1
|
Gupta N, Richards EMB, Morris VS, Morris R, Wadmore K, Held M, McCormick L, Prakash O, Dart C, Helassa N. Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca 2+ channel (Ca v1.2) and reduce Ca 2+-dependent inactivation. Acta Physiol (Oxf) 2025; 241:e14276. [PMID: 39825574 PMCID: PMC11742489 DOI: 10.1111/apha.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/19/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
AIM Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Cav1.2, a crucial component of the ventricular action potential and excitation-contraction coupling. METHODS We used circular dichroism (CD), 1H-15N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca2+ and interaction of Ca2+/CaM with Cav1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Cav1.2 activity was determined using HEK293-Cav1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology. RESULTS Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca2+-bound state, D131E and Q135P exhibited reduced Ca2+ binding affinity, significant structural changes, and altered interaction with Cav1.2 domains (increased affinity for Cav1.2-IQ and decreased affinity for Cav1.2-NSCaTE). We show that the mutations dramatically impair Ca2+-dependent inactivation (CDI) of Cav1.2, which would contribute to abnormal Ca2+ influx, leading to disrupted Ca2+ handling, characteristic of cardiac arrhythmia syndromes. CONCLUSIONS These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level.
Collapse
Affiliation(s)
- Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ella M. B. Richards
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Vanessa S. Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
2
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
3
|
Zhao J, Segura E, Marsolais M, Parent L. A CACNA1C variant associated with cardiac arrhythmias provides mechanistic insights in the calmodulation of L-type Ca 2+ channels. J Biol Chem 2022; 298:102632. [PMID: 36273583 PMCID: PMC9691931 DOI: 10.1016/j.jbc.2022.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
We recently reported the identification of a de novo single nucleotide variant in exon 9 of CACNA1C associated with prolonged repolarization interval. Recombinant expression of the glycine to arginine variant at position 419 produced a gain in the function of the L-type CaV1.2 channel with increased peak current density and activation gating but without significant decrease in the inactivation kinetics. We herein reveal that these properties are replicated by overexpressing calmodulin (CaM) with CaV1.2 WT and are reversed by exposure to the CaM antagonist W-13. Phosphomimetic (T79D or S81D), but not phosphoresistant (T79A or S81A), CaM surrogates reproduced the impact of CaM WT on the function of CaV1.2 WT. The increased channel activity of CaV1.2 WT following overexpression of CaM was found to arise in part from enhanced cell surface expression. In contrast, the properties of the variant remained unaffected by any of these treatments. CaV1.2 substituted with the α-helix breaking proline residue were more reluctant to open than CaV1.2 WT but were upregulated by phosphomimetic CaM surrogates. Our results indicate that (1) CaM and its phosphomimetic analogs promote a gain in the function of CaV1.2 and (2) the structural properties of the first intracellular linker of CaV1.2 contribute to its CaM-induced modulation. We conclude that the CACNA1C clinical variant mimics the increased activity associated with the upregulation of CaV1.2 by Ca2+-CaM, thus maintaining a majority of channels in a constitutively active mode that could ultimately promote ventricular arrhythmias.
Collapse
Affiliation(s)
- Juan Zhao
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Emilie Segura
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada
| | - Mireille Marsolais
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada
| | - Lucie Parent
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada,For correspondence: Lucie Parent
| |
Collapse
|
4
|
Scheuer R, Philipp SE, Becker A, Nalbach L, Ampofo E, Montenarh M, Götz C. Protein Kinase CK2 Controls Ca V2.1-Dependent Calcium Currents and Insulin Release in Pancreatic β-Cells. Int J Mol Sci 2020; 21:ijms21134668. [PMID: 32630015 PMCID: PMC7370021 DOI: 10.3390/ijms21134668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.
Collapse
Affiliation(s)
- Rebecca Scheuer
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
| | - Stephan Ernst Philipp
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University Kirrberger Str., bldg. 45-46, D-66424 Homburg, Germany; (S.E.P.); (A.B.)
| | - Alexander Becker
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University Kirrberger Str., bldg. 45-46, D-66424 Homburg, Germany; (S.E.P.); (A.B.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University Kirrberger Str., bldg. 65, D-66424 Homburg, Germany; (L.N.); (E.A.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University Kirrberger Str., bldg. 65, D-66424 Homburg, Germany; (L.N.); (E.A.)
