1
|
Ning B, Li C, Zhao T, Zou Y, Zhan Y, Chang Y. Identification of Key Biomarkers of Growth-Related Traits in the Bay Scallop Argopecten irradians irradians via Multi-omics Analysis Strategies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:82. [PMID: 40338257 DOI: 10.1007/s10126-025-10457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
In an attempt to promote and advance molecular-assisted selective breeding of shellfish, in this study, gills from selected (shell color as the marker trait and growth performance as the target trait) and unselected Argopecten irradians irradians were sampled. 2b-restriction site-associated DNA sequencing, genome-wide association study, comparative transcriptome, comparative small RNA transcriptome, miRNA-mRNA integrated analysis, quantitative real-time reverse transcription-polymerase chain reaction, and weighted gene co-expression network analysis were used to identify candidate SNPs, mRNAs, miRNAs, and miRNA/mRNA pairs with potential selective breeding value at a genomic scale in A. irradians irradians. The results revealed that a total of 6 significant SNPs were correlated closely with at least two examined growth-related traits. In addition, a total of 10 mRNAs and 7 miRNAs were identified to have positive correlations with shell length, shell height, shell width, total weight, and shell color. These candidate mRNAs and miRNAs may form 11 miRNA-mRNA pairs, which have great potential for developing molecular markers for molecular-assisted selective breeding of A. irradians irradians. The findings of this study will benefit the development of molecular-assisted breeding techniques in bay scallop aquaculture.
Collapse
Affiliation(s)
- Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, P. R. China.
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China.
| |
Collapse
|
2
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Liu K, Tian F, Chen X, Liu B, Tian S, Hou Y, Wang L, Han M, Peng S, Tan Y, Pan Y, Chu Z, Li J, Che L, Chen D, Wen L, Qin Z, Li X, Xiang J, Bian X, Liu Q, Ye X, Wang T, Wang B. Stabilization of TGF-β Receptor 1 by a Receptor-Associated Adaptor Dictates Feedback Activation of the TGF-β Signaling Pathway to Maintain Liver Cancer Stemness and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402327. [PMID: 38981014 PMCID: PMC11425868 DOI: 10.1002/advs.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-β receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-β-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-β receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-β signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-β signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-β signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-β signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-β signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.
Collapse
Affiliation(s)
- Kewei Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Fanxuan Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Biyin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shuoran Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Yongying Hou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Department of PathologyDaping Hospital, Army Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Lei Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Mengyi Han
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shiying Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuting Tan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuwei Pan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Zhaole Chu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Linrong Che
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Liangzhi Wen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Zhongyi Qin
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xianfeng Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
| | - Tao Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
4
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
5
|
Teunissen MBM, Pilgaard Møller LB, Løvendorf MB, Skov L, Bonefeld CM, Bekkenk MW, Clark RA, Mann M, Dyring-Andersen B. In-Depth Proteomic Map of Innate Lymphoid Cells from Healthy Human Skin and Blood. J Invest Dermatol 2024; 144:316-330.e3. [PMID: 37544588 DOI: 10.1016/j.jid.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Innate lymphoid cells (ILCs) are essential players in the skin-associated immune system, nevertheless little is known about their proteomes and proteomic diversity. In this study, we describe about 6,600 proteins constitutively expressed by ILC2s and ILC3s from healthy human skin and blood using state-of-the-art proteomics. Although the vast majority of proteins was expressed by both ILC subsets and in both compartments, the skin ILC2s and ILC3s were more distinct than their counterparts in blood. Only skin ILC3s expressed uniquely detected proteins. Our in-depth proteomic dataset allowed us to define the cluster of differentiation marker profiles of the ILC subsets, explore distribution and abundance of proteins known to have immunological functions, as well as identify subset-specific proteins that have not previously been implicated in ILC biology. Taken together, our analyses substantially expand understanding of the protein expression signatures of ILC subsets. Going forward, these proteomic datasets will serve as valuable resources for future studies of ILC biology.
Collapse
Affiliation(s)
- Marcel B M Teunissen
- Department of Dermatology and Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Line B Pilgaard Møller
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne B Løvendorf
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark; The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Charlotte M Bonefeld
- The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcel W Bekkenk
- Department of Dermatology and Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark; The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Lee JH, Lee CM, Lee JH, Kim MO, Park JW, Kamle S, Akosman B, Herzog EL, Peng XY, Elias JA, Lee CG. Kasugamycin Is a Novel Chitinase 1 Inhibitor with Strong Antifibrotic Effects on Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:309-319. [PMID: 35679109 PMCID: PMC9447144 DOI: 10.1165/rcmb.2021-0156oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a devastating lung disease with few therapeutic options. CHIT1 (chitinase 1), an 18 glycosyl hydrolase family member, contributes to the pathogenesis of pulmonary fibrosis through the regulation of TGF-β (transforming growth factor-β) signaling and effector function. Therefore, CHIT1 is a potential therapeutic target for pulmonary fibrosis. This study aimed to identify and characterize a druggable CHIT1 inhibitor with strong antifibrotic activity and minimal toxicity for therapeutic application to pulmonary fibrosis. Extensive screening of small molecule libraries identified the aminoglycoside antibiotic kasugamycin (KSM) as a potent CHIT1 inhibitor. Elevated concentrations of CHIT1 were detected in the lungs of patients with pulmonary fibrosis. In in vivo bleomycin- and TGF-β-stimulated murine models of pulmonary fibrosis, KSM showed impressive antifibrotic effects in both preventive and therapeutic conditions. In vitro studies also demonstrated that KSM inhibits fibrotic macrophage activation, fibroblast proliferation, and myofibroblast transformation. Null mutation of TGFBRAP1 (TGF-β-associated protein 1), a recently identified CHIT1 interacting signaling molecule, phenocopied antifibrotic effects of KSM in in vivo lungs and in vitro fibroblasts responses. KSM inhibits the physical association between CHIT1 and TGFBRAP1, suggesting that the antifibrotic effect of KSM is mediated through regulation of TGFBRAP1, at least in part. These studies demonstrate that KSM is a novel CHIT1 inhibitor with a strong antifibrotic effect that can be further developed as an effective and safe therapeutic drug for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jae-Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Min Lee
- Department Molecular Microbiology and Immunology and
| | - Joyce H. Lee
- Department Molecular Microbiology and Immunology and
| | - Mun-Ock Kim
- Natural Medicine Research Center, KRIBB, Cheongju-si, Chungcheongbuk-do, South Korea; and
| | - Jin Wook Park
- Department Molecular Microbiology and Immunology and
| | | | - Bedia Akosman
- Department Molecular Microbiology and Immunology and
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xue Yan Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jack A. Elias
- Department Molecular Microbiology and Immunology and
- Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Chun Geun Lee
