects. Blocking ryanodine receptor-mediated calcium release reversed AnxA6-induced oxidative damage. Additionally, AnxA6 increased oxalate adhesion to RTECs by binding to oxalate. In conclusion, AnxA6 contributes to CaOx kidney stone formation by promoting both oxidative stress via calcium release and crystal-cell adhesion by binding to oxalate. This study offers new insight into CaOx kidney stone formation.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Yi Guan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Ting Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China.
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 443002, Hubei Province, China.
| |
Collapse
|
9
|
Taha M, Cartereau A, Taillebois E, Thany SH. Flupyradifurone activates DUM neuron nicotinic acetylcholine receptors and stimulates an increase in intracellular calcium through the ryanodine receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106147. [PMID: 39477600 DOI: 10.1016/j.pestbp.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates, and are considered to be major targets of several insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, to explore what type of nAChRs are involved in flupyradifurone's (FLU) mode of action, and to study the role of calcium release from intracellular stores in this process. Using whole-cell patch-clamp and fura-2-AM calcium imaging techniques, we found that inhibition of IP3Rs through application of 2-APB reduced FLU inward currents, but did not affect the intracellular calcium release induced by FLU. In contrast, inhibition of RyRs using ryanodine, led to reduction of intracellular calcium increase following FLU pulse application. These results suggested that FLU inward currents are likely due to a combination of the direct effects of FLU on DUM neuron nAChRs and the subsequent calcium release from RyRs.
Collapse
Affiliation(s)
- Maria Taha
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Alison Cartereau
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
10
|
Kim K, Li H, Yuan Q, Melville Z, Zalk R, des Georges A, Frank J, Hendrickson WA, Marks AR, Clarke OB. Structural identification of the RY12 domain of RyR1 as an ADP sensor and the target of the malignant hyperthermia therapeutic dantrolene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619409. [PMID: 39484412 PMCID: PMC11526878 DOI: 10.1101/2024.10.21.619409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Malignant hyperthermia (MH) is a life-threatening pharmacogenetic condition triggered by volatile anesthetics, which activate pathogenic RyR1 mutants. The small molecule therapeutic dantrolene has long been used to treat MH. However, the binding site and mechanism of dantrolene remain unclear. Here, we present cryo-EM structures of RyR1 bound to dantrolene and the MH trigger agent 4-chloro-m-cresol (4CmC), revealing the dantrolene and 4CmC binding sites in atomic detail. Dantrolene binds stacked with ATP or ADP in the RY12 domain at the corner of the receptor, inducing a conformational change in this domain which is allosterically coupled to pore closure. Functional analyses revealed that ATP or ADP was required for dantrolene inhibition, and a single point mutation that disrupts the peripheral ATP binding site abolished ATP/ADP-dependent dantrolene inhibition. Strikingly, in the absence of dantrolene, this site selectively binds two ADP molecules, suggesting a possible role in ATP/ADP ratio sensing.
Collapse
Affiliation(s)
- Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| | - Huan Li
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amédée des Georges
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wayne A. Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Dossat AM, Trychta KA, Glotfelty EJ, Hinkle JJ, Fortuno LV, Gore LN, Richie CT, Harvey BK. Excitotoxic glutamate levels cause the secretion of resident endoplasmic reticulum proteins. J Neurochem 2024; 168:2461-2478. [PMID: 38491746 PMCID: PMC11401966 DOI: 10.1111/jnc.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.
Collapse
Affiliation(s)
- Amanda M. Dossat
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Elliot J. Glotfelty
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Joshua J. Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lowella V. Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lana N. Gore
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Christopher T. Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| |
Collapse
|
12
|
Hori A, Inaba H, Hato T, Tanaka K, Sato S, Okamoto M, Horiuchi Y, Paran FJ, Tabe Y, Mori S, Rosales C, Akamatsu W, Murayama T, Kurebayashi N, Sakurai T, Ai T, Miida T. Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease. PLoS One 2024; 19:e0291887. [PMID: 39173065 PMCID: PMC11341060 DOI: 10.1371/journal.pone.0291887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Haruka Inaba
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimie Tanaka
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichi Sato
- Department of Clinical Engineering, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Mizuho Okamoto
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Faith Jessica Paran
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shusuke Mori
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corina Rosales
- Center for Bioenergetics and the Department of Medicine, Houston Methodist Research Institute, Texas, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Zhang W, Zhao X, Bhuiyan P, Liu H, Wei H. Neuroprotective effects of dantrolene in neurodegenerative disease: Role of inhibition of pathological inflammation. JOURNAL OF ANESTHESIA AND TRANSLATIONAL MEDICINE 2024; 3:27-35. [PMID: 38826587 PMCID: PMC11138240 DOI: 10.1016/j.jatmed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neurodegenerative diseases (NDs) refer to a group of diseases in which slow, continuous cell death is the main pathogenic event in the nervous system. Most NDs are characterized by cognitive dysfunction or progressive motor dysfunction. Treatments of NDs mainly target alleviating symptoms, and most NDs do not have disease-modifying drugs. The pathogenesis of NDs involves inflammation and apoptosis mediated by mitochondrial dysfunction. Dantrolene, approved by the US Food and Drug Administration, acts as a RyRs antagonist for the treatment of malignant hyperthermia, spasticity, neuroleptic syndrome, ecstasy intoxication and exertional heat stroke with tolerable side effects. Recently, dantrolene has also shown therapeutic effects in some NDs. Its neuroprotective mechanisms include the reduction of excitotoxicity, apoptosis and neuroinflammation. In summary, dantrolene can be considered as a potential therapeutic candidate for NDs.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Bertagna F, Ahmad S, Lewis R, Silva SRP, McFadden J, Huang CLH, Matthews HR, Jeevaratnam K. Loose-patch clamp analysis applied to voltage-gated ionic currents following pharmacological ryanodine receptor modulation in murine hippocampal cornu ammonis-1 pyramidal neurons. Front Physiol 2024; 15:1359560. [PMID: 38720787 PMCID: PMC11076846 DOI: 10.3389/fphys.2024.1359560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 μM) and CPA (1 μM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Shiraz Ahmad
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - S. Ravi P. Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- Advanced Technology Institute, University of Surrey, Guildford, United Kingdom
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L.-H. Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
16
|
Angelidis A, Overgaard K, Vandenboom R. Potentiation of force by extracellular potassium is not dependent on muscle length in mouse EDL muscle. Am J Physiol Cell Physiol 2024; 326:C529-C539. [PMID: 38145294 DOI: 10.1152/ajpcell.00456.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Increases in myofiber extracellular potassium with prolonged contractile activity can potentiate twitch force. Activity-dependent potentiation, another mechanism of force increase in skeletal muscle, has a strong dependence on muscle or sarcomere length. Thus, potassium-mediated twitch potentiation could also be length-dependent. However, this has not been previously investigated. To this end, we used isolated C57BL/6 mouse extensor digitorum longus (EDL) muscles and elicited twitches at 0.9 Lo, Lo, and 1.1 Lo (Lo refers to optimal length) in normal (5 mM) and high (10 mM) potassium solutions. Potentiation magnitude was similar to previous observations and was not significantly different between lengths (0.9 Lo: 12.3 ± 4.4%, Lo: 12.2 ± 3.6%, 1.1 Lo: 11.8 ± 4.8%, values are means ± SD). Exposure to dantrolene sodium, a compound that attenuates calcium release, reduced twitch force across lengths by ∼70%. When dantrolene-affected muscles were subsequently exposed to high potassium, potentiation was similar to that observed in the absence of the former. In total, these findings provide novel information on potassium-mediated twitch potentiation.NEW & NOTEWORTHY Here, we investigated the length-dependence of twitch force potentiation by extracellular potassium in mouse extensor digitorum longus (EDL) in vitro, at 25°C. Potentiation magnitude did not display a statistically significant difference between the examined muscle lengths. These results describe, for the first time, the relationship of this form of potentiation with muscle length, thus furthering the understanding of how it is integrated in in vivo muscle function.
Collapse
Affiliation(s)
- Angelos Angelidis
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Rene Vandenboom
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
17
|
Su J, Huang M. Recurrent malignant hyperthermia after scoliosis correction surgery. World J Emerg Med 2024; 15:70-72. [PMID: 38188551 PMCID: PMC10765081 DOI: 10.5847/wjem.j.1920-8642.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Junfeng Su
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Ministry of Education of the People’s Republic of China, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, Ministry of Education of the People’s Republic of China, Hangzhou 310052, China
| |
Collapse
|
18
|
Todo N, Hosogi S, Nakamura S, Noriyama K, Tamiya N, Toda Y, Shigeta M, Takayama K, Ashihara E. Cynaropicrin Increases [Ca 2+] i and Ciliary Beat Frequency in Human Airway Epithelial Cells by Inhibiting SERCA. Biol Pharm Bull 2024; 47:2119-2126. [PMID: 39710380 DOI: 10.1248/bpb.b24-00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]i), intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC. We found that cynaropicrin increased [cAMP]i using A549 cells bearing Pink Flamindo. Then, we also confirmed that cynaropicrin elevates CBF using airway epithelial ciliated cells (AECCs). We next investigated the effects of cynaropicrin on the alternation of [Ca2+]i, and pHi. Cynaropicrin increased [Ca2+]i, but not pHi. Further experiments also found that cynaropicrin increased [cAMP]i primarily by raising [Ca2+]i. To elucidate the mechanisms of cynaropicrin to increase [Ca2+]i, we investigated the alternation of the effects of cynaropicrin on [Ca2+]i using several compounds. BTP-2 and ruthenium red (RuR) inhibited cynaropicrin-induced [Ca2+]i increase and RuR reduced also [cAMP]i. These results suggest that cynaropicrion increased [Ca2+]i by augmenting the Ca2+ influx and that the increase of [cAMP]i by cynaropicrin was induced by [Ca2+]i elevation. Interestingly, cynaropicrin decreased the Ca2+ concentration in the endoplasmic reticulum following inhibition of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). SERCA activator CDN1163 abolished this effect. Furthermore, RuR and Ca2+-free conditions suppressed the increase of CBF. In conclusion, cynaropicrin inhibits SERCA, induces store-operated calcium entry, and thereby increases CBF.
Collapse
Affiliation(s)
- Nobuhisa Todo
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| | - Shigekuni Hosogi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| | - Seikou Nakamura
- Laboratory of Pharmacognosy, Kyoto Pharmaceutical University
| | - Kouta Noriyama
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| | - Nobuyo Tamiya
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
- Pulmonary Medicine, Rakuwakai Otowa Hospital
| | - Yuki Toda
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| | - Masaki Shigeta
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| |
Collapse
|
19
|
Zhang IX, Herrmann A, Leon J, Jeyarajan S, Arunagiri A, Arvan P, Gilon P, Satin LS. ER stress increases expression of intracellular calcium channel RyR1 to modify Ca 2+ homeostasis in pancreatic beta cells. J Biol Chem 2023; 299:105065. [PMID: 37468098 PMCID: PMC10448220 DOI: 10.1016/j.jbc.2023.105065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Pancreatic beta cells maintain glucose homeostasis by secreting pulses of insulin in response to a rise in plasma glucose. Pulsatile insulin secretion occurs as a result of glucose-induced oscillations in beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps regulate beta-cell cytosolic Ca2+, and ER stress can lead to ER Ca2+ reduction, beta-cell dysfunction, and an increased risk of type 2 diabetes. However, the mechanistic effects of ER stress on individual calcium channels are not well understood. To determine the effects of tunicamycin-induced ER stress on ER inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) and their involvement in subsequent Ca2+ dysregulation, we treated INS-1 832/13 cells and primary mouse islets with ER stress inducer tunicamycin (TM). We showed TM treatment increased RyR1 mRNA without affecting RyR2 mRNA and decreased both IP3R1 and IP3R3 mRNA. Furthermore, we found stress reduced ER Ca2+ levels, triggered oscillations in cytosolic Ca2+ under subthreshold glucose conditions, and increased apoptosis and that these changes were prevented by cotreatment with the RyR1 inhibitor dantrolene. In addition, we demonstrated silencing RyR1-suppressed TM-induced subthreshold cytosolic Ca2+ oscillations, but silencing RyR2 did not affect these oscillations. In contrast, inhibiting IP3Rs with xestospongin-C failed to suppress the TM-induced cytosolic Ca2+ oscillations and did not protect beta cells from TM-induced apoptosis although xestospongin-C inclusion did prevent ER Ca2+ reduction. Taken together, these results show changes in RyR1 play a critical role in ER stress-induced Ca2+ dysfunction and beta-cell apoptosis.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea Herrmann
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Sivakumar Jeyarajan
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Wang Z, Zhao X, Zhou H, Che D, Du X, Ye D, Zeng W, Geng S. Activation of ryanodine-sensitive calcium store drives pseudo-allergic dermatitis via Mas-related G protein-coupled receptor X2 in mast cells. Front Immunol 2023; 14:1207249. [PMID: 37404822 PMCID: PMC10315577 DOI: 10.3389/fimmu.2023.1207249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by β-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihui Zeng
- *Correspondence: Songmei Geng, ; Weihui Zeng,
| | | |
Collapse
|
21
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
22
|
MATSUKAWA HIROYUKI, MURAYAMA TAKASHI. Development of Ryanodine Receptor (RyR) Inhibitors for Skeletal Muscle and Heart Diseases. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:180-187. [PMID: 38855953 PMCID: PMC11153067 DOI: 10.14789/jmj.jmj22-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2024]
Abstract
Ryanodine receptors (RyR) are intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum of skeletal and cardiac muscles that play a central role in excitation-contraction coupling. Genetic mutations or posttranslational modifications of RyR causes hyperactivation of the channel, leading to various skeletal muscle and heart diseases. Currently, no specific treatments exist for most RyR-associated diseases. Recently, high-throughput screening (HTS) assays have been developed to identify potential candidates for treating RyR-related muscle diseases. These assays have successfully identified several compounds as novel RyR inhibitors, which are effective in animal models. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
| | - TAKASHI MURAYAMA
- Corresponding author: Takashi Murayama, Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1035 E-mail: Research of the 4th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
23
|
Murayama T, Kurebayashi N, Ishida R, Kagechika H. Drug development for the treatment of RyR1-related skeletal muscle diseases. Curr Opin Pharmacol 2023; 69:102356. [PMID: 36842386 DOI: 10.1016/j.coph.2023.102356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023]
Abstract
Type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel on the sarcoplasmic reticulum of skeletal muscle, and it plays a central role in excitation-contraction (E-C) coupling. Mutations in RyR1 are implicated in various muscle diseases including malignant hyperthermia, central core disease, and myopathies. Currently, no specific treatment exists for most of these diseases. Recently, high-throughput screening (HTS) assays have been developed for identifying potential candidates for treating RyR-related muscle diseases. Currently, two different methods, namely a FRET-based assay and an endoplasmic reticulum Ca2+-based assay, are available. These assays identified several compounds as novel RyR1 inhibitors. In addition, the development of a reconstituted platform permitted HTS assays for E-C coupling modulators. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Sylvester CB, Amirkhosravi F, Bortoletto AS, West WJ, Connell JP, Grande-Allen KJ. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor. Front Cardiovasc Med 2023; 10:1112965. [PMID: 37063962 PMCID: PMC10100588 DOI: 10.3389/fcvm.2023.1112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Calcific aortic valve disease (CAVD), a fibrocalcific thickening of the aortic valve leaflets causing obstruction of the left ventricular outflow tract, affects nearly 10 million people worldwide. For those who reach end-stage CAVD, the only treatment is highly invasive valve replacement. The development of pharmaceutical treatments that can slow or reverse the progression in those affected by CAVD would greatly advance the treatment of this disease. The principal cell type responsible for the fibrocalcific thickening of the valve leaflets in CAVD is valvular interstitial cells (VICs). The cellular processes mediating this calcification are complex, but calcium second messenger signaling, regulated in part by the ryanodine receptor (RyR), has been shown to play a role in a number of other fibrocalcific diseases. We sought to determine if the blockade of calcium signaling in VICs could ameliorate calcification in an in vitro model. We previously found that VICs express RyR isotype 3 and that its modulation could prevent VIC calcific nodule formation in vitro. We sought to expand upon these results by further investigating the effects of calcium signaling blockade on VIC gene expression and behavior using dantrolene, an FDA-approved pan-RyR inhibitor. We found that dantrolene also prevented calcific nodule formation in VICs due to cholesterol-derived lysophosphatidylcholine (LPC). This protective effect corresponded with decreases in intracellular calcium flux, apoptosis, and ACTA2 expression but not reactive oxygen species formation caused by LPC. Interestingly, dantrolene increased the expression of the regulator genes RUNX2 and SOX9, indicating complex gene regulation changes. Further investigation via RNA sequencing revealed that dantrolene induced several cytoprotective genes that are likely also responsible for its attenuation of LPC-induced calcification. These results suggest that RyR3 is a viable therapeutic target for the treatment of CAVD. Further studies of the effects of RyR3 inhibition on CAVD are warranted.