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
- Correspondence:
| |
Collapse
|
5
|
Moradi F, Copeland EN, Baranowski RW, Scholey AE, Stuart JA, Fajardo VA. Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. Int J Mol Sci 2020; 21:E1016. [PMID: 32033037 PMCID: PMC7038096 DOI: 10.3390/ijms21031016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/26/2023] Open
Abstract
Calmodulin (CaM) is an important Ca2+-sensing protein with numerous downstream targets that are either CaM-dependant or CaM-regulated. In muscle, CaM-dependent proteins, which are critical regulators of dynamic Ca2+ handling and contractility, include calcineurin (CaN), CaM-dependant kinase II (CaMKII), ryanodine receptor (RyR), and dihydropyridine receptor (DHPR). CaM-regulated targets include genes associated with oxidative metabolism, muscle plasticity, and repair. Despite its importance in muscle, the regulation of CaM-particularly its availability to bind to and activate downstream targets-is an emerging area of research. In this minireview, we discuss recent studies revealing the importance of small IQ motif proteins that bind to CaM to either facilitate (nuclear receptor interacting protein; NRIP) its activation of downstream targets, or sequester (neurogranin, Ng; and growth-associated protein 43, GAP43) CaM away from their downstream targets. Specifically, we discuss recent studies that have begun uncovering the physiological roles of NRIP, Ng, and GAP43 in skeletal and cardiac muscle, thereby highlighting the importance of endogenously expressed CaM-binding proteins and their regulation of CaM in muscle.
Collapse
Affiliation(s)
- Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Emily N. Copeland
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Ryan W. Baranowski
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Aiden E. Scholey
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Val A. Fajardo
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
6
|
Stac Proteins Suppress Ca 2+-Dependent Inactivation of Neuronal l-type Ca 2+ Channels. J Neurosci 2018; 38:9215-9227. [PMID: 30201773 DOI: 10.1523/jneurosci.0695-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 01/28/2023] Open
Abstract
Stac protein (named for its SH3- and cysteine-rich domains) was first identified in brain 20 years ago and is currently known to have three isoforms. Stac2, Stac1, and Stac3 transcripts are found at high, modest, and very low levels, respectively, in the cerebellum and forebrain, but their neuronal functions have been little investigated. Here, we tested the effects of Stac proteins on neuronal, high-voltage-activated Ca2+ channels. Overexpression of the three Stac isoforms eliminated Ca2+-dependent inactivation (CDI) of l-type current in rat neonatal hippocampal neurons (sex unknown), but not CDI of non-l-type current. Using heterologous expression in tsA201 cells (together with β and α2-δ1 auxiliary subunits), we found that CDI for CaV1.2 and CaV1.3 (the predominant, neuronal l-type Ca2+ channels) was suppressed by all three Stac isoforms, whereas CDI for the P/Q channel, CaV2.1, was not. For CaV1.2, the inhibition of CDI by the Stac proteins appeared to involve their direct interaction with the channel's C terminus. Within the Stac proteins, a weakly conserved segment containing ∼100 residues and linking the structurally conserved PKC C1 and SH3_1 domains was sufficient to fully suppress CDI. The presence of CDI for l-type current in control neonatal neurons raised the possibility that endogenous Stac levels are low in these neurons and Western blotting indicated that the expression of Stac2 was substantially increased in adult forebrain and cerebellum compared with neonate. Together, our results indicate that one likely function of neuronal Stac proteins is to tune Ca2+ entry via neuronal l-type channels.SIGNIFICANCE STATEMENT Stac protein, first identified 20 years ago in brain, has recently been found to be essential for proper trafficking and function of the skeletal muscle l-type Ca2+ channel and is the site of mutations causing a severe, inherited human myopathy. In neurons, however, functions for Stac protein have remained unexplored. Here, we report that one likely function of neuronal Stac proteins is tuning Ca2+ entry via l-type, but not that via non-l-type, Ca2+ channels. Moreover, there is a large postnatal increase in protein levels of the major neuronal isoform (Stac2) in forebrain and cerebellum, which could provide developmental regulation of l-type channel Ca2+ signaling in these brain regions.