- Department Molecular Microbiology and Immunology and
| |
Collapse
|
7
|
Wang Z, Chen J, Wang S, Sun Z, Lei Z, Zhang HT, Huang J. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4. Cell Death Dis 2022; 13:656. [PMID: 35902557 PMCID: PMC9334288 DOI: 10.1038/s41419-022-05093-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Regulator of G-protein signaling 6 (RGS6) is a newly discovered tumor suppressor that has been shown to be protective in development of various cancers such as breast cancer and bladder cancer. But the mechanisms underlying these tumor-suppressing functions of RGS6 are not fully understood. Here, we discover a novel function of RGS6 in suppressing TGF-β-induced epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) cells and in vivo NSCLC metastasis. Using both bioinformatics and experimental tools, we showed that RGS6 was downregulated in lung cancer tissues compared to noncancerous counterparts, and low expression of RGS6 was associated with poor survival of lung cancer patients. Overexpression of RGS6 suppressed TGF-β-induced EMT in vitro and TGF-β-promoted metastasis in vivo, by impairing gene expression of downstream effectors induced by the canonical TGF-β-SMAD signaling. The ability of RGS6 to suppress TGF-β-SMAD-mediated gene expression relied on its binding to SMAD4 to prevent complex formation between SMAD4 and SMAD2/3, but independent of its regulation of the G-protein signaling. Interaction between RGS6 and SMAD4 caused less nuclear entry of p-SMAD3 and SMAD4, resulting in inefficient SMAD3-mediated gene expression. Taken together, our findings reveal a novel and noncanonical role of RGS6 in regulation of TGF-β-induced EMT and metastasis of NSCLC and identify RGS6 as a prognostic marker and a potential novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Zhao Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Chen
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Shengjie Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.89957.3a0000 0000 9255 8984Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 China
| | - Zelong Sun
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Zhe Lei
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Hong-Tao Zhang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Jie Huang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| |
Collapse
|
8
|
Zhang Q, Yang Y, Chen Y, Wang Y, Qin S, Lv R, Zhou M, Yu Q, Li X, Li X, Wang X, You H, Wang Y, Zhou F, Liu X. The LncRNA AK018453 regulates TRAP1/Smad signaling in IL-17-activated astrocytes: A potential role in EAE pathogenesis. Glia 2022; 70:2079-2092. [PMID: 35778934 PMCID: PMC9545958 DOI: 10.1002/glia.24239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/11/2022]
Abstract
The pro-inflammatory cytokine interleukin 17 (IL-17), that is mainly produced by Th17 cells, has been recognized as a key regulator in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Reactive astrocytes stimulated by proinflammatory cytokines including IL-17 are involved in blood brain barrier destruction, inflammatory cells infiltration and spinal cord injury. However, the role of long non-coding RNAs (lncRNAs) induced by IL-17 in the pathogenesis of MS and EAE remains unknown. Herein, we found that an IL-17-induced lncRNA AK018453 promoted TGF-β receptor-associated protein 1 (TRAP1) expression and Smad-dependent signaling in mouse primary astrocytes. Knockdown of AK018453 significantly suppressed astrocytosis, attenuated the phosphorylation of Smad2/3, reduced NF-κB p65 and CBP/P300 binding to the TRAP1 promoter, and diminished pro-inflammatory cytokine production in the IL-17-treated astrocytes. AK018453 knockdown in astrocytes by a lentiviral vector in vivo dramatically inhibited inflammation and prevented the mice from demyelination in the spinal cord during the progression of EAE. Together, these results suggest that AK018453 regulates IL-17-dependent inflammatory response in reactive astrocytes and potentially promotes the pathogenesis of EAE via the TRAP1/Smad pathway. Targeting this pathway may have a therapeutic potential for intervening inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingyu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Lee SY, Lee CM, Ma B, Kamle S, Elias JA, Zhou Y, Lee CG. Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Front Pharmacol 2022; 13:826471. [PMID: 35370755 PMCID: PMC8969576 DOI: 10.3389/fphar.2022.826471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-β signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Suh-Young Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
- Devision of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| |
Collapse
|
10
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Xu J, Yu X, Ye H, Gao S, Deng N, Lu Y, Lin H, Zhang Y, Lu D. Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Front Immunol 2022; 12:825358. [PMID: 35095928 PMCID: PMC8793131 DOI: 10.3389/fimmu.2021.825358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) raises the issue of how hypoxia destroys normal physiological function and host immunity against pathogens. However, there are few or no comprehensive omics studies on this effect. From an evolutionary perspective, animals living in complex and changeable marine environments might develop signaling pathways to address bacterial threats under hypoxia. In this study, the ancient genomic model animal Takifugu obscurus and widespread Vibrio parahaemolyticus were utilized to study the effect. T. obscurus was challenged by V. parahaemolyticus or (and) exposed to hypoxia. The effects of hypoxia and infection were identified, and a theoretical model of the host critical signaling pathway in response to hypoxia and infection was defined by methods of comparative metabolomics and proteomics on the entire liver. The changing trends of some differential metabolites and proteins under hypoxia, infection or double stressors were consistent. The model includes transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor-1α (HIF-1α), and epidermal growth factor (EGF) signaling pathways, and the consistent changing trends indicated that the host liver tended toward cell proliferation. Hypoxia and infection caused tissue damage and fibrosis in the portal area of the liver, which may be related to TGF-β1 signal transduction. We propose that LRG (leucine-rich alpha-2-glycoprotein) is widely involved in the transition of the TGF-β1/Smad signaling pathway in response to hypoxia and pathogenic infection in vertebrates as a conserved molecule.
Collapse
Affiliation(s)
- Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Hangyu Ye
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Songze Gao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Ocean, Hainan University, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Activin-A Induces Early Differential Gene Expression Exclusively in Periodontal Ligament Fibroblasts from Fibrodysplasia Ossificans Progressiva Patients. Biomedicines 2021; 9:biomedicines9060629. [PMID: 34205844 PMCID: PMC8229991 DOI: 10.3390/biomedicines9060629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease characterized by heterotopic ossification (HO). It is caused by mutations in the Activin receptor type 1 (ACVR1) gene, resulting in enhanced responsiveness to ligands, specifically to Activin-A. Though it has been shown that capturing Activin-A protects against heterotopic ossification in animal models, the exact underlying mechanisms at the gene expression level causing ACVR1 R206H-mediated ossifications and progression are thus far unknown. We investigated the early transcriptomic changes induced by Activin-A of healthy control and patient-derived periodontal ligament fibroblasts (PLF) isolated from extracted teeth by RNA sequencing analysis. To study early differences in response to Activin-A, periodontal ligament fibroblasts from six control teeth and from six FOP patient teeth were cultured for 24 h without and with 50 ng/mL Activin-A and analyzed with RNA sequencing. Pathway analysis on genes upregulated by Activin-A in FOP cells showed an association with pathways involved in, among others, Activin, TGFβ, and BMP signaling. Differential gene expression induced by Activin-A was exclusively seen in the FOP cells. Median centered supervised gene expression analysis showed distinct clusters of up- and downregulated genes in the FOP cultures after stimulation with Activin-A. The upregulated genes with high fold changes like SHOC2, TTC1, PAPSS2, DOCK7, and LOX are all associated with bone metabolism. Our open-ended approach to investigating the early effect of Activin-A on gene expression in control and FOP PLF shows that the molecule exclusively induces differential gene expression in FOP cells and not in control cells.
Collapse
|
13
|
Zhang F, Fu X, Kataoka M, Liu N, Wang Y, Gao F, Liang T, Dong X, Pei J, Hu X, Zhu W, Yu H, Cowan DB, Hu X, Huang ZP, Wang J, Wang DZ, Chen J. Long noncoding RNA Cfast regulates cardiac fibrosis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:377-392. [PMID: 33473324 PMCID: PMC7787992 DOI: 10.1016/j.omtn.2020.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis occurs in most cardiac diseases, which reduces cardiac muscle compliance, impairs both systolic and diastolic heart function and, ultimately, leads to heart failure. Long noncoding RNAs (lncRNAs) have recently emerged as important regulators of a variety of biological processes; however, little is known about the expression and function of lncRNAs in cardiac fibrosis. Using unbiased transcriptome profiling in a mouse model of myocardial infarction (MI), we identified a cardiac fibroblast-enriched lncRNA (AK048087) named cardiac fibroblast-associated transcript (Cfast), which is significantly elevated after MI. Silencing Cfast expression by small interfering RNAs (siRNAs) or lentiviral short hairpin RNAs (shRNAs) resulted in suppression of fibrosis-related gene expression and transdifferentiation of myofibroblasts into cardiac fibroblasts. Depletion of Cfast by lentiviral shRNAs in mouse hearts significantly attenuated cardiac fibrosis induced by MI or isoproterenol-infusion. Importantly, inhibition of Cfast ameliorated cardiac function following cardiac injury. RNA pull-down followed by mass spectrometry analyses identified COTL1 (coactosin-like 1) as one of the Cfast interacting proteins. Mechanistically, Cfast competitively inhibits the COTL1 interaction with TRAP1 (transforming growth factor-β receptor-associated protein 1), which enhances TGF-β signaling by augmenting SMAD2/SMAD4 complex formation. Therefore, our study identifies Cfast as a novel cardiac fibroblast-enriched lncRNA that regulates cardiac fibroblast activation in response to pathophysiological stress. Cfast could serve as a potential therapeutic target for the prevention of cardiac fibrosis and cardiac diseases.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
14
|
Wang Z, Lu L, Gu T, Hou L, Du L, Zhang Y, Zhang Y, Xu Q, Chen G. The effects of FAR1 and TGFBRAP1 on the proliferation and apoptosis of follicular granulosa cells in goose (Anser cygnoides). Gene 2020; 769:145194. [PMID: 33007376 DOI: 10.1016/j.gene.2020.145194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The low laying performance of geese seriously damages the growth of the poultry industry, and is related to the development of pre- hierarchical follicles. Our previous studies have revealed that FAR1 and TGFBRAP1 were involved in follicular development, but the exact regulation mechanism still kept unclear. In recent studies, the expression of FAR1 and TGFBRAP1 mRNA were detected, and we found that their expression levels were relatively higher in hierarchical follicles than in pre-hierarchical follicles (P < 0.05). Moreover, generally the level of FAR1 and TGFBRAP1 mRNA gradually increased in hierarchical follicles. In addition, the proliferation and apoptosis of granulosa cells were assayed with overexpression or knockdown technology. The results showed that by the knockdown of FAR1 mRNA level, the proliferation rate of follicular granulosa cells increased significantly, the apoptosis rate decreased (P < 0.05), and the apoptosis rate also reduced obviously by transfecting TGFBRAP1-siRNA (P < 0.05). Finally, the overexpression of FAR1 or TGFBRAP1 resulted in the inhabitation to the secretion of E2 and P4 in granulosa cells, while the knockdown of FAR1 or TGFBRAP1 enhanced the secretion of E2 and P4. In conclusion, the results indicated that FAR1 and TGFBRAP1 regulated the apoptosis of follicular granulosa cells and cut the secretion of E2 and P4 in geese, which provided basic data for the understanding of the regulating process of goose reproduction.
Collapse
Affiliation(s)
- Zhixiu Wang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Lu Lu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Tiantian Gu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Li'e Hou
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Lei Du
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Sterol-O acyltransferase 1 is inhibited by gga-miR-181a-5p and gga-miR-429-3p through the TGFβ pathway in endodermal epithelial cells of Japanese quail. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110376. [PMID: 31678270 DOI: 10.1016/j.cbpb.2019.110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/22/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022]
Abstract
Nutrients are utilized and re-constructed by endodermal epithelial cells (EECs) of yolk sac membrane (YSM) in avian species during embryonic development. Sterol O-acyltransferase 1 (SOAT1) is the key enzyme to convert cholesterol to cholesteryl ester for delivery to growing embryos. During embryonic development, yolk absorption is concomitant with significant changes of SOAT1 mRNA concentration and enzyme activity in YSM. Presence of microRNAs (miRNAs) are observed in the embryonic liver and muscle during avian embryogenesis. However, the expression of miRNAs in YSM during embryogenesis and the involvement of miRNAs in lipid utilization are not known. Using a miRNA sequencing technique, we found several miRNA candidates and confirmed their expression patterns individually by real time PCR. MiRNA candidates were selected based on the expression pattern and their possible roles in inhibiting transforming growth factor beta receptor type 1 (TGFBR1) that would regulate the function of SOAT1. Similar to SOAT1 mRNA, the gga-miR-181a-5p expression was gradually elevated during embryonic development. However, the expression of gga-miR-429-3p in YSM was gradually decreased during embryonic development. The inhibitory effects of gga-miR-181a-5p or gga-miR-429-3p on the potential targets (SOAT1 and TGFBR1) were demonstrated by transient miRNA transfections in EECs. We also found that mutated TGFBR1 3'UTR prevented the direct pairings of gga-miR-181a-5p and gga-miR-429-3p. Treatment of TGFBR1 inhibitor, LY364947, further decreased SOAT1 transcription. Similar results were also observed by the miRNA transfection studies. The results showed the vital participations of gga-miR-181a-5p and gga-miR-429-3p in regulating TGFβ pathway, and affecting downstream SOAT1 expression and function in the YSM. This is indicative of possible regulation of avian yolk lipid utilization by changing YSM miRNA expressions.
Collapse
|
16
|
The Variant at TGFBRAP1 but Not TGFBR2 Is Associated with Antituberculosis Drug-Induced Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1685128. [PMID: 31534460 PMCID: PMC6724436 DOI: 10.1155/2019/1685128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
Background TGFBRAP1 and TGFBR2 play important roles in the TGF-β/smad signalling pathway and may disturb liver homeostasis by regulating liver injury and renewal. However, little is known about the association between their genetic polymorphisms and antituberculosis drug-induced liver injury (ATDILI), so we explored the association between their variants and the susceptibility to ATDILI. Materials and Methods A total of 746 tuberculosis patients were prospectively enrolled, and fifteen selected SNPs were genotyped. The allele, genotype, and genetic model frequencies of the variants were compared between patients with or without ATDILI, as well as the joint effect analysis of SNP-SNP interactions. The odds ratio (OR) with the corresponding 95% confidence interval (CI) was calculated. Results The A variant at rs17687727 was significantly associated with an increased risk for ATDILI (OR 1.55; 95% CI: 1.08–2.22; p = 0.016), which is consistent with the results in the additive and dominant models. Other allele, genotype, and genetic model frequencies were similar in the two groups for the other fourteen SNPs (all p > 0.05). Conclusion Our study first implied that the A variant of rs17687727 in TGFBRAP1 influenced the susceptibility to ATDILI in first-line antituberculosis combination treatment in the Han Chinese population in a dependent manner.
Collapse
|
17
|
Lee CM, He CH, Park JW, Lee JH, Kamle S, Ma B, Akosman B, Cotez R, Chen E, Zhou Y, Herzog EL, Ryu C, Peng X, Rosas IO, Poli S, Bostwick CF, Choi AM, Elias JA, Lee CG. Chitinase 1 regulates pulmonary fibrosis by modulating TGF-β/SMAD7 pathway via TGFBRAP1 and FOXO3. Life Sci Alliance 2019; 2:e201900350. [PMID: 31085559 PMCID: PMC6516052 DOI: 10.26508/lsa.201900350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is a critical mediator of tissue fibrosis in health and disease whose effects are augmented by chitinase 1 (CHIT1). However, the mechanisms that CHIT1 uses to regulate TGF-β1-mediated fibrotic responses have not been defined. Here, we demonstrate that CHIT1 enhances TGF-β1-stimulated fibrotic cellular and tissue responses and TGF-β1 signaling. Importantly, we also demonstrate that these effects are mediated by the ability of CHIT1 to inhibit TGF-β1 induction of its feedback inhibitor, SMAD7. CHIT1 also interacted with TGF-β receptor associated protein 1 (TGFBRAP1) and forkhead box O3 (FOXO3) with TGFBRAP1 playing a critical role in CHIT1 enhancement of TGF-β1 signaling and effector responses and FOXO3 playing a critical role in TGF-β1 induction of SMAD7. These pathways were disease relevant because the levels of CHIT1 were increased and inversely correlated with SMAD7 in tissues from patients with idiopathic pulmonary fibrosis or scleroderma-associated interstitial lung disease. These studies demonstrate that CHIT1 regulates TGF-β1/SMAD7 axis via TGFBRAP1 and FOXO3 and highlight the importance of these pathways in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Chuan-Hua He
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jin Wook Park
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jae Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Suchita Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Bedia Akosman
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Roberto Cotez
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Emily Chen
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Changwan Ryu
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Xueyan Peng
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Sergio Poli
- Brigham and Women's Hospital, Boston, MA, USA
| | - Carol Feghali Bostwick
- Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Augustine M Choi
- Weill Cornell Medicine Pulmonary and Critical Care Medicine, New York, NY, USA
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
- Division of Medicine and Biological Sciences, Brown University, Warren Alpert School of Medicine, Providence, RI, USA
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
19
|
Yang S, Chen X, Yang M, Zhao X, Chen Y, Zhao H, Liu C, Shen C. The variant at TGFBRAP1 is significantly associated with type 2 diabetes mellitus and affects diabetes-related miRNA expression. J Cell Mol Med 2019; 23:83-92. [PMID: 30461200 PMCID: PMC6307842 DOI: 10.1111/jcmm.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
While the transforming growth factor-β1 (TGF-β1) regulates the growth and proliferation of pancreatic β-cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case-control was conducted to evaluate the associations of the polymorphisms of TGF-β1 receptor-associated protein 1 (TGFBRAP1) and TGF-β1 receptor 2 (TGFBR2) with type 2 diabetes mellitus (T2DM), and its genetic effects on diabetes-related miRNA expression. miRNA microarray chip was used to screen T2DM-related miRNA and 15 differential expressed miRNAs were further validated in 75 T2DM and 75 normal glucose tolerance (NGT). The variation of rs2241797 (T/C) at TGFBRAP1 showed significant association with T2DM in case-control study, and the OR (95% CI) of dominant model for cumulative effects was 1.204 (1.060-1.370), Bonferroni corrected P < 0.05. Significant differences in the fast glucose and HOMA-β indices were observed amongst the genotypes of rs2241797. The expression of has-miR-30b-5p and has-miR-93-5p was linearly increased across TT, TC, and CC genotypes of rs2241797 in NGT, Ptrend values were 0.024 and 0.016, respectively. Our findings suggest that genetic polymorphisms of TGFBRAP1 may contribute to the genetic susceptibility of T2DM by mediating diabetes-related miRNA expression.
Collapse
Affiliation(s)
- Song Yang
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Xiaotian Chen
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Mengyao Yang
- Department of Clinical EpidemiologyGeriatric Hospital of Nanjing Medical UniversityJiangsu Province Geriatric InstituteNanjingChina
| | - Xianghai Zhao
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Yanchun Chen
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Hailong Zhao
- Division of Communicable Disease ControlHuai's Centre for Disease Control and PreventionHuaianChina
| | - Chunlan Liu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Chong Shen
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Clinical EpidemiologyGeriatric Hospital of Nanjing Medical UniversityJiangsu Province Geriatric InstituteNanjingChina
| |
Collapse
|
20
|
Masumoto R, Kitagaki J, Fujihara C, Matsumoto M, Miyauchi S, Asano Y, Imai A, Kobayashi K, Nakaya A, Yamashita M, Yamada S, Kitamura M, Murakami S. Identification of genetic risk factors of aggressive periodontitis using genomewide association studies in association with those of chronic periodontitis. J Periodontal Res 2018; 54:199-206. [PMID: 30303256 DOI: 10.1111/jre.12620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 08/13/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
To identify the genetic risk factors for aggressive periodontitis (AgP), it is important to understand the progression and pathogenesis of AgP. The purpose of this review was to summarize the genetic risk factors for AgP identified through a case-control genomewide association study (GWAS) and replication study. The initial studies to identify novel AgP risk factors were potentially biased because they relied on previous studies. To overcome this kind of issue, an unbiased GWAS strategy was introduced to identify genetic risk factors for various diseases. Currently, three genes glycosyltransferase 6 domain containing 1 (GLT6D1), defensin α1 and α3 (DEFA1A3), and sialic acid-binding Ig-like lectin 5 (SIGLEC5) that reach the threshold for genomewide significance have been identified as genetic risk factors for AgP through a case-control GWAS.
Collapse
Affiliation(s)
- Risa Masumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Jirouta Kitagaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shizuka Miyauchi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsuko Imai
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | - Akihiro Nakaya
- Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | - Motozo Yamashita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
21
|
Coactosin-like protein CLP/Cotl1 suppresses breast cancer growth through activation of IL-24/PERP and inhibition of non-canonical TGFβ signaling. Oncogene 2017; 37:323-331. [DOI: 10.1038/onc.2017.342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/10/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
|
22
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
23
|
Li X, Li X, Lv X, Xiao J, Liu B, Zhang Y. Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer. Anat Rec (Hoboken) 2017; 300:1560-1569. [DOI: 10.1002/ar.23610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 12/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xuemei Li
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Xinlei Li
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Xiaohong Lv
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Jianbing Xiao
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Baoquan Liu
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Yafang Zhang
- Department of Anatomy; Harbin Medical University; Harbin China
| |
Collapse
|
24
|
van der Kant R, Jonker CTH, Wijdeven RH, Bakker J, Janssen L, Klumperman J, Neefjes J. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity. J Biol Chem 2015; 290:30280-90. [PMID: 26463206 DOI: 10.1074/jbc.m115.688440] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/30/2023] Open
Abstract
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.
Collapse
Affiliation(s)
- Rik van der Kant
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Caspar T H Jonker
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Ruud H Wijdeven
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Jeroen Bakker
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Lennert Janssen
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Judith Klumperman
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Jacques Neefjes
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| |
Collapse
|
25
|
Guo D, Shen C, Chen Y, Yang S, Wang L, Jin Y, He L, Chen J, Zhao X, Zhou W, Zhao H, Yao Y. Polymorphisms of the TGFBRAP1 gene in relation to blood pressure variability and plasma TGF-β1. Clin Exp Hypertens 2015; 37:420-5. [DOI: 10.3109/10641963.2015.1013113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Tsigelny IF, Kouznetsova VL, Jiang P, Pingle SC, Kesari S. Hierarchical control of coherent gene clusters defines the molecular mechanisms of glioblastoma. MOLECULAR BIOSYSTEMS 2015; 11:1012-1028. [PMID: 25648506 DOI: 10.1039/c5mb00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma is a highly-aggressive and rapidly-lethal tumor characterized by resistance to therapy. Although data on multiple genes, proteins, and pathways are available, the key challenge is deciphering this information and identifying central molecular targets. Therapeutically targeting individual molecules is often unsuccessful due to the presence of compensatory and redundant pathways, and crosstalk. A systems biology approach that involves a hierarchical gene group networks analysis can delineate the coherent functions of different disease mediators. Here, we report an integrative networks-based analysis to identify a system of coherent gene modules in primary and secondary glioblastoma. Our study revealed a hierarchical transcriptional control of genes in these modules. We elucidated those modules responsible for conversion of the glioma-associated microglia/macrophages into glioma-supportive, immunosuppressive cells. Further, we identified clusters comprising mediators of angiogenesis, proliferation, and cell death for both primary and secondary glioblastomas. Data obtained for these clusters point to a possible role of transcription regulators that function as the gene modules mediators in glioblastoma pathogenesis. We elucidated a set of possible transcription regulators that can be targeted to affect the selected gene clusters at specific levels for glioblastoma. Our innovative approach to construct informative disease models may hold the key to successful management of complex diseases including glioblastoma and other cancers.
Collapse
Affiliation(s)
- Igor F Tsigelny
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MSC 0752, La Jolla, CA 92093-0752, USA.
| | | | | | | | | |
Collapse
|
27
|
Wang X, Chu J, Wen C, Fu S, Qian Y, Wo Y, Wang C, Wang D. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts. Exp Cell Res 2015; 332:202-11. [DOI: 10.1016/j.yexcr.2015.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
|
28
|
Schaefer AS, Bochenek G, Jochens A, Ellinghaus D, Dommisch H, Güzeldemir-Akçakanat E, Graetz C, Harks I, Jockel-Schneider Y, Weinspach K, Meyle J, Eickholz P, Linden GJ, Cine N, Nohutcu R, Weiss E, Houri-Haddad Y, Iraqi F, Folwaczny M, Noack B, Strauch K, Gieger C, Waldenberger M, Peters A, Wijmenga C, Yilmaz E, Lieb W, Rosenstiel P, Doerfer C, Bruckmann C, Erdmann J, König I, Jepsen S, Loos BG, Schreiber S. Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. ACTA ACUST UNITED AC 2014; 8:159-67. [PMID: 25466412 DOI: 10.1161/circgenetics.114.000554] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic studies demonstrated the presence of risk alleles in the genes ANRIL and CAMTA1/VAMP3 that are shared between coronary artery disease (CAD) and periodontitis. We aimed to identify further shared genetic risk factors to better understand conjoint disease mechanisms. METHODS AND RESULTS In-depth genotyping of 46 published CAD risk loci of genome-wide significance in the worldwide largest case-control sample of the severe early-onset phenotype aggressive periodontitis (AgP) with the Illumina Immunochip (600 German AgP cases, 1448 controls) and the Affymetrix 500K array set (283 German AgP cases and 972 controls) highlighted ANRIL as the major risk gene and revealed further associations with AgP for the gene PLASMINOGEN (PLG; rs4252120: P=5.9×10(-5); odds ratio, 1.27; 95% confidence interval, 1.3-1.4 [adjusted for smoking and sex]; 818 cases; 5309 controls). Subsequent combined analyses of several genome-wide data sets of CAD and AgP suggested TGFBRAP1 to be associated with AgP (rs2679895: P=0.0016; odds ratio, 1.27 [95% confidence interval, 1.1-1.5]; 703 cases; 2.143 controls) and CAD (P=0.0003; odds ratio, 0.84 [95% confidence interval, 0.8-0.9]; n=4117 cases; 5824 controls). The study further provides evidence that in addition to PLG, the currently known shared susceptibility loci of CAD and periodontitis, ANRIL and CAMTA1/VAMP3, are subjected to transforming growth factor-β regulation. CONCLUSIONS PLG is the third replicated shared genetic risk factor of atherosclerosis and periodontitis. All known shared risk genes of CAD and periodontitis are members of transforming growth factor-β signaling.
Collapse
|
29
|
Perini ED, Schaefer R, Stöter M, Kalaidzidis Y, Zerial M. Mammalian CORVET Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. Traffic 2014; 15:1366-89. [DOI: 10.1111/tra.12232] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Enrico D. Perini
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Ramona Schaefer
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; 119991 Moscow Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| |
Collapse
|
30
|
Lachmann J, Glaubke E, Moore PS, Ungermann C. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. CELLULAR LOGISTICS 2014; 4:e970840. [PMID: 25750764 DOI: 10.4161/21592780.2014.970840] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
Membrane fusion in the endocytic pathway is mediated by a protein machinery consistent of Rab GTPases, tethering factors and SNAREs. In yeast, the endosomal CORVET and lysosomal HOPS tethering complexes share 4 of their 6 subunits. The 2 additional subunits in each complex - Vps3 and Vps8 for CORVET, and the homologous Vps39 and Vps41 for HOPS - bind directly to Rab5 and Rab7, respectively. In humans, all subunits for HOPS have been described. However, human CORVET remains poorly characterized and a homolog of Vps3 is still missing. Here we characterize 2 previously identified Vps39 isoforms, hVps39-1/hVam6/TLP and hVps39-2/TRAP1, in yeast and HEK293 cells. None of them can compensate the loss of the endogenous yeast Vps39, though the specific interaction of hVps39-1 with the virus-specific LT protein was reproduced. Both human Vps39 proteins show a cytosolic localization in yeast and mammalian cells. However, hVps39-2/TRAP1 strongly co-localizes with co-expressed Rab5 and interacts directly with Rab5-GTP in vitro. We conclude that hVps39-2/TRAP1 is an endosomal protein and an effector of Rab5, suggesting a role of the protein as a subunit of the putative human CORVET complex.
Collapse
Affiliation(s)
- Jens Lachmann
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| | - Elina Glaubke
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| | - Patrick S Moore
- University of Pittsburgh Cancer Institute; Cancer Virology Program ; Pittsburgh, PA USA
| | - Christian Ungermann
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| |
Collapse
|
31
|
Balderhaar HJK, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16. [PMID: 23645161 DOI: 10.1242/jcs.107805] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Collapse
Affiliation(s)
- Henning J kleine Balderhaar
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
32
|
Wang X, Qian Y, Jin R, Wo Y, Chen J, Wang C, Wang D. Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-β/Smad signaling in human dermal fibroblasts. PLoS One 2013; 8:e55899. [PMID: 23418473 PMCID: PMC3572169 DOI: 10.1371/journal.pone.0055899] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/04/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hypertrophic scars are pathologic proliferations of the dermal skin layer resulting from excessive collagen deposition during the healing process of cutaneous wounds. Current research suggests that the TGF-β/Smad signaling pathway is closely associated with normal scar and hypertrophic scar formation. TRAP-1-like protein (TLP), a cytoplasmic protein, has been reported to efficiently regulate Smad2- and Smad3-dependent signal expression in the TGF-β pathway. The relationship between TLP and Type I/III collagen (Col I/III) synthesis explored in the present study provides an effective target for wound healing and gene therapy of hypertrophic scarring. OBJECTIVE To investigate the effects of TLP on collagen synthesis in human dermal fibroblasts. METHODS Lentiviral vectors encoding TLP was constructed to transfect fibroblasts derived from normal human skin. The expression of Col I/III and phosphorylation of Smad2 and Smad3 in fibroblasts were examined after TLP treatment. In addition, the comparison of TLP expression in normal skin tissues and in hypertrophic scar tissues was performed, and the effect of TLP on cell viability was analyzed by MTT assay. RESULTS TLP expression in hypertrophic scar tissue was markedly higher than in normal skin tissue. The Real Time PCR and Western blot test results both revealed that the synthesis of Col I/III was positively correlated with the expression of TLP. TLP also facilitate Smad2 phosphorylation while, conversely, inhibiting Smad3 phosphorylation. TLP may play a cooperative role, along with the cytokine TGF-β1, in improving the overall cell viability of skin fibroblasts. CONCLUSIONS TLP likely acts as a molecular modulator capable of altering the balance of Smad3- and Smad2-dependent signaling through regulation of phosphorylation, thus facilitating collagen synthesis in fibroblasts. Based on genetic variation in TLP levels in different tissues, these results suggest that TLP plays a key role in the process of TGF-β1/Smad3 signaling that contributes to wound healing and genesis of pathologic scars.
Collapse
Affiliation(s)
- Xue Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yunliang Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Wo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
33
|
Liu L, Wang Y, Fan H, Zhao X, Liu D, Hu Y, Kidd AR, Bao J, Hou Y. MicroRNA-181a Regulates Local Immune Balance by Inhibiting Proliferation and Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cells 2012; 30:1756-70. [DOI: 10.1002/stem.1156] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Lau MT, Lin SW, Ge W. Identification of Smad Response Elements in the Promoter of Goldfish FSHβ Gene and Evidence for Their Mediation of Activin and GnRH Stimulation of FSHβ Expression. Front Endocrinol (Lausanne) 2012; 3:47. [PMID: 22645522 PMCID: PMC3355844 DOI: 10.3389/fendo.2012.00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/11/2012] [Indexed: 12/28/2022] Open
Abstract
As an essential hormone regulating gonads in vertebrates, the biosynthesis and secretion of follicle-stimulating hormone (FSH) is controlled by a variety of endocrine and paracrine factors in both mammalian and non-mammalian vertebrates. Activin was initially discovered in the ovary for its specific stimulation of FSH secretion by the pituitary cells. Our earlier studies in fish have shown that activin stimulates FSHβ but suppresses LHβ expression in both the goldfish and zebrafish. Further experiments showed that the regulation of FSHβ in fish occurred at the promoter level involving Smads, in particular Smad3. To further understand the mechanisms by which activin/Smad regulates FSHβ transcription, the present study was undertaken to analyze the promoter of goldfish FSHβ gene (fshb) with the aim to identify potential cis-regulatory elements responsible for activin/Smad stimulation. Both serial deletion and site-directed mutagenesis were used, and the promoter activity was tested in the LβT-2 cells, a murine gonadotroph cell line. The reporter constructs of goldfish FSHβ promoter-SEAP (secreted alkaline phosphatase) were co-transfected with an expression plasmid for Smads (2 or 3) followed by measurement of SEAP activity in the medium. Two putative Smad responsive elements were identified in the promoter at distal and proximal regions, respectively. The distal site contained a consensus Smad binding element (AGAC, -1675/-1672) whereas the proximal site (GACCTTGA, -212/-205) was identical to an SF-1 binding site reported in humans, which was preceded by a sequence (AACACTGA) highly conserved between fish and mammals. The proximal site also seemed to be involved in mediating stimulation of FSHβ expression by gonadotropin-releasing hormone and its potential interaction with activin. In conclusion, we have identified two potential cis-regulatory elements in the promoter of goldfish FSHβ that are responsible for activin-induced expression of the gene. Since activin stimulation of FSHβ expression is functionally conserved in fish and mammals, our findings contribute to the understanding of the fundamental mechanisms of this regulation across vertebrates.
Collapse
Affiliation(s)
- Man-Tat Lau
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong KongHong Kong, China
| | - Sze-Wah Lin
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong KongHong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong KongHong Kong, China
- *Correspondence: Wei Ge, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China. e-mail:
| |
Collapse
|
35
|
Integrating multiple microarray data for cancer pathway analysis using bootstrapping K-S test. J Biomed Biotechnol 2009; 2009:707580. [PMID: 19704919 PMCID: PMC2688657 DOI: 10.1155/2009/707580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/04/2009] [Indexed: 11/17/2022] Open
Abstract
Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is critical to understand the relationship (e.g., interactions) between genes across different types of cancer in order to gain insights into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate that it is capable of finding meaningful alterations in gene relations.
Collapse
|
36
|
Park EJ, Watanabe Y, Smyth G, Miyagawa-Tomita S, Meyers E, Klingensmith J, Camenisch T, Buckingham M, Moon AM. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 2008; 135:3599-610. [PMID: 18832392 DOI: 10.1242/dev.025437] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFbeta and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moustakas A, Heldin CH. Dynamic control of TGF-β signaling and its links to the cytoskeleton. FEBS Lett 2008; 582:2051-65. [DOI: 10.1016/j.febslet.2008.03.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/18/2008] [Indexed: 12/22/2022]
|
38
|
Bhasin JM, Chakrabarti E, Peng DQ, Kulkarni A, Chen X, Smith JD. Sex specific gene regulation and expression QTLs in mouse macrophages from a strain intercross. PLoS One 2008; 3:e1435. [PMID: 18197246 PMCID: PMC2174529 DOI: 10.1371/journal.pone.0001435] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/04/2007] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A powerful way to identify genes for complex traits it to combine genetic and genomic methods. Many trait quantitative trait loci (QTLs) for complex traits are sex specific, but the reason for this is not well understood. METHODOLOGY/PRINCIPAL FINDINGS RNA was prepared from bone marrow derived macrophages of 93 female and 114 male F(2) mice derived from a strain intercross between apoE-deficient mice on the AKR and DBA/2 genetic backgrounds, and was subjected to transcriptome profiling using microarrays. A high density genome scan was performed using a mouse SNP chip, and expression QTLs (eQTLs) were located for expressed transcripts. Using suggestive and significant LOD score cutoffs of 3.0 and 4.3, respectively, thousands of eQTLs in the female and male cohorts were identified. At the suggestive LOD threshold the majority of the eQTLs were trans eQTLs, mapping unlinked to the position of the gene. Cis eQTLs, which mapped to the location of the gene, had much higher LOD scores than trans eQTLs, indicating their more direct effect on gene expression. The majority of cis eQTLs were common to both males and females, but only approximately 1% of the trans eQTLs were shared by both sexes. At the significant LOD threshold, the majority of eQTLs were cis eQTLs, which were mostly sex-shared, while the trans eQTLs were overwhelmingly sex-specific. Pooling the male and female data, 31% of expressed transcripts were expressed at different levels in males vs. females after correction for multiple testing. CONCLUSIONS/SIGNIFICANCE These studies demonstrate a large sex effect on gene expression and trans regulation, under conditions where male and female derived cells were cultured ex vivo and thus without the influence of endogenous sex steroids. These data suggest that eQTL data from male and female mice should be analyzed separately, as many effects, such as trans regulation are sex specific.
Collapse
Affiliation(s)
- Jeffrey M. Bhasin
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Enakshi Chakrabarti
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dao-Quan Peng
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Aneesh Kulkarni
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Xi Chen
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan D. Smith
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
39
|
Hudson TS, Hartle DK, Hursting SD, Nunez NP, Wang TTY, Young HA, Arany P, Green JE. Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms. Cancer Res 2007; 67:8396-405. [PMID: 17804756 DOI: 10.1158/0008-5472.can-06-4069] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phytochemical resveratrol contained in red grapes has been shown to inhibit prostate cancer cell growth, in part, through its antioxidant activity. Muscadine grapes contain unique phytochemical constituents compared with other grapes and are potentially a source for novel compounds with antitumor activities. We compared the antitumor activities of muscadine grape skin extract (MSKE), which we show contains no resveratrol, with that of resveratrol using primary cultures of normal prostate epithelial cells (PrEC) and the prostate cancer cell lines RWPE-1, WPE1-NA22, WPE1-NB14, and WPE1-NB26, representing different stages of prostate cancer progression. MSKE significantly inhibited tumor cell growth in all transformed prostate cancer cell lines but not PrEC cells. Prostate tumor cell lines, but not PrEC cells, exhibited high rates of apoptosis in response to MSKE through targeting of the phosphatidylinositol 3-kinase-Akt and mitogen-activated protein kinase survival pathways. The reduction in Akt activity by MSKE is mediated through a reduction in Akt transcription, enhanced proteosome degradation of Akt, and altered levels of DJ-1, a known regulator of PTEN. In contrast to MSKE, resveratrol did not induce apoptosis in this model but arrested cells at the G(1)-S phase transition of the cell cycle associated with increased expression of p21 and decreased expression of cyclin D1 and cyclin-dependent kinase 4 proteins. These results show that MSKE and resveratrol target distinct pathways to inhibit prostate cancer cell growth in this system and that the unique properties of MSKE suggest that it may be an important source for further development of chemopreventive or therapeutic agents against prostate cancer.
Collapse
Affiliation(s)
- Tamaro S Hudson
- Laboratory of Cellular Regulation and Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007; 101:9-33. [PMID: 17340614 DOI: 10.1002/jcb.21255] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Kimberly A Brown
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
41
|
Suzuki C, Takahashi K, Hayama S, Ishikawa N, Kato T, Ito T, Tsuchiya E, Nakamura Y, Daigo Y. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol Cancer Ther 2007; 6:542-51. [PMID: 17308053 DOI: 10.1158/1535-7163.mct-06-0659] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Through genome-wide expression profile analysis for non-small cell lung cancers (NSCLC), we found overexpression of a Myc-associated protein with JmjC domain (MAPJD) gene in the great majority of NSCLC cases. Induction of exogenous expression of MAPJD into NIH3T3 cells conferred growth-promoting activity. Concordantly, in vitro suppression of MAPJD expression with small interfering RNA effectively suppressed growth of NSCLC cells, in which MAPJD was overexpressed. We found four candidate MAPJD target genes, SBNO1, TGFBRAP1, RIOK1, and RASGEF1A, which were the most significantly induced by exogenous MAPJD expression. Through interaction with MYC protein, MAPJD transactivates a set of genes, including kinases and cell signal transducers that are possibly related to proliferation of lung cancer cells. As our data imply that MAPJD is a novel member of the MYC transcriptional complex and its activation is a common feature of lung cancer, selective suppression of this pathway could be a promising therapeutic target for treatment of lung cancers.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic
- Cells, Cultured
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Flow Cytometry
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/metabolism
- Lung/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- NIH 3T3 Cells
- Nuclear Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins/physiology
- Oncogenes/physiology
- Prognosis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Array Analysis
- ras Guanine Nucleotide Exchange Factors/metabolism
Collapse
Affiliation(s)
- Chie Suzuki
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ward, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen YG, Wang Z, Ma J, Zhang L, Lu Z. Endofin, a FYVE domain protein, interacts with Smad4 and facilitates transforming growth factor-beta signaling. J Biol Chem 2007; 282:9688-9695. [PMID: 17272273 DOI: 10.1074/jbc.m611704200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) signaling is facilitated by scaffold proteins such as SARA (Smad anchor for receptor activation). Endofin, a member of the FYVE domain protein family, has been suggested to regulate membrane trafficking. In this study, we report that endofin functions as a scaffold protein to facilitate TGF-beta signaling. Overexpression of endofin FYVE domain-deletion mutants inhibited TGF-beta-induced expression of CAGA-luciferase. Knockdown of endogenous endofin expression by RNA interference specifically led to reduction of the transcriptional responses of TGF-beta, but had no effect on BMP- or Wnt1-induced reporter expression. Furthermore, in endofin small interfering RNA-expressing stable cells, TGF-beta-mediated expression of plasminogen activator inhibitor-1 and p21(Cip1) was significantly reduced, and TGF-beta-promoted apoptosis was also impaired. We further showed that endofin could interact with Smad4 and TGF-beta type I receptors. Reduction of endogenous endofin expression resulted in a decrease of TGF-beta-induced Smad2 phosphorylation and Smad2-Smad4 complex formation. Together, our findings suggest that endofin facilitates TGF-beta signaling as a scaffold protein to promote the R-Smad-Smad4 complex formation by bringing Smad4 to the proximity of the receptor complex.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | - Zhi Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Jing Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Long Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Zhongxian Lu
- Department of Medicine and Biological Chemistry, College of Medicine, University of California, Irvine, California 92697
| |
Collapse
|
43
|
|
44
|
Buck A, Ellenrieder V. Recent advances in TGFβ-regulated transcription during carcinogenesis. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Richard KC, Bertolesi GE, Dunfield LD, McMaster CR, Nachtigal MW. TSAd interacts with Smad2 and Smad3. Biochem Biophys Res Commun 2006; 347:266-72. [PMID: 16806069 DOI: 10.1016/j.bbrc.2006.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/13/2006] [Indexed: 11/20/2022]
Abstract
Smad-dependent signalling initiated by TGFbeta superfamily members can be modulated by a variety of interacting proteins. Using yeast two-hybrid, co-immunoprecipitation, and GST pull-down assays we identified T-cell SH2 adapter (TSAd) as a protein that interacts with Smad2 and Smad3. TSAd is an adapter protein thought to participate in many different signalling pathways. The objective of this study was to elucidate the domains important for interaction between TSAd and Smad proteins. Our results suggest a model for TSAd-Smad interaction that is facilitated by multiple TSAd domains, but primarily through the TSAd type I SH2 domain. Interestingly, we also found that both Smad2 and Smad3 interact with the Lck type I SH2 domain, but not the PI3K type III SH2 domain. This research raises the possibility that interaction between SH2-containing proteins and Smad proteins may represent another method to modulate Smad-dependent signalling.
Collapse
Affiliation(s)
- K C Richard
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
46
|
Luo Q, Nieves E, Kzhyshkowska J, Angeletti RH. Endogenous Transforming Growth Factor-β Receptor-mediated Smad Signaling Complexes Analyzed by Mass Spectrometry. Mol Cell Proteomics 2006; 5:1245-60. [PMID: 16582422 DOI: 10.1074/mcp.m600065-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ASmad proteins are the central feature of the transforming growth factor-beta (TGF-beta) intracellular signaling cascade. They function by carrying signals from the cell surface to the nucleus through the formation of a series of signaling complexes. Changes in Smad proteins and their complexes upon treatment with TGF-beta were studied in mink lung epithelial (Mv1Lu) cell cultures. A time course of incubation with TGF-beta was carried out to determine the peak of appearance of phosphorylated Smad2. Immobilized monoclonal antibody against Smad2 was then used to isolate the naturally occurring complexes. Three strategies were used to identify changes in proteins partnering with Smad2: separation by one-dimensional SDS-PAGE followed by MALDI peptide mass fingerprinting, cleavable ICAT labeling of the protein mixtures analyzed by LC-MS/MS, and nano-LC followed by MALDI MS TOF/TOF. Smad2 forms complexes with many other polypeptides both in the presence and absence of TGF-beta. Some of the classes of proteins identified include: transcription regulators, proteins of the cytoskeletal scaffold and other tethering proteins, motility proteins, proteins involved in transport between the cytoplasm and nucleus, and a group of membrane adaptor proteins. Although some of these have been reported in the literature, most have not been reported previously. This work expands the repertoire of proteins known to participate in the TGF-beta signal transduction processes.
Collapse
Affiliation(s)
- Qilie Luo
- Laboratory for Macromolecular Analysis and Proteomics, Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
47
|
Hwang Y, Chen EY, Gu ZJ, Chuang WL, Yu ML, Lai MY, Chao YC, Lee CM, Wang JH, Dai CY, Shian-Jy Bey M, Liao YT, Chen PJ, Chen DS. Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics 2006; 7:697-709. [PMID: 16886895 DOI: 10.2217/14622416.7.5.697] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A combination of interferon-alpha (IFN-alpha) and ribavirin has been the choice for treating chronic hepatitis C (CHC) patients. It achieves an overall sustained response rate of approximately 50%; however, the treatment takes 6-12 months and often brings significant adverse reactions to some patients. It would therefore be beneficial to include a pretreatment evaluation in order to maximize the efficacy. In addition to viral genotypes, we hypothesize that patient genotypes might also be useful for the prediction of treatment response. METHODS We retrospectively analyzed the genetic differences of CHC patients that are associated with IFN/ribavirin responses. The DNA polymorphisms among 195 sustained responders and 122 nonresponders of CHC patients of Taiwanese origin were compared. Statistical and algorithmic methods were used to select the genes associated with drug response and single nucleotide polymorphisms (SNPs) that permitted the construction of a predictive model. RESULTS Association studies and haplotype reconstruction revealed selection of seven genes: adenosine deaminase, RNA-specific (ADAR), caspase 5, apoptosis-related cysteine peptidase (CASP5), fibroblast growth factor 1 (FGF1), interferon consensus sequence binding protein 1 (ICSBP1), interferon-induced protein 44 (IFI44), transporter 2, ATP-binding cassette, subfamily B (TAP2) and transforming growth factor, beta receptor associated protein 1 (TGFBRAP1) for the responsiveness trait. Based on confirmed linkage disequilibrium block in the population, a minimal set of 26 SNPs in the seven selected genes was inferred. To predict treatment outcome, a multiple logistic regression model was constructed using susceptible genotypes of SNPs. The performance of the resultant model had a sensitivity of 68.2% and specificity of 60.7% on 317 CHC patients treated with IFN-combined therapy. In addition, a prediction model with both the host genetic and viral genotype information was also constructed which enhanced the performance with a sensitivity of 80.7% and specificity of 67.2%. CONCLUSIONS A genetic model was constructed to predict outcomes of the combination therapy in CHC patients with high sensitivity and specificity. Results also provide a possible process of selecting targets for predicting treatment outcomes and the basis for developing pharmacogenetic tests.
Collapse
|
48
|
Runyan CE, Poncelet AC, Schnaper HW. TGF-beta receptor-binding proteins: complex interactions. Cell Signal 2006; 18:2077-88. [PMID: 16824734 DOI: 10.1016/j.cellsig.2006.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/06/2023]
Abstract
Members of the Smad protein family are fundamental downstream mediators of TGF-beta signals. However, the basic, linear Smad signaling pathway is unlikely to be the sole contributor to the plethora of cell type-specific TGF-beta responses. Investigators have identified a number of molecules that interact with the TGF-beta receptors (TbetaRs) and may explain, at least in part, the tight regulation of TGF-beta effects. Understanding these TbetaR-interacting molecules is thus a matter of great potential significance for elucidating TGF-beta-family signal transduction. The present article reviews our current understanding of the roles and mechanisms of action of this relatively understudied group of molecules.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|
49
|
Abstract
Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
50
|
Abstract
The TGF-beta superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-beta signaling with focus on its roles in vertebrate development.
Collapse
Affiliation(s)
- Ye Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|