Collapse
Affiliation(s)
- Christopher B. Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Farshad Amirkhosravi
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Angelina S. Bortoletto
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene, Stem Cells, and Regenerative Medicine Center, Translational and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, United States
| | - William J. West
- Department of Bioengineering, Rice University, Houston, TX, United States
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
- Correspondence: K. Jane Grande-Allen
| |
Collapse
|
25
|
Lorenzo-Anota HY, Reyes-Ruiz A, Calvillo-Rodríguez KM, Mendoza-Reveles R, Urdaneta-Peinado AP, Alvarez-Valadez KM, Martínez-Torres AC, Rodríguez-Padilla C. IMMUNEPOTENT CRP increases intracellular calcium through ER-calcium channels, leading to ROS production and cell death in breast cancer and leukemic cell lines. EXCLI JOURNAL 2023; 22:352-366. [PMID: 37223080 PMCID: PMC10201010 DOI: 10.17179/excli2022-5568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 05/25/2023]
Abstract
IMMUNEPOTENT CRP (ICRP) is an immunotherapy that induces cell death in cancer cell lines. However, the molecular mechanisms of death are not completely elucidated. Here, we evaluated the implication of intracellular Ca2+ augmentation in the cell death induced by ICRP on T-ALL and breast cancer cell lines. Cell death induction and the molecular characteristics of cell death were evaluated in T-ALL and breast cancer cell lines by assessing autophagosome formation, ROS production, loss of mitochondrial membrane potential, ER stress and intracellular Ca2+ levels. We assessed the involvement of extracellular Ca2+, and the implication of the ER-receptors, IP3R and RyR, in the cell death induced by ICRP, by using an extracellular calcium chelator and pharmacological inhibitors. Our results show that ICRP increases intracellular Ca2+ levels as the first step of the cell death mechanism that provokes ROS production and loss of mitochondrial membrane potential. In addition, blocking the IP3 and ryanodine receptors inhibited ER-Ca2+ release, ROS production and ICRP-induced cell death. Taken together our results demonstrate that ICRP triggers intracellular Ca2+-increase leading to different regulated cell death modalities in T-ALL and breast cancer cell lines. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Helen Y. Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Tecnológico de Monterrey, The Institute for Obesity Research, Monterrey, México
| | - Alejandra Reyes-Ruiz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Kenny M. Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Rodolfo Mendoza-Reveles
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Andrea P. Urdaneta-Peinado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Karla M. Alvarez-Valadez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- LONGEVEDEN S.A. de C.V
| |
Collapse
|
26
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
27
|
Harada K, Takashima M, Kitaguchi T, Tsuboi T. F-actin determines the time-dependent shift in docking dynamics of glucagon-like peptide-1 granules upon stimulation of secretion. FEBS Lett 2023; 597:657-671. [PMID: 36694275 DOI: 10.1002/1873-3468.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Although exocytosis can be categorized into several forms based on docking dynamics, temporal regulatory mechanisms of the exocytotic forms are unclear. We explored the dynamics of glucagon-like peptide-1 (GLP-1) exocytosis in murine GLUTag cells (GLP-1-secreting enteroendocrine L-cells) upon stimulation with deoxycholic acid (DCA) or high K+ to elucidate the mechanisms regulating the balance between the different types of exocytotic forms (pre-docked with the plasma membrane before stimulation; docked after stimulation and subsequently fused; or rapidly recruited and fused after stimulation, without stable docking). GLP-1 exocytosis showed a biphasic pattern, and we found that most exocytosis was from the pre-docked granules with the plasma membrane before stimulation, or granules rapidly fused to the plasma membrane without docking after stimulation. In contrast, granules docked with the plasma membrane after stimuli and eventually fused were predominant thereafter. Inhibition of actin polymerization suppressed exocytosis of the pre-docked granules. These results suggest that the docking dynamics of GLP-1 granules shows a time-dependent biphasic shift, which is determined by interaction with F-actin.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Maoko Takashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
28
|
Cappabianca L, Zelli V, Pellegrini C, Sebastiano M, Maccarone R, Clementi M, Chiominto A, Ruggeri P, Cardelli L, Ruggieri M, Sbaffone M, Fargnoli MC, Guadagni S, Farina AR, Mackay AR. The Alternative TrkAIII Splice Variant, a Targetable Oncogenic Participant in Human Cutaneous Malignant Melanoma. Cells 2023; 12:237. [PMID: 36672171 PMCID: PMC9856487 DOI: 10.3390/cells12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Post-therapeutic relapse, poor survival rates and increasing incidence justify the search for novel therapeutic targets and strategies in cutaneous malignant melanoma (CMM). Within this context, a potential oncogenic role for TrkA in CMM is suggested by reports of NTRK1 amplification, enhanced TrkA expression and intracellular TrkA activation associated with poor prognosis. TrkA, however, exhibits tumour-suppressing properties in melanoma cell lines and has recently been reported not to be associated with CMM progression. To better understand these contradictions, we present the first analysis of potential oncogenic alternative TrkA mRNA splicing, associated with TrkA immunoreactivity, in CMMs, and compare the behaviour of fully spliced TrkA and the alternative TrkAIII splice variant in BRAF(V600E)-mutated A375 melanoma cells. Alternative TrkA splicing in CMMs was associated with unfolded protein response (UPR) activation. Of the several alternative TrkA mRNA splice variants detected, TrkAIII was the only variant with an open reading frame and, therefore, oncogenic potential. TrkAIII expression was more frequent in metastatic CMMs, predominated over fully spliced TrkA mRNA expression in ≈50% and was invariably linked to intracellular phosphorylated TrkA immunoreactivity. Phosphorylated TrkA species resembling TrkAIII were also detected in metastatic CMM extracts. In A375 cells, reductive stress induced UPR activation and promoted TrkAIII expression and, in transient transfectants, promoted TrkAIII and Akt phosphorylation, enhancing resistance to reductive stress-induced death, which was prevented by lestaurtinib and entrectinib. In contrast, fully spliced TrkA was dysfunctional in A375 cells. The data identify fully spliced TrkA dysfunction as a novel mechanism for reducing melanoma suppression, support a causal relationship between reductive stress, UPR activation, alternative TrkAIII splicing and TrkAIII activation and characterise a targetable oncogenic pro-survival role for TrkAIII in CMM.
Collapse
Affiliation(s)
- Lucia Cappabianca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Chiominto
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Pathology, Saint Salvatory Hospital, 67100 L’Aquila, Italy
| | - Pierdomenico Ruggeri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ludovica Cardelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marianna Ruggieri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maddalena Sbaffone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria-Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Antonietta R. Farina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew R. Mackay
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
29
|
Cappabianca L, Sebastiano M, Ruggieri M, Sbaffone M, Zelli V, Farina AR, Mackay AR. Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells. Int J Mol Sci 2022; 23:ijms231810895. [PMID: 36142807 PMCID: PMC9503591 DOI: 10.3390/ijms231810895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs.
Collapse
|
30
|
Zhang L, Au-Yeung CL, Huang C, Yeung TL, Ferri-Borgogno S, Lawson BC, Kwan SY, Yin Z, Wong ST, Thomas V, Lu KH, Yip KP, Sham JSK, Mok SC. Ryanodine receptor 1-mediated Ca2+ signaling and mitochondrial reprogramming modulate uterine serous cancer malignant phenotypes. J Exp Clin Cancer Res 2022; 41:242. [PMID: 35953818 PMCID: PMC9373370 DOI: 10.1186/s13046-022-02419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker ryanodine receptor 1 (RYR1) identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival or disease stage, and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of RYR1 in the tumors is associated with advanced stage of the disease. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through Ca2+-dependent activation of AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression and survival in mouse models. Conclusions These findings provided insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02419-w.
Collapse
|
31
|
Dwyer BK, Veenma DCM, Chang K, Schulman H, Van Woerden GM. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys). Front Pharmacol 2022; 13:794008. [PMID: 35620293 PMCID: PMC9127182 DOI: 10.3389/fphar.2022.794008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child’s neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as “gain of function” or “loss of function” based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.
Collapse
Affiliation(s)
- Bonnie K Dwyer
- Department of Maternal Fetal Medicine and Genetics, Palo Alto Medical Foundation, Mountain View, CA, United States
| | - Danielle C M Veenma
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kiki Chang
- University of Texas Houston Health Science Center, Houston, TX, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA, United States.,Panorama Research Institute, Sunnyvale, CA, United States
| | - Geeske M Van Woerden
- ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
32
|
Kim JH, Lee CK, Chung CE, Min BD, Kim DC. Malignant hyperthermia: a case report with a literature review. ARCHIVES OF AESTHETIC PLASTIC SURGERY 2022. [DOI: 10.14730/aaps.2022.00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant hyperthermia is an extremely rare, potentially lethal disorder that occurs in susceptible patients who are exposed to triggering agents such as volatile anesthetic gases or depolarizing muscle relaxants. The clinical manifestations of malignant hyperthermia include hypermetabolism, hyperthermia, hypercapnia, and sustained skeletal muscle rigidity, which result in cardiac arrest, brain damage, and death. It is associated with a high morbidity and mortality rate if not recognized immediately and treated appropriately. We report a case of suspected malignant hyperthermia in a young male patient undergoing axillary osmidrosis surgery.
Collapse
|
33
|
Reza RN, Serra ND, Detwiler AC, Hanna-Rose W, Crook M. Noncanonical necrosis in 2 different cell types in a Caenorhabditis elegans NAD+ salvage pathway mutant. G3 (BETHESDA, MD.) 2022; 12:jkac033. [PMID: 35143646 PMCID: PMC8982427 DOI: 10.1093/g3journal/jkac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.
Collapse
Affiliation(s)
- Rifath N Reza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matt Crook
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA
| |
Collapse
|
34
|
Amorim Neto DP, Bosque BP, Pereira de Godoy JV, Rodrigues PV, Meneses DD, Tostes K, Costa Tonoli CC, Faustino de Carvalho H, González-Billault C, de Castro Fonseca M. Akkermansia muciniphila induces mitochondrial calcium overload and α -synuclein aggregation in an enteroendocrine cell line. iScience 2022; 25:103908. [PMID: 35243260 PMCID: PMC8881719 DOI: 10.1016/j.isci.2022.103908] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influence neurodevelopment, modulate behavior, and contribute to neurodegenerative disorders. Several studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson disease (PD) fecal samples. Therefore, we investigated whether A.muciniphila-conditioned medium (CM) could initiate α-synuclein (αSyn) misfolding in enteroendocrine cells (EEC) — a component of the gut epithelium featuring neuron-like properties. We found that A. muciniphila CM composition is influenced by the ability of the strain to degrade mucin. Our in vitro experiments showed that the protein-enriched fraction of mucin-free CM induces RyR-mediated Ca2+ release and increased mitochondrial Ca2+ uptake leading to ROS generation and αSyn aggregation. Oral administration of A. muciniphila cultivated in the absence of mucin to mice led to αSyn aggregation in cholecystokinin (CCK)-positive EECs but no motor deficits were observed. Noteworthy, buffering mitochondrial Ca2+ reverted the damaging effects observed. These molecular insights offer evidence that bacterial proteins can induce αSyn aggregation in EECs. Gut bacterium Akkermansia muciniphila is increased in patients with Parkinson disease A. muciniphila-conditioned medium induces mitochondrial Ca2+ overload in EECs Mitochondrial Ca2+ overload leads to ROS generation and αSyn aggregation in vitro Buffering mitochondrial Ca2+ inhibits A. muciniphila-induced αSyn aggregation
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dario Donoso Meneses
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | | | - Christian González-Billault
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Corresponding author
| |
Collapse
|
35
|
Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. Int J Mol Sci 2022; 23:ijms23041974. [PMID: 35216090 PMCID: PMC8880705 DOI: 10.3390/ijms23041974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.
Collapse
|
36
|
Osipchuk NC, Soulika AM, Fomina AF. Modulation of Ryanodine Receptors Activity Alters the Course of Experimental Autoimmune Encephalomyelitis in Mice. Front Physiol 2022; 12:770820. [PMID: 35027891 PMCID: PMC8751758 DOI: 10.3389/fphys.2021.770820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptors (RyRs), the intracellular Ca2+ release channels, are expressed in T lymphocytes and other types of immune cells. Modulation of RyRs has been shown to affect T cell functions in vitro and immune responses in vivo. The effects of modulation of RyRs on the development of autoimmune diseases have not been investigated. Here we studied how modulation of RyRs through administration of RyR inhibitor dantrolene or introducing a gain-of-function RYR1-p.R163C mutation affects clinical progression of experimental autoimmune encephalomyelitis (EAE) in mice, a T cell-mediated autoimmune neuroinflammatory disease. We found that daily intraperitoneal administration of 5 or 10 mg/kg dantrolene beginning at the time of EAE induction significantly reduced the severity of EAE clinical symptoms and dampened inflammation in the spinal cord. The protective effect of dantrolene on EAE was reversible. Dantrolene administration elicited dose-dependent skeletal muscle weakness: mice that received 10 mg/kg dose developed a waddling gait, while 5 mg/kg dantrolene dose administration produced a reduction in four-limb holding impulse values. Mice bearing the gain-of-function RYR1-p.R163C mutation developed the EAE clinical symptoms faster and more severely than wild-type mice. This study demonstrates that RyRs play a significant role in EAE pathogenesis and suggests that inhibition of RyRs with low doses of dantrolene may have a protective effect against autoimmunity and inflammation in humans.
Collapse
Affiliation(s)
- Natalia C Osipchuk
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Athena M Soulika
- Shriners Hospitals for Children Northern California, Institute for Pediatric Regenerative Research, Sacramento, CA, United States.,Department of Dermatology, University of California, Davis, Davis, CA, United States
| | - Alla F Fomina
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, Abussaud A, Chen NH, Miller SP, Sun HS, Feng ZP. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022; 351:113985. [DOI: 10.1016/j.expneurol.2022.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
|
38
|
Rehni AK, Cho S, Dave KR. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem Int 2022; 152:105219. [PMID: 34736936 PMCID: PMC8918032 DOI: 10.1016/j.neuint.2021.105219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
Diabetes is a widespread disease characterized by high blood glucose levels due to abnormal insulin activity, production, or both. Chronic diabetes causes many secondary complications including cardiovascular disease: a life-threatening complication. Cerebral ischemia-related mortality, morbidity, and the extent of brain injury are high in diabetes. However, the mechanism of increase in ischemic brain injury during diabetes is not well understood. Multiple mechanisms mediate diabetic hyperglycemia and hypoglycemia-induced increase in ischemic brain injury. Endoplasmic reticulum (ER) stress mediates both brain injury as well as brain protection after ischemia-reperfusion injury. The pathways of ER stress are modulated during diabetes. Free radical generation and mitochondrial dysfunction, two of the prominent mechanisms that mediate diabetic increase in ischemic brain injury, are known to stimulate the pathways of ER stress. Increased ischemic brain injury in diabetes is accompanied by a further increase in the activation of ER stress. As there are many metabolic changes associated with diabetes, differential activation of the pathways of ER stress may mediate pronounced ischemic brain injury in subjects suffering from diabetes. We presently discuss the literature on the significance of ER stress in mediating increased ischemia-reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
39
|
Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. J Biol Chem 2021; 298:101412. [PMID: 34793835 PMCID: PMC8689225 DOI: 10.1016/j.jbc.2021.101412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation–contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose–response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation–contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation–contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.
Collapse
|
40
|
Fomina AF. Neglected wardens: T lymphocyte ryanodine receptors. J Physiol 2021; 599:4415-4426. [PMID: 34411300 DOI: 10.1113/jp281722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ryanodine receptors (RyRs) are intracellular Ca2+ release channels ubiquitously expressed in various cell types. RyRs were extensively studied in striated muscle cells due to their crucial role in muscle contraction. In contrast, the role of RyRs in Ca2+ signalling and functions in non-excitable cells, such as T lymphocytes, remains poorly understood. Expression of different isoforms of RyRs was shown in primary T cells and T cell lines. In T cells, RyRs co-localize with the plasmalemmal store-operated Ca2+ channels of the Orai family and endoplasmic reticulum Ca2+ sensing Stim family proteins and are activated by store-operated Ca2+ entry and pyridine nucleotide metabolites, the intracellular second messengers generated upon stimulation of T cell receptors. Experimental data indicate that together with d-myo-inositol 1,4,5-trisphosphate receptors, RyRs regulate intercellular Ca2+ dynamics by controlling Ca2+ concentration within the lumen of the endoplasmic reticulum and, consequently, store-operated Ca2+ entry. Gain-of-function mutations, genetic deletion or pharmacological inhibition of RyRs alters T cell Ca2+ signalling and effector functions. The picture emerging from the collective data shows that RyRs are the essential regulators of T cell Ca2+ signalling and can be potentially used as molecular targets for immunomodulation or T cell-based diagnostics of the disorders associated with RyRs dysregulation.
Collapse
Affiliation(s)
- Alla F Fomina
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
41
|
Van S, Pal S, Garner BR, Steed K, Sridharan V, Mu S, Rusch NJ, Stolarz AJ. Dantrolene Prevents the Lymphostasis Caused by Doxorubicin in the Rat Mesenteric Circulation. Front Pharmacol 2021; 12:727526. [PMID: 34483938 PMCID: PMC8415554 DOI: 10.3389/fphar.2021.727526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: Doxorubicin (DOX) is a risk factor for arm lymphedema in breast cancer patients. We reported that DOX opens ryanodine receptors (RYRs) to enact "calcium leak," which disrupts the rhythmic contractions of lymph vessels (LVs) to attenuate lymph flow. Here, we evaluated whether dantrolene, a clinically available RYR1 subtype antagonist, prevents the detrimental effects of DOX on lymphatic function. Experimental Approach: Isolated rat mesenteric LVs were cannulated, pressurized (4-5 mm Hg) and equilibrated in physiological salt solution and Fura-2AM. Video microscopy recorded changes in diameter and Fura-2AM fluorescence tracked cytosolic free calcium ([Ca2+ i]). High-speed in vivo microscopy assessed mesenteric lymph flow in anesthetized rats. Flow cytometry evaluated RYR1 expression in freshly isolated mesenteric lymphatic muscle cells (LMCs). Key Results: DOX (10 μmol/L) increased resting [Ca2+ i] by 17.5 ± 3.7% in isolated LVs (n = 11). The rise in [Ca2+ i] was prevented by dantrolene (3 μmol/L; n = 10). A single rapid infusion of DOX (10 mg/kg i.v.) reduced positive volumetric lymph flow to 29.7 ± 10.8% (n = 7) of baseline in mesenteric LVs in vivo. In contrast, flow in LVs superfused with dantrolene (10 μmol/L) only decreased to 76.3 ± 14.0% (n = 7) of baseline in response to DOX infusion. Subsequently, expression of the RYR1 subtype protein as the presumed dantrolene binding site was confirm in isolated mesenteric LMCs by flow cytometry. Conclusion and Implications: We conclude that dantrolene attenuates the acute impairment of lymph flow by DOX and suggest that its prophylactic use in patients subjected to DOX chemotherapy may lower lymphedema risk.
Collapse
Affiliation(s)
- Serena Van
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Brittney R. Garner
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kate Steed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J. Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda J. Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
42
|
Liu Y, Yao J, Song Z, Guo W, Sun B, Wei J, Estillore JP, Back TG, Chen SRW. Limiting RyR2 open time prevents Alzheimer's disease-related deficits in the 3xTG-AD mouse model. J Neurosci Res 2021; 99:2906-2921. [PMID: 34352124 DOI: 10.1002/jnr.24936] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) progression is driven by a vicious cycle of soluble β-amyloid (Aβ)-induced neuronal hyperactivity. Thus, breaking this vicious cycle by suppressing neuronal hyperactivity may represent a logical approach to stopping AD progression. In support of this, we have recently shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevented neuronal hyperactivity, memory impairment, dendritic spine loss, and neuronal cell death in a rapid, early onset AD mouse model (5xFAD). Here, we assessed the impact of limiting RyR2 open time on AD-related deficits in a relatively late occurring, slow developing AD mouse model (3xTG-AD) that bears more resemblance (compared to 5xFAD) to that of human AD. Using behavioral tests, long-term potentiation recordings, and Golgi and Nissl staining, we found that the RyR2-E4872Q mutation, which markedly shortens the open duration of the RyR2 channel, prevented learning and memory impairment, defective long-term potentiation, dendritic spine loss, and neuronal cell death in the 3xTG-AD mice. Furthermore, pharmacologically shortening the RyR2 open time with R-carvedilol rescued these AD-related deficits in 3xTG mice. Therefore, limiting RyR2 open time may offer a promising, neuronal hyperactivity-targeted anti-AD strategy.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Zhenpeng Song
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Wenting Guo
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Bo Sun
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nat Commun 2021; 12:4293. [PMID: 34257294 PMCID: PMC8277899 DOI: 10.1038/s41467-021-24644-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Mutations in the type 1 ryanodine receptor (RyR1), a Ca2+ release channel in skeletal muscle, hyperactivate the channel to cause malignant hyperthermia (MH) and are implicated in severe heat stroke. Dantrolene, the only approved drug for MH, has the disadvantages of having very poor water solubility and long plasma half-life. We show here that an oxolinic acid-derivative RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively prevents and treats MH and heat stroke in several mouse models relevant to MH. Cpd1 reduces resting intracellular Ca2+, inhibits halothane- and isoflurane-induced Ca2+ release, suppresses caffeine-induced contracture in skeletal muscle, reduces sarcolemmal cation influx, and prevents or reverses the fulminant MH crisis induced by isoflurane anesthesia and rescues animals from heat stroke caused by environmental heat stress. Notably, Cpd1 has great advantages of better water solubility and rapid clearance in vivo over dantrolene. Cpd1 has the potential to be a promising candidate for effective treatment of patients carrying RyR1 mutations. Mutations in ryanodine receptor 1 (RyR1), a Ca2+ release channel in skeletal muscle, cause malignant hyperthermia (MH) and are involved in heat stroke. Here, the authors show that an oxolinic acid-derivative RyR1 inhibitor effectively prevents and treats MH and heat stroke in various MH mouse models.
Collapse
|
44
|
Muñoz A, Bertuzzi M, Seidel C, Thomson D, Bignell EM, Read ND. Live-cell imaging of rapid calcium dynamics using fluorescent, genetically-encoded GCaMP probes with Aspergillus fumigatus. Fungal Genet Biol 2021; 151:103470. [PMID: 32979514 DOI: 10.1016/j.fgb.2020.103470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Calcium signalling plays a fundamental role in fungal intracellular signalling. Previous approaches (fluorescent dyes, bioluminescent aequorin, genetically encoded cameleon probes) with imaging rapid subcellular changes in cytosolic free calcium ([Ca2+]c) in fungal cells have produced inconsistent results. Recent data obtained with new fluorescent, genetically encoded GCaMP probes, that are very bright, have resolved this problem. Here, exposing conidia or conidial germlings to high external Ca2+, as an example of an external stressor, induced very dramatic, rapid and dynamic [Ca2+]c changes with localized [Ca2+]c transients and waves. Considerable heterogeneity in the timing of Ca2+ responses of different spores/germlings within the cell population was observed.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Constanze Seidel
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Darren Thomson
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK.
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
45
|
Yeates CJ, Frank CA. Homeostatic Depression Shows Heightened Sensitivity to Synaptic Calcium. Front Cell Neurosci 2021; 15:618393. [PMID: 34025355 PMCID: PMC8139420 DOI: 10.3389/fncel.2021.618393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on homeostatic forms of regulation in order to transmit meaningful information. The Drosophila melanogaster neuromuscular junction (NMJ) is a well-studied synapse that shows robust homeostatic control of function. Most prior studies of homeostatic plasticity at the NMJ have centered on presynaptic homeostatic potentiation (PHP). PHP happens when postsynaptic muscle neurotransmitter receptors are impaired, triggering retrograde signaling that causes an increase in presynaptic neurotransmitter release. As a result, normal levels of evoked excitation are maintained. The counterpart to PHP at the NMJ is presynaptic homeostatic depression (PHD). Overexpression of the Drosophila vesicular glutamate transporter (VGlut) causes an increase in the amplitude of spontaneous events. PHD happens when the synapse responds to the challenge by decreasing quantal content (QC) during evoked neurotransmissionagain, resulting in normal levels of postsynaptic excitation. We hypothesized that there may exist a class of molecules that affects both PHP and PHD. Impairment of any such molecule could hurt a synapses ability to respond to any significant homeostatic challenge. We conducted an electrophysiology-based screen for blocks of PHD. We did not observe a block of PHD in the genetic conditions screened, but we found loss-of-function conditions that led to a substantial deficit in evoked amplitude when combined with VGlut overexpression. The conditions causing this phenotype included a double heterozygous loss-of-function condition for genes encoding the inositol trisphosphate receptor (IP3R itpr) and ryanodine receptor (RyR). IP3Rs and RyRs gate calcium release from intracellular stores. Pharmacological agents targeting IP3R and RyR recapitulated the genetic losses of these factors, as did lowering calcium levels from other sources. Our data are consistent with the idea that the homeostatic signaling process underlying PHD is especially sensitive to levels of calcium at the presynapse.
Collapse
Affiliation(s)
- Catherine J Yeates
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
46
|
Yao J, Sun B, Institoris A, Zhan X, Guo W, Song Z, Liu Y, Hiess F, Boyce AKJ, Ni M, Wang R, Ter Keurs H, Back TG, Fill M, Thompson RJ, Turner RW, Gordon GR, Chen SRW. Limiting RyR2 Open Time Prevents Alzheimer's Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation. Cell Rep 2021; 32:108169. [PMID: 32966798 PMCID: PMC7532726 DOI: 10.1016/j.celrep.2020.108169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Neuronal hyperactivity is an early primary dysfunction in Alzheimer’s disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued β-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-β-amyloid-targeted anti-AD strategy. Yao et al. show that genetically or pharmacologically limiting the open duration of ryanodine receptor 2 upregulates the A-type potassium current and prevents neuronal hyperexcitability and hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset Alzheimer’s disease mouse model, even with continued accumulation of β-amyloid.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew K J Boyce
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henk Ter Keurs
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
47
|
A differentiated Ca 2+ signalling phenotype has minimal impact on myocardin expression in an automated differentiation assay using A7r5 cells. Cell Calcium 2021; 96:102369. [PMID: 33677175 DOI: 10.1016/j.ceca.2021.102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cells are unusual in that differentiated, contractile cells possess the capacity to "de-differentiate" into a synthetic phenotype that is characterized by being replicative, secretory, and migratory. One aspect of this phenotypic modulation is a shift from voltage-gated Ca2+ signalling in electrically coupled, differentiated cells to increased dependence on store-operated Ca2+ entry and sarcoplasmic reticulum Ca2+ release in synthetic cells. Conversely, an increased voltage-gated Ca2+ entry is seen when proliferating A7r5 smooth muscle cells quiesce. We asked whether this change in Ca2+ signalling was linked to changes in the expression of the phenotype-regulating transcriptional co-activator myocardin or α-smooth muscle actin, using correlative epifluorescence Ca2+ imaging and immunocytochemistry. Cells were cultured in growth media (DMEM, 10% serum, 25 mM glucose) or differentiation media (DMEM, 1% serum, 5 mM glucose). Coinciding with growth arrest, A7r5 cells became electrically coupled, and spontaneous Ca2+ signalling showed increasing dependence on L-type voltage-gated Ca2+ channels that were blocked with nifedipine (5 μM). These synchronized oscillations were modulated by ryanodine receptors, based on their sensitivity to dantrolene (5 μM). Actively growing cultures had spontaneous Ca2+ transients that were insensitive to nifedipine and dantrolene but were blocked by inhibition of the sarco-endoplasmic reticulum ATPase with cyclopiazonic acid (10 μM). In cells treated with differentiation media, myocardin and αSMA immunoreactivity increased prior to changes in the Ca2+ signalling phenotype, while chronic inhibition of voltage-gated Ca2+ entry modestly increased immunoreactivity of myocardin. Stepwise regression analyses suggested that changes in myocardin expression had a weak relationship with Ca2+ signalling synchronicity, but not frequency or amplitude. In conclusion, we report a 96-well assay and analytical pipeline to study the link between Ca2+ signalling and smooth muscle differentiation. This assay showed that changes in the expression of two molecular differentiation markers (myocardin and αSMA) tended to precede changes in the Ca2+ signalling phenotype.
Collapse
|
48
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
49
|
Bao MN, Zhang LJ, Tang B, Fu DD, Li J, Du L, Hou YN, Zhang ZL, Tang HW, Pang DW. Influenza A Viruses Enter Host Cells via Extracellular Ca2+ Influx-Involved Clathrin-Mediated Endocytosis. ACS APPLIED BIO MATERIALS 2021; 4:2044-2051. [DOI: 10.1021/acsabm.0c00968] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng-Ni Bao
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
50
|
Tammineni ER, Hurtado-Monzón AM, García MC, Carrillo ED, Hernández A, María Del Ángel R, Sánchez JA. Dantrolene hinders dengue virus-induced upregulation and translocation of calmodulin to cardiac cell nuclei. Virology 2020; 553:81-93. [PMID: 33249258 DOI: 10.1016/j.virol.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 11/19/2022]
Abstract
Dengue virus (DENV) infection elevates intracellular Ca2+ concentration ([Ca2+]i), but it is unknown whether Ca2+ and calmodulin (CaM) are involved in DENV infection. We conducted immunofluorescence and western blot experiments and measured [Ca2+]i examining the effects of DENV infection and drugs that alter Ca2+/CaM functions on CaM translocation, DENV2 infection, protein expression, virus-inducible STAT2 protein abundance, and CREB phosphorylation in H9c2 cells. DENV infection increased CaM expression, its nuclear translocation and NS3 and E viral proteins expression and colocalization in a manner that could be blocked by the ryanodine receptor antagonist dantrolene. DENV infection also increased CREB phosphorylation, an effect inhibited by either dantrolene or the CaM inhibitor W7. Dantrolene substantially hindered infection as assessed by focus assays in Vero cells. These results suggest that Ca2+ and CaM play an important role in DENV infection of cardiac cells and that dantrolene may protect against severe DENV cardiac morbidity.
Collapse
Affiliation(s)
- Eshwar Reddy Tammineni
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Arianna Mahely Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - María Carmen García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Elba Dolores Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Ascención Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Jorge Alberto Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|