Collapse
|
7
|
Asmara H, Micu I, Rizwan AP, Sahu G, Simms BA, Zhang FX, Engbers JDT, Stys PK, Zamponi GW, Turner RW. A T-type channel-calmodulin complex triggers αCaMKII activation. Mol Brain 2017; 10:37. [PMID: 28800734 PMCID: PMC5553682 DOI: 10.1186/s13041-017-0317-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.1 channel at rest that is lost through an activity-dependent and Cav3.1 calcium-dependent CaM dissociation. Moreover, Cav3 calcium influx is sufficient to activate αCaMKII in the cytoplasm in a manner that depends on an intact Cav3.1 C-terminus needed to support the CaM interaction. Our findings thus establish that T-type channel calcium influx invokes a novel dynamic interaction between CaM and Cav3.1 channels to trigger a signaling cascade that leads to αCaMKII activation.
Collapse
Affiliation(s)
- Hadhimulya Asmara
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ileana Micu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Arsalan P Rizwan
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Giriraj Sahu
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Brett A Simms
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jordan D T Engbers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ray W Turner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,HRIC 1AA14, University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Lyu L, Gao Q, Xu J, Minobe E, Zhu T, Kameyama M. A new interaction between proximal and distal C-terminus of Cav1.2 channels. J Pharmacol Sci 2017; 133:240-246. [DOI: 10.1016/j.jphs.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
|
9
|
Minobe E, Mori MX, Kameyama M. Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. J Physiol 2017; 595:2465-2477. [PMID: 28130847 PMCID: PMC5390892 DOI: 10.1113/jp273736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
Key points Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Abstract Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+‐dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C‐terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co‐expressed with β2a and α2δ subunits in HEK293 cells. In the inside‐out mode, α1C and α1C∆ showed minimal open‐probabilities in a basic internal solution (run‐down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3–5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7–9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C‐terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl‐terminal tail is removed. Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| |
Collapse
|
10
|
Benmocha Guggenheimer A, Almagor L, Tsemakhovich V, Tripathy DR, Hirsch JA, Dascal N. Interactions between N and C termini of α1C subunit regulate inactivation of CaV1.2 L-type Ca(2+) channel. Channels (Austin) 2016; 10:55-68. [PMID: 26577286 DOI: 10.1080/19336950.2015.1108499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The modulation and regulation of voltage-gated Ca(2+) channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca(2+) channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca(2+), presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca(2+)-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca(2+) entry into the cell.
Collapse
Affiliation(s)
- Adva Benmocha Guggenheimer
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| | - Lior Almagor
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel.,c Present address: Department of Structural Biology , Stanford University, School of Medicine ; Stanford , CA USA
| | - Vladimir Tsemakhovich
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| | - Debi Ranjan Tripathy
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel
| | - Joel A Hirsch
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel
| | - Nathan Dascal
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| |
Collapse
|
11
|
Xu J, Yu L, Minobe E, Lu L, Lei M, Kameyama M. PKA and phosphatases attached to the Ca(V)1.2 channel regulate channel activity in cell-free patches. Am J Physiol Cell Physiol 2015; 310:C136-41. [PMID: 26561637 DOI: 10.1152/ajpcell.00157.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) + ATP can reprime voltage-gated L-type Ca(2+) channels (Ca(V)1.2) in inside-out patches for activation, but this effect decreases time dependently. This suggests that the Ca(V)1.2 channel activity is regulated by additional cytoplasmic factors. To test this hypothesis, we examined the role of cAMP-dependent protein kinase A (PKA) and protein phosphatases in the regulation of Ca(V)1.2 channel activity in the inside-out mode in guinea pig ventricular myocytes. Ca(V)1.2 channel activity quickly disappeared after the patch was excised from the cell and recovered to only 9% of that in the cell-attached mode on application of CaM + ATP at 10 min after the inside out. However, immediate exposure of the excised patch to the catalytic subunit of PKA + ATP or the nonspecific phosphatase inhibitor okadaic acid significantly increased the Ca(V)1.2 channel activity recovery by CaM + ATP (114 and 96%, respectively) at 10 min. Interestingly, incubation of the excised patches with cAMP + ATP also increased CaM/ATP-induced Ca(V)1.2 channel activity recovery (108%), and this effect was blocked by the nonspecific protein kinase inhibitor K252a. The channel activity in the inside-out mode was not maintained by either catalytic subunit of PKA or cAMP + ATP in the absence of CaM, but was stably maintained in the presence of CaM for more than 40 min. These results suggest that PKA and phosphatase(s) attached on or near the Ca(V)1.2 channel regulate the basal channel activity, presumably through modulation of the dynamic CaM interaction with the channel.
Collapse
Affiliation(s)
- Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; Department of Ethnopharmacology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liting Lu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Laboratory of Environmental Biology, Northeastern University, Shenyang, China
| | - Ming Lei
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan;
| |
Collapse
|
12
|
Lian LY, Pandalaneni SR, Todd PAC, Martin VM, Burgoyne RD, Haynes LP. Demonstration of binding of neuronal calcium sensor-1 to the cav2.1 p/q-type calcium channel. Biochemistry 2014; 53:6052-62. [PMID: 25188201 PMCID: PMC4180279 DOI: 10.1021/bi500568v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca(2+) influx, specific Ca(2+)-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca(2+)-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca(2+) channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca(2+)-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium-sensing proteins and how this might help to fine-tune neurotransmission in the mammalian central nervous system.
Collapse
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool , Liverpool L69 3BX, U.K
| | | | | | | | | | | |
Collapse
|
13
|
Bers DM, Morotti S. Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front Pharmacol 2014; 5:144. [PMID: 24987371 PMCID: PMC4060732 DOI: 10.3389/fphar.2014.00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
The cardiac voltage gated Ca2+ current (ICa) is critical to the electrophysiological properties, excitation-contraction coupling, mitochondrial energetics, and transcriptional regulation in heart. Thus, it is not surprising that cardiac ICa is regulated by numerous pathways. This review will focus on changes in ICa that occur during the cardiac action potential (AP), with particular attention to Ca2+-dependent inactivation (CDI), Ca2+-dependent facilitation (CDF) and how calmodulin (CaM) and Ca2+-CaM dependent protein kinase (CaMKII) participate in the regulation of Ca2+ current during the cardiac AP. CDI depends on CaM pre-bound to the C-terminal of the L-type Ca2+ channel, such that Ca2+ influx and Ca2+ released from the sarcoplasmic reticulum bind to that CaM and cause CDI. In cardiac myocytes CDI normally pre-dominates over voltage-dependent inactivation. The decrease in ICa via CDI provides direct negative feedback on the overall Ca2+ influx during a single beat, when myocyte Ca2+ loading is high. CDF builds up over several beats, depends on CaMKII-dependent Ca2+ channel phosphorylation, and results in a staircase of increasing ICa peak, with progressively slower inactivation. CDF and CDI co-exist and in combination may fine-tune the ICa waveform during the cardiac AP. CDF may partially compensate for the tendency for Ca2+ channel availability to decrease at higher heart rates because of accumulating inactivation. CDF may also allow some reactivation of ICa during long duration cardiac APs, and contribute to early afterdepolarizations, a form of triggered arrhythmias.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California Davis Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis Davis, CA, USA
| |
Collapse
|
14
|
Feng R, Xu J, Minobe E, Kameyama A, Yang L, Yu L, Hao L, Kameyama M. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner. Am J Physiol Cell Physiol 2014; 306:C856-63. [PMID: 24553186 DOI: 10.1152/ajpcell.00368.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.
Collapse
Affiliation(s)
- Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sun W, Feng R, Hu H, Guo F, Gao Q, Shao D, Yin D, Wang H, Sun X, Zhao M, Minobe E, Sun Y, Jiao G, Kameyama M, Hao L. The Ca(2+)-dependent interaction of calpastatin domain L with the C-terminal tail of the Cav1.2 channel. FEBS Lett 2014; 588:665-71. [PMID: 24462690 DOI: 10.1016/j.febslet.2014.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 01/05/2014] [Indexed: 11/30/2022]
Abstract
To demonstrate the interaction of calpastatin (CS) domain L (CSL) with Cav1.2 channel, we investigated the binding of CSL with various C-terminus-derived peptides at≈free, 100 nM, 10 μM, and 1mM Ca(2+) by using the GST pull-down assay method. Besides binding with the IQ motif, CSL was also found to bind with the PreIQ motif. With increasing [Ca(2+)], the affinity of the CSL-IQ interaction gradually decreased, and the affinity of the CSL-PreIQ binding gradually increased. The results suggest that CSL may bind with both the IQ and PreIQ motifs of the Cav1.2 channel in different Ca(2+)-dependent manners.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Dandan Yin
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Hongmei Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yingxian Sun
- Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Guangyu Jiao
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China.
| |
Collapse
|
16
|
Bazzazi H, Ben Johny M, Adams PJ, Soong TW, Yue DT. Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. Cell Rep 2013; 5:367-77. [PMID: 24120865 DOI: 10.1016/j.celrep.2013.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/02/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
CaV1.3 ion channels are dominant Ca(2+) portals into pacemaking neurons, residing at the epicenter of brain rhythmicity and neurodegeneration. Negative Ca(2+) feedback regulation of CaV1.3 channels (CDI) is therefore critical for Ca(2+) homeostasis. Intriguingly, nearly half the CaV1.3 transcripts in the brain are RNA edited to reduce CDI and influence oscillatory activity. It is then mechanistically remarkable that this editing occurs precisely within an IQ domain, whose interaction with Ca(2+)-bound calmodulin (Ca(2+)/CaM) is believed to induce CDI. Here, we sought the mechanism underlying the altered CDI of edited channels. Unexpectedly, editing failed to attenuate Ca(2+)/CaM binding. Instead, editing weakened the prebinding of Ca(2+)-free CaM (apoCaM) to channels, which proves essential for CDI. Thus, editing might render CDI continuously tunable by fluctuations in ambient CaM, a prominent effect we substantiate in substantia nigral neurons. This adjustability of Ca(2+) regulation by CaM now looms as a key element of CNS Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
17
|
Ca2+ channel and Na+/Ca2+ exchange localization in cardiac myocytes. J Mol Cell Cardiol 2013; 58:22-31. [DOI: 10.1016/j.yjmcc.2012.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/01/2023]
|
18
|
Taiakina V, Boone AN, Fux J, Senatore A, Weber-Adrian D, Guillemette JG, Spafford JD. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS One 2013; 8:e61765. [PMID: 23626724 PMCID: PMC3634016 DOI: 10.1371/journal.pone.0061765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.
Collapse
Affiliation(s)
| | | | - Julia Fux
- Department of Biology, University of Waterloo, Waterloo, Canada
| | | | | | | | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
19
|
Kovalevskaya NV, van de Waterbeemd M, Bokhovchuk FM, Bate N, Bindels RJM, Hoenderop JGJ, Vuister GW. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Arch 2013; 465:1507-19. [PMID: 23609407 DOI: 10.1007/s00424-013-1278-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022]
Abstract
The Ca²⁺-binding protein calmodulin (CaM) is a well-known regulator of ion-channel activity. Consequently, the Protein Data Bank contains many structures of CaM in complex with different fragments of ion channels that together display a variety of binding modes. In addition to the canonical interaction, in which CaM engages its target with both its domains, many of the ion-channel-CaM complexes demonstrate alternative non-canonical binding modes that depend on the target and experimental conditions. Based on these findings, several mechanisms of ion-channel regulation by CaM have been proposed, all exploiting its plasticity and flexibility in interacting with its targets. In this review, we focus on complexes of CaM with either the voltage-gated calcium channels; the voltage-gated sodium channels or the small conductance calcium-activated potassium channels, for which both structural and functional data are available. For each channel, the functional relevance of these structural data and possible mechanism of calcium-dependent (in)activation and/or facilitation are discussed in detail.
Collapse
Affiliation(s)
- Nadezda V Kovalevskaya
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 26-28, Nijmegen, 6525, GA, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Fischer C, Kugler A, Hoth S, Dietrich P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. PLANT & CELL PHYSIOLOGY 2013; 54:573-84. [PMID: 23385145 PMCID: PMC3612182 DOI: 10.1093/pcp/pct021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) form non-selective cation entry pathways regulated by calmodulin (CaM), a universal Ca(2+) sensor in eukaryotes. Although CaM binding has been shown to be important for Ca(2+)-dependent feedback regulation of CNGC activity, the CaM-binding properties of these channels have been investigated in a few cases only. We show that CNGC20 from Arabidopsis thaliana binds CaM in a Ca(2+)-dependent manner and interacts with all AtCaM isoforms but not with the CaM-like proteins CML8 and CML9. CaM interaction with the full-length channel was demonstrated in planta, using bimolecular fluorescence complementation. This interaction occurred at the plasma membrane, in accordance with our localization data of green fluorescent protein (GFP)-fused CNGC20 proteins. The CaM-binding site was mapped to an isoleucine glutamine (IQ) motif, which has not been characterized in plant CNGCs so far. Our results show that compared with the overlapping binding sites for cyclic nucleotides and CaM in CNGCs studied so far, they are sequentially organized in CNGC20. The presence of two alternative CaM-binding modes indicates that ligand regulation of plant CNGCs is more complex than previously expected. Since the IQ domain is conserved among plant CNGCs, this domain adds to the variability of Ca(2+)-dependent channel control mechanisms underlining the functional diversity within this multigene family.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Annette Kugler
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Molekulare Pflanzenphysiologie, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Petra Dietrich
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| |
Collapse
|
21
|
Oz S, Benmocha A, Sasson Y, Sachyani D, Almagor L, Lee A, Hirsch JA, Dascal N. Competitive and non-competitive regulation of calcium-dependent inactivation in CaV1.2 L-type Ca2+ channels by calmodulin and Ca2+-binding protein 1. J Biol Chem 2013; 288:12680-91. [PMID: 23530039 DOI: 10.1074/jbc.m113.460949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaV1.2 interacts with the Ca(2+) sensor proteins, calmodulin (CaM) and calcium-binding protein 1 (CaBP1), via multiple, partially overlapping sites in the main subunit of CaV1.2, α1C. Ca(2+)/CaM mediates a negative feedback regulation of Cav1.2 by incoming Ca(2+) ions (Ca(2+)-dependent inactivation (CDI)). CaBP1 eliminates this action of CaM through a poorly understood mechanism. We examined the hypothesis that CaBP1 acts by competing with CaM for common interaction sites in the α1C- subunit using Förster resonance energy transfer (FRET) and recording of Cav1.2 currents in Xenopus oocytes. FRET detected interactions between fluorescently labeled CaM or CaBP1 with the membrane-attached proximal C terminus (pCT) and the N terminus (NT) of α1C. However, mutual overexpression of CaM and CaBP1 proved inadequate to quantitatively assess competition between these proteins for α1C. Therefore, we utilized titrated injection of purified CaM and CaBP1 to analyze their mutual effects. CaM reduced FRET between CaBP1 and pCT, but not NT, suggesting competition between CaBP1 and CaM for pCT only. Titrated injection of CaBP1 and CaM altered the kinetics of CDI, allowing analysis of their opposite regulation of CaV1.2. The CaBP1-induced slowing of CDI was largely eliminated by CaM, corroborating a competition mechanism, but 15-20% of the effect of CaBP1 was CaM-resistant. Both components of CaBP1 action were present in a truncated α1C where N-terminal CaM- and CaBP1-binding sites have been deleted, suggesting that the NT is not essential for the functional effects of CaBP1. We propose that CaBP1 acts via interaction(s) with the pCT and possibly additional sites in α1C.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ben Johny M, Yang PS, Bazzazi H, Yue DT. Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nat Commun 2013; 4:1717. [PMID: 23591884 PMCID: PMC3856249 DOI: 10.1038/ncomms2727] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/08/2013] [Indexed: 11/30/2022] Open
Abstract
Calmodulin regulation of CaV channels is a prominent Ca(2+) feedback mechanism orchestrating vital adjustments of Ca(2+) entry. The long-held structural correlation of this regulation has been Ca(2+)-bound calmodulin, complexed alone with an IQ domain on the channel carboxy terminus. Here, however, