1
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr JL, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. eLife 2025; 13:RP103064. [PMID: 40207620 PMCID: PMC11984954 DOI: 10.7554/elife.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N Gray
- Department of Microbiology, University of WashingtonSeattleUnited States
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Derek H Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jennifer L Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Terry L Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nancie M Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Edward P Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
2
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Ashokkumar M, Mei W, Peterson JJ, Harigaya Y, Murdoch DM, Margolis DM, Kornfein C, Oesterling A, Guo Z, Rudin CD, Jiang Y, Browne EP. Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae003. [PMID: 38902848 PMCID: PMC11189801 DOI: 10.1093/gpbjnl/qzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 06/22/2024]
Abstract
Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jackson J Peterson
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb Kornfein
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alex Oesterling
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Zhicheng Guo
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Jiang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Li Z, Deeks SG, Ott M, Greene WC. Comprehensive synergy mapping links a BAF- and NSL-containing "supercomplex" to the transcriptional silencing of HIV-1. Cell Rep 2023; 42:113055. [PMID: 37682714 PMCID: PMC10591912 DOI: 10.1016/j.celrep.2023.113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Host repressors mediate HIV latency, but how they interactively silence the virus remains unclear. Here, we develop "reiterative enrichment and authentication of CRISPRi targets for synergies (REACTS)" to probe the genome for synergies between HIV transcription repressors. Using eight known host repressors as queries, we identify 32 synergies involving eleven repressors, including BCL7C, KANSL2, and SIRT2. Overexpression of these three proteins reduces HIV reactivation in Jurkat T cells and in CD4 T cells from people living with HIV on antiretroviral therapy (ART). We show that the BCL7C-containing BAF complex and the KANSL2-containing NSL complex form a "supercomplex" that increases inhibitory histone acetylation of the HIV long-terminal repeat (LTR) and its occupancy by the short variant of the acetyl-lysine reader Brd4. Collectively, we provide a validated platform for defining gene synergies genome wide, and the BAF-NSL "supercomplex" represents a potential target for overcoming HIV rebound after ART cessation.
Collapse
Affiliation(s)
- Zichong Li
- Gladstone Institute of Virology, San Francisco, CA 94158, USA.
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA 94158, USA; University of California, San Francisco, San Francisco, CA 94143, USA
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA 94158, USA; University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Damour A, Slaninova V, Radulescu O, Bertrand E, Basyuk E. Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency. Viruses 2023; 15:1969. [PMID: 37766375 PMCID: PMC10535884 DOI: 10.3390/v15091969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Damour
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| | - Vera Slaninova
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Ovidiu Radulescu
- LPHI, UMR 5294 CNRS, University of Montpellier, 34095 Montpellier, France;
| | - Edouard Bertrand
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Eugenia Basyuk
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| |
Collapse
|
10
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
11
|
Tietjen I, Schonhofer C, Sciorillo A, Naidu ME, Haq Z, Kannan T, Kossenkov AV, Rivera-Ortiz J, Mounzer K, Hart C, Gyampoh K, Yuan Z, Beattie KD, Rali T, Shuda McGuire K, Davis RA, Montaner LJ. The Natural Stilbenoid (-)-Hopeaphenol Inhibits HIV Transcription by Targeting Both PKC and NF-κB Signaling and Cyclin-Dependent Kinase 9. Antimicrob Agents Chemother 2023; 67:e0160022. [PMID: 36975214 PMCID: PMC10112218 DOI: 10.1128/aac.01600-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.
Collapse
Affiliation(s)
- Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Maya E. Naidu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zahra Haq
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Colin Hart
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Karren D. Beattie
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Topul Rali
- School of Natural and Physical Sciences, The University of Papua New Guinea, Port Moresby, Papua New Guinea
| | | | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | | |
Collapse
|
12
|
Liang T, Li G, Lu Y, Hu M, Ma X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023; 15:v15040985. [PMID: 37112965 PMCID: PMC10144533 DOI: 10.3390/v15040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.
Collapse
Affiliation(s)
- Taizhen Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Guojie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Yunfei Lu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Meilin Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
13
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
14
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
15
|
Wu L, Pan T, Zhou M, Chen T, Wu S, Lv X, Liu J, Yu F, Guan Y, Liu B, Zhang W, Deng X, Chen Q, Liang A, Lin Y, Wang L, Tang X, Cai W, Li L, He X, Zhang H, Ma X. CBX4 contributes to HIV-1 latency by forming phase-separated nuclear bodies and SUMOylating EZH2. EMBO Rep 2022; 23:e53855. [PMID: 35642598 PMCID: PMC9253744 DOI: 10.15252/embr.202153855] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 09/13/2023] Open
Abstract
The retrovirus HIV-1 integrates into the host genome and establishes a latent viral reservoir that escapes immune surveillance. Molecular mechanisms of HIV-1 latency have been studied extensively to achieve a cure for the acquired immunodeficiency syndrome (AIDS). Latency-reversing agents (LRAs) have been developed to reactivate and eliminate the latent reservoir by the immune system. To develop more promising LRAs, it is essential to evaluate new therapeutic targets. Here, we find that CBX4, a component of the Polycomb Repressive Complex 1 (PRC1), contributes to HIV-1 latency in seven latency models and primary CD4+ T cells. CBX4 forms nuclear bodies with liquid-liquid phase separation (LLPS) properties on the HIV-1 long terminal repeat (LTR) and recruits EZH2, the catalytic subunit of PRC2. CBX4 SUMOylates EZH2 utilizing its SUMO E3 ligase activity, thereby enhancing the H3K27 methyltransferase activity of EZH2. Our results indicate that CBX4 acts as a bridge between the repressor complexes PRC1 and PRC2 that act synergistically to maintain HIV-1 latency. Dissolution of phase-separated CBX4 bodies could be a potential intervention to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Liyang Wu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ting Pan
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Mo Zhou
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Tao Chen
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Shiyu Wu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xi Lv
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jun Liu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Fei Yu
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Bingfeng Liu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wanying Zhang
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohui Deng
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Qianyu Chen
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Anqi Liang
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yingtong Lin
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | | | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Weiping Cai
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Xin He
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Xiancai Ma
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| |
Collapse
|
16
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
18
|
UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat. mBio 2021; 12:e0162521. [PMID: 34465029 PMCID: PMC8406157 DOI: 10.1128/mbio.01625-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5'-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies. IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. In our work, we identified a critical role of host factor ubiquitin-like with PHD and RING finger domain 1 (UHRF1) in HIV-1 latency via the modulation of the viral protein Tat stability. By disrupting the Tat/cyclin T1/CDK9 complex, UHRF1 promotes the suppression of HIV-1 transcription and maintenance of HIV-1 latency. Our findings provide novel insights in controlling Tat expression via host-pathogen interaction for modulating HIV-1 latency. Based on our results, modulating UHRF1 expression or activity by specific inhibitors is a potential therapeutic strategy for latency reversal in HIV-1 patients.
Collapse
|
19
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
20
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
21
|
Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal. mBio 2021; 12:e0109821. [PMID: 34154414 PMCID: PMC8262898 DOI: 10.1128/mbio.01098-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir is the major barrier to an HIV cure. Due to low levels or lack of transcriptional activity, HIV-1 latent proviruses in vivo are not easily detectable and cannot be targeted by either natural immune mechanisms or molecular therapies based on protein expression. To target the latent reservoir, further understanding of HIV-1 proviral transcription is required. In this study, we demonstrate a novel role for cleavage and polyadenylation specificity factor 6 (CPSF6) in HIV-1 transcription. We show that knockout of CPSF6 hinders reactivation of latent HIV-1 proviruses by PMA in primary CD4+ cells. CPSF6 knockout reduced HIV-1 transcription, concomitant with a drastic reduction in the phosphorylation levels of Pol II and CDK9. Knockout of CPSF6 led to abnormal stabilization of protein phosphatase 2A (PP2A) subunit A, which then acted to dephosphorylate CDK9, downmodulating CDK9's ability to phosphorylate the Pol II carboxy-terminal domain. In agreement with this mechanism, incubation with the PP2A inhibitor, LB100, restored HIV-1 transcription in the CPSF6 knockout cells. Destabilization of PP2A subunit A occurs in the ubiquitin proteasome pathway, wherein CPSF6 acts as a substrate adaptor for the ITCH ubiquitin ligase. Our observations reveal a novel role of CPSF6 in HIV-1 transcription, which appears to be independent of its known roles in cleavage and polyadenylation and the targeting of preintegration complexes to the chromatin for viral DNA integration. IMPORTANCE CPSF6 is a cellular factor that regulates cleavage and polyadenylation of mRNAs and participates in HIV-1 infection by facilitating targeting of preintegration complexes to the chromatin. Our observations reveal a second role of CPSF6 in the HIV-1 life cycle that involves regulation of viral transcription through controlling the stability of protein phosphatase 2A, which in turn regulates the phosphorylation/dephosphorylation status of critical residues in CDK9 and Pol II.
Collapse
|
22
|
Khoury G, Lee MY, Ramarathinam SH, McMahon J, Purcell AW, Sonza S, Lewin SR, Purcell DFJ. The RNA-Binding Proteins SRP14 and HMGB3 Control HIV-1 Tat mRNA Processing and Translation During HIV-1 Latency. Front Genet 2021; 12:680725. [PMID: 34194479 PMCID: PMC8236859 DOI: 10.3389/fgene.2021.680725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Tat protein is essential for virus production. RNA-binding proteins that facilitate Tat production may be absent or downregulated in resting CD4+ T-cells, the main reservoir of latent HIV in people with HIV (PWH) on antiretroviral therapy (ART). In this study, we examined the role of Tat RNA-binding proteins on the expression of Tat and control of latent and productive infection. Affinity purification coupled with mass spectrometry analysis was used to detect binding partners of MS2-tagged tat mRNA in a T cell-line model of HIV latency. The effect of knockdown and overexpression of the proteins of interest on Tat transactivation and translation was assessed by luciferase-based reporter assays and infections with a dual color HIV reporter virus. Out of the 243 interactions identified, knockdown of SRP14 (Signal Recognition Particle 14) negatively affected tat mRNA processing and translation as well as Tat-mediated transactivation, which led to an increase in latent infection. On the other hand, knockdown of HMGB3 (High Mobility Group Box 3) resulted in an increase in Tat transactivation and translation as well as an increase in productive infection. Footprinting experiments revealed that SRP14 and HMGB3 proteins bind to TIM-TAM, a conserved RNA sequence-structure in tat mRNA that functions as a Tat IRES modulator of tat mRNA. Overexpression of SRP14 in resting CD4+ T-cells from patients on ART was sufficient to reverse HIV-1 latency and induce virus production. The role of SRP14 and HMGB3 proteins in controlling HIV Tat expression during latency will be further assessed as potential drug targets.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Y. Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sri H. Ramarathinam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James McMahon
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Ma X, Chen T, Peng Z, Wang Z, Liu J, Yang T, Wu L, Liu G, Zhou M, Tong M, Guan Y, Zhang X, Lin Y, Tang X, Li L, Tang Z, Pan T, Zhang H. Histone chaperone CAF-1 promotes HIV-1 latency by leading the formation of phase-separated suppressive nuclear bodies. EMBO J 2021; 40:e106632. [PMID: 33739466 PMCID: PMC8126954 DOI: 10.15252/embj.2020106632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhilin Peng
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwen Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Liu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liyang Wu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guangyan Liu
- College of Basic Medical SciencesShenyang Medical CollegeShenyangLiaoningChina
| | - Mo Zhou
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Muye Tong
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xu Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingtong Lin
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Zhonghui Tang
- Department of BioinformaticsZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ting Pan
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
25
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
26
|
Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem Pharmacol 2021; 186:114462. [PMID: 33577894 DOI: 10.1016/j.bcp.2021.114462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) durably suppresses HIV replication, virus persists in CD4+ T-cells that harbor latent but spontaneously inducible and replication-competent provirus. One strategy to inactivate these viral reservoirs involves the use of agents that continue to reinforce HIV latency even after their withdrawal. To identify new chemical leads with such properties, we investigated a series of naturally-occurring flavones (chrysin, apigenin, luteolin, and luteolin-7-glucoside (L7G)) and functionally-related cyclin dependent kinase 9 (CDK9) inhibitors (flavopiridol and atuveciclib) which are reported or presumed to suppress HIV replication in vitro. We found that, while all compounds inhibit provirus expression induced by latency-reversing agents in vitro, only aglycone flavonoids (chrysin, apigenin, luteolin, flavopiridol) and atuveciclib, but not the glycosylated flavonoid L7G, inhibit spontaneous latency reversal. Aglycone flavonoids and atuveciclib, but not L7G, also inhibit CDK9 and the HIV Tat protein. Aglycone flavonoids do not reinforce HIV latency following their in vitro withdrawal, which corresponds with their ability to also inhibit class I/II histone deacetylases (HDAC), a well-established mechanism of latency reversal. In contrast, atuveciclib and flavopiridol, which exhibit little or no HDAC inhibition, continue to reinforce latency for 9 to 14+ days, respectively, following their withdrawal in vitro. Finally, we show that flavopiridol also inhibits spontaneous ex vivo viral RNA production in CD4+ T cells from donors with HIV. These results implicate CDK9 inhibition (in the absence of HDAC inhibition) as a potentially favorable property in the search for compounds that durably reinforce HIV latency.
Collapse
|
27
|
Hokello J, Lakhikumar Sharma A, Tyagi M. AP-1 and NF-κB synergize to transcriptionally activate latent HIV upon T-cell receptor activation. FEBS Lett 2021; 595:577-594. [PMID: 33421101 DOI: 10.1002/1873-3468.14033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022]
Abstract
Latent HIV-1 proviruses are capable of reactivating productive lytic infection, but the precise molecular mechanisms underlying emergence from latency are poorly understood. In this study, we determined the contribution of the transcription factors NF-κB, NFAT, and AP-1 in the reactivation of latent HIV following T-cell receptor (TCR) activation using Jurkat T-cell clones harboring single latent HIV proviruses. Our findings demonstrate that during reactivation from latency, NF-κB enhances HIV transcription while NFAT inhibits it by competing with NF-κB for overlapping binding sites on the HIV long terminal repeat (LTR). We have also demonstrated for the first time the molecular contribution of AP-1 in the reactivation of HIV from latency, whereby AP-1 synergizes with NF-κB to regulate HIV transcriptional elongation following TCR activation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University Western Campus, Bushenyi, Uganda
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Taylor JP, Armitage LH, Aldridge DL, Cash MN, Wallet MA. Harmine enhances the activity of the HIV-1 latency-reversing agents ingenol A and SAHA. Biol Open 2020; 9:bio.052969. [PMID: 33234703 PMCID: PMC7774897 DOI: 10.1242/bio.052969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with human immunodeficiency virus 1 (HIV-1) remains incurable because long-lived, latently-infected cells persist during prolonged antiretroviral therapy. Attempts to pharmacologically reactivate and purge the latent reservoir with latency reactivating agents (LRAs) such as protein kinase C (PKC) agonists (e.g. ingenol A) or histone deacetylase (HDAC) inhibitors (e.g. SAHA) have shown promising but incomplete efficacy. Using the J-Lat T cell model of HIV latency, we found that the plant-derived compound harmine enhanced the efficacy of existing PKC agonist LRAs in reactivating latently-infected cells. Treatment with harmine increased not only the number of reactivated cells but also increased HIV transcription and protein expression on a per-cell basis. Importantly, we observed a synergistic effect when harmine was used in combination with ingenol A and the HDAC inhibitor SAHA. An investigation into the mechanism revealed that harmine, when used with LRAs, increased the activity of NFκB, MAPK p38, and ERK1/2. Harmine treatment also resulted in reduced expression of HEXIM1, a negative regulator of transcriptional elongation. Thus, harmine enhanced the effects of LRAs by increasing the availability of transcription factors needed for HIV reactivation and promoting transcriptional elongation. Combination therapies with harmine and LRAs could benefit patients by achieving deeper reactivation of the latent pool of HIV provirus.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lucas H Armitage
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel L Aldridge
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Melanie N Cash
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark A Wallet
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Krasnopolsky S, Novikov A, Kuzmina A, Taube R. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194656. [PMID: 33333262 DOI: 10.1016/j.bbagrm.2020.194656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
Pivotal studies on the control of HIV transcription has laid the foundations for our understanding of how metazoan transcription is executed, and what are the factors that control this step. Part of this work established a role for DRB Sensitivity Inducing Factor (DSIF), consisting of Spt4 and Spt5, in promoting pause-release of RNA Polymerase II (Pol II) for optimal elongation. However, while there has been substantial progress in understanding the role of DSIF in mediating HIV gene transcription, its involvement in establishing viral latency has not been explored. Moreover, the effects of depleting Spt4 or Spt5, or simultaneously knocking down both subunits of DSIF have not been examined. In this study, we employed CRISPR interference (CRIPSRi) to knockdown the expression of Spt4, Spt5 or the entire DSIF complex, and monitored effects on HIV transcription and viral latency. Knocking down DSIF, or each of its subunits, inhibited HIV transcription, primarily at the step of Tat transactivation. This was accompanied by a decrease in promoter occupancy of Pol II and Cdk9, and to a lesser extent, AFF4. Interestingly, targeting the expression of one subunit of DSIF, reduced the protein stability of its counterpart partner. Moreover, depletion of Spt4, Spt5 or DSIF complex impaired cell growth, but did not cause cell death. Finally, knockdown of Spt4, Spt5 or DSIF, facilitated entry of HIV into latency. We conclude that each DSIF subunit plays a role in maintaining the stability of its other partner, achieving optimal function of the DSIF to enhance viral gene transcription.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alex Novikov
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
30
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
31
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
32
|
Site-Specific Phosphorylation of Histone H1.4 Is Associated with Transcription Activation. Int J Mol Sci 2020; 21:ijms21228861. [PMID: 33238524 PMCID: PMC7700352 DOI: 10.3390/ijms21228861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
Core histone variants, such as H2A.X and H3.3, serve specialized roles in chromatin processes that depend on the genomic distributions and amino acid sequence differences of the variant proteins. Modifications of these variants alter interactions with other chromatin components and thus the protein’s functions. These inferences add to the growing arsenal of evidence against the older generic view of those linker histones as redundant repressors. Furthermore, certain modifications of specific H1 variants can confer distinct roles. On the one hand, it has been reported that the phosphorylation of H1 results in its release from chromatin and the subsequent transcription of HIV-1 genes. On the other hand, recent evidence indicates that phosphorylated H1 may in fact be associated with active promoters. This conflict suggests that different H1 isoforms and modified versions of these variants are not redundant when together but may play distinct functional roles. Here, we provide the first genome-wide evidence that when phosphorylated, the H1.4 variant remains associated with active promoters and may even play a role in transcription activation. Using novel, highly specific antibodies, we generated the first genome-wide view of the H1.4 isoform phosphorylated at serine 187 (pS187-H1.4) in estradiol-inducible MCF7 cells. We observe that pS187-H1.4 is enriched primarily at the transcription start sites (TSSs) of genes activated by estradiol treatment and depleted from those that are repressed. We also show that pS187-H1.4 associates with ‘early estrogen response’ genes and stably interacts with RNAPII. Based on the observations presented here, we propose that phosphorylation at S187 by CDK9 represents an early event required for gene activation. This event may also be involved in the release of promoter-proximal polymerases to begin elongation by interacting directly with the polymerase or other parts of the transcription machinery. Although we focused on estrogen-responsive genes, taking into account previous evidence of H1.4′s enrichment of promoters of pluripotency genes, and its involvement with rDNA activation, we propose that H1.4 phosphorylation for gene activation may be a more global observation.
Collapse
|
33
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
34
|
Eyvazi S, Hejazi MS, Kahroba H, Abasi M, Zamiri RE, Tarhriz V. CDK9 as an Appealing Target for Therapeutic Interventions. Curr Drug Targets 2020; 20:453-464. [PMID: 30362418 DOI: 10.2174/1389450119666181026152221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023]
Abstract
Cyclin Dependent Kinase 9 (CDK9) as a serine/threonine kinase belongs to a great number of CDKs. CDK9 is the main core of PTEF-b complex and phosphorylates RNA polymerase (RNAP) II besides other transcription factors which regulate gene transcription elongation in numerous physiological processes. Multi-functional nature of CDK9 in diverse cellular pathways proposes that it is as an appealing target. In this review, we summarized the recent findings on the molecular interaction of CDK9 with critical participant molecules to modulate their activity in various diseases. Furthermore, the presented review provides a rationale supporting the use of CDK9 as a therapeutic target in clinical developments for crucial diseases; particularly cancers will be reviewed.
Collapse
Affiliation(s)
- Shirin Eyvazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homan Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozghan Abasi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Eghdam Zamiri
- Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
36
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
37
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
38
|
DeMarino C, Cowen M, Pleet ML, Pinto DO, Khatkar P, Erickson J, Docken SS, Russell N, Reichmuth B, Phan T, Kuang Y, Anderson DM, Emelianenko M, Kashanchi F. Differences in Transcriptional Dynamics Between T-cells and Macrophages as Determined by a Three-State Mathematical Model. Sci Rep 2020; 10:2227. [PMID: 32042107 PMCID: PMC7010665 DOI: 10.1038/s41598-020-59008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to intermittent HIV-1 LTR activation. While several mathematical models have been explored in the context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary cells. This type of extended modeling framework allows us to compare and contrast behavior of these two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in differences in the magnitude of viral products generated. One of the distinctive features of this work is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from the activated promoter states are fit by comparison of experimental data to model predictions. Fitting to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our experimentally generated data is in reasonable agreement for the T-cell as well macrophage population and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity analysis performed using Latin hypercube sampling method confirms robustness of the model with respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) into the governing equations demonstrates how the model can be used to assess drug efficacy. Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells and macrophages and provides a novel platform to study various transcriptional dynamics leading to latency or activation in numerous cell types and physiological conditions.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Cell Line
- Drug Resistance, Viral/drug effects
- Drug Resistance, Viral/genetics
- Drug Resistance, Viral/immunology
- Gene Expression Regulation, Viral/immunology
- HIV Infections/blood
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Long Terminal Repeat/genetics
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Macrophages/immunology
- Macrophages/virology
- Models, Genetic
- Models, Immunological
- Primary Cell Culture
- RNA, Viral/genetics
- RNA, Viral/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Steffen S Docken
- Department of Mathematics, University of California Davis, Davis, CA, USA
| | - Nicholas Russell
- Department of Mathematical Sciences, University of Delaware, Newark, DE, USA
| | - Blake Reichmuth
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA
| | - Tin Phan
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel M Anderson
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA.
| | - Maria Emelianenko
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
39
|
Xu J, Wang G, Gong W, Guo S, Li D, Zhan Q. The noncoding function of NELFA mRNA promotes the development of oesophageal squamous cell carcinoma by regulating the Rad17-RFC2-5 complex. Mol Oncol 2020; 14:611-624. [PMID: 31845510 PMCID: PMC7053240 DOI: 10.1002/1878-0261.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, RNAs interacting with proteins have been implicated in playing an important role in the occurrence and progression of oesophageal squamous cell carcinoma (ESCC). In this study, we found that NELFA mRNA interacts with Rad17 through a novel noncoding mode in the nucleus and that the aberrant expression of USF2 contributed to the upregulation of Rad17 and NELFA. Subsequent experiments demonstrated that the deletion of NELFA mRNA significantly decreased ESCC proliferation and colony formation in vitro. Moreover, NELFA mRNA knockdown inhibited DNA damage repair and promoted apoptosis. Mechanistic studies indicated that NELFA mRNA regulated the interaction between Rad17 and RFC2‐5, which had a major impact on the phosphorylation of CHK1, CHK2 and BRCA1. NELFA mRNA expression was consistently elevated in ESCC patients and closely related to decreased overall survival. Taken together, our results confirmed the critical role of the noncoding function of NELFA mRNA in ESCC tumorigenesis and indicated that NELFA mRNA can be regarded as a therapeutic target and an independent prognostic indicator in ESCC patients.
Collapse
Affiliation(s)
- Jiancheng Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shichao Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
40
|
Páhi ZG, Borsos BN, Pantazi V, Ujfaludi Z, Pankotai T. PARylation During Transcription: Insights into the Fine-Tuning Mechanism and Regulation. Cancers (Basel) 2020; 12:cancers12010183. [PMID: 31940791 PMCID: PMC7017041 DOI: 10.3390/cancers12010183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
Transcription is a multistep, tightly regulated process. During transcription initiation, promoter recognition and pre-initiation complex (PIC) formation take place, in which dynamic recruitment or exchange of transcription activators occur. The precise coordination of the recruitment and removal of transcription factors, as well as chromatin structural changes, are mediated by post-translational modifications (PTMs). Poly(ADP-ribose) polymerases (PARPs) are key players in this process, since they can modulate DNA-binding activities of specific transcription factors through poly-ADP-ribosylation (PARylation). PARylation can regulate the transcription at three different levels: (1) by directly affecting the recruitment of specific transcription factors, (2) by triggering chromatin structural changes during initiation and as a response to cellular stresses, or (3) by post-transcriptionally modulating the stability and degradation of specific mRNAs. In this review, we principally focus on these steps and summarise the recent findings, demonstrating the mechanisms through which PARylation plays a potential regulatory role during transcription and DNA repair.
Collapse
|
41
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
42
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
43
|
Bunch H, Choe H, Kim J, Jo DS, Jeon S, Lee S, Cho DH, Kang K. P-TEFb Regulates Transcriptional Activation in Non-coding RNA Genes. Front Genet 2019; 10:342. [PMID: 31068966 PMCID: PMC6491683 DOI: 10.3389/fgene.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023] Open
Abstract
Many non-coding RNAs (ncRNAs) serve as regulatory molecules in various physiological pathways, including gene expression in mammalian cells. Distinct from protein-coding RNA expression, ncRNA expression is regulated solely by transcription and RNA processing/stability. It is thus important to understand transcriptional regulation in ncRNA genes but is yet to be known completely. Previously, we identified that a subset of mammalian ncRNA genes is transcriptionally regulated by RNA polymerase II (Pol II) promoter-proximal pausing and in a tissue-specific manner. In this study, human ncRNA genes that are expressed in the early G1 phase, termed immediate early ncRNA genes, were monitored to assess the function of positive transcription elongation factor b (P-TEFb), a master Pol II pausing regulator for protein-coding genes, in ncRNA transcription. Our findings indicate that the expression of many ncRNA genes is induced in the G0–G1 transition and regulated by P-TEFb. Interestingly, a biphasic characteristic of P-TEFb-dependent transcription of serum responsive ncRNA genes was observed: Pol II carboxyl-terminal domain phosphorylated at serine 2 (S2) was largely increased in the transcription start site (TSS, -300 to +300) whereas overall, it was decreased in the gene body (GB, > +350) upon chemical inhibition of P-TEFb. In addition, the three representative, immediate early ncRNAs, whose expression is dependent on P-TEFb, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear enriched abundant transcript 1 (NEAT1), and X-inactive specific transcript (XIST), were further analyzed for determining P-TEFb association. Taken together, our data suggest that transcriptional activation of many human ncRNAs utilizes the pausing and releasing of Pol II, and that the regulatory mechanism of transcriptional elongation in these genes requires the function of P-TEFb. Furthermore, we propose that ncRNA and mRNA transcription are regulated by similar mechanisms while P-TEFb inhibition unexpectedly increases S2 Pol II phosphorylation in the TSSs in many ncRNA genes. One Sentence Summary: P-TEFb regulates Pol II phosphorylation for transcriptional activation in many stimulus-inducible ncRNA genes.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyeseung Choe
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Jongbum Kim
- Department of Transcriptome & Epigenome, Macrogen Incorporated, Seoul, South Korea
| | - Doo Sin Jo
- Institute of Life Science and Biotechnology, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Soyeon Jeon
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Sanghwa Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- Department of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, South Korea
| |
Collapse
|
44
|
Ma X, Yang T, Luo Y, Wu L, Jiang Y, Song Z, Pan T, Liu B, Liu G, Liu J, Yu F, He Z, Zhang W, Yang J, Liang L, Guan Y, Zhang X, Li L, Cai W, Tang X, Gao S, Deng K, Zhang H. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019; 8:42426. [PMID: 30652970 PMCID: PMC6361614 DOI: 10.7554/elife.42426] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Comprehensively elucidating the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) latency is a priority to achieve a functional cure. As current 'shock' agents failed to efficiently reactivate the latent reservoir, it is important to discover new targets for developing more efficient latency-reversing agents (LRAs). Here, we found that TRIM28 potently suppresses HIV-1 expression by utilizing both SUMO E3 ligase activity and epigenetic adaptor function. Through global site-specific SUMO-MS study and serial SUMOylation assays, we identified that P-TEFb catalytic subunit CDK9 is significantly SUMOylated by TRIM28 with SUMO4. The Lys44, Lys56 and Lys68 residues on CDK9 are SUMOylated by TRIM28, which inhibits CDK9 kinase activity or prevents P-TEFb assembly by directly blocking the interaction between CDK9 and Cyclin T1, subsequently inhibits viral transcription and contributes to HIV-1 latency. The manipulation of TRIM28 and its consequent SUMOylation pathway could be the target for developing LRAs. The human immunodeficiency virus-1, or HIV-1, infects certain human cells, including white blood cells. One reason the infection is incurable is because the virus can integrate its genetic information into its host, and essentially ‘sleep’ within the host cell, a process called latency. This helps to hide HIV-1 from the immune system and stops it getting destroyed. Latency represents a critical challenge in treating and curing HIV-1. One proposed cure for HIV-1 involves ‘shocking’ the viruses out of latency so that they can be eliminated. Applying this so-called shock and kill approach means scientists need to understand more about how latency is maintained. Previous evidence shows that latency requires proteins known as histone deacetylases and histone methyltransferases. Certain gene-silencing proteins called transcription suppressors are also involved. Ma et al. have now examined latent HIV-1 in several kinds of human cells grown in the laboratory. The cells were modified to make certain proteins at much lower levels than normal. The experiments showed that the loss of a protein called TRIM28 ‘wakes up’ latent HIV-1. TRIM28 attaches chemical marks called SUMOylations to gene regulators in the cell. These SUMOylations restrict the activity of HIV-1’s genes, which is important to maintain latency. Specifically, TRIM28 adds SUMOylations to a protein named CDK9 at three key positions. Reducing the levels of TRIM28 made it easier to shock many HIV-1 in infected cells out of latency. With further investigation, targeting TRIM28 may one day be used to treat HIV-1 infection through a shock and kill method.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yawen Jiang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jun Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fei Yu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liting Liang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Laboratory Platform for Medical Science, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
46
|
Mok MT, Zhou J, Tang W, Zeng X, Oliver AW, Ward SE, Cheng AS. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol Ther 2018; 186:138-151. [PMID: 29360538 DOI: 10.1016/j.pharmthera.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 20 (CDK20), or more commonly referred to as cell cycle-related kinase (CCRK), is the latest member of CDK family with strong linkage to human cancers. Accumulating studies have reported the consistent overexpression of CCRK in cancers arising from brain, colon, liver, lung and ovary. Such aberrant up-regulation of CCRK is clinically significant as it correlates with tumor staging, shorter patient survival and poor prognosis. Intriguingly, the signalling molecules perturbed by CCRK are divergent and cancer-specific, including the cell cycle regulators CDK2, cyclin D1, cyclin E and RB in glioblastoma, ovarian carcinoma and colorectal cancer, and KEAP1-NRF2 cytoprotective pathway in lung cancer. In hepatocellular carcinoma (HCC), CCRK mediates virus-host interaction to promote hepatitis B virus-associated tumorigenesis. Further mechanistic analyses reveal that CCRK orchestrates a self-reinforcing circuitry comprising of AR, GSK3β, β-catenin, AKT, EZH2, and NF-κB signalling for transcriptional and epigenetic regulation of oncogenes and tumor suppressor genes. Notably, EZH2 and NF-κB in this circuit have been recently shown to induce IL-6 production to facilitate tumor immune evasion. Concordantly, in a hepatoma preclinical model, ablation of Ccrk disrupts the immunosuppressive tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade via potentiation of anti-tumor T cell responses. In this review, we summarized the multifaceted tumor-intrinsic and -extrinsic functions of CCRK, which represents a novel signalling hub exploitable in cancer immunotherapy.
Collapse
Affiliation(s)
- Myth T Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Cardiff, Wales, CF10 3AT, UK
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Huang F, Shao W, Fujinaga K, Peterlin BM. Bromodomain-containing protein 4-independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. J Biol Chem 2018; 293:4993-5004. [PMID: 29463681 PMCID: PMC5892592 DOI: 10.1074/jbc.ra117.001518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.
Collapse
Affiliation(s)
- Fang Huang
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
48
|
Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget 2018; 7:80190-80207. [PMID: 27863397 PMCID: PMC5348313 DOI: 10.18632/oncotarget.13376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Jiahui Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katie J Glowacki
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Janet A Houghton
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| |
Collapse
|
49
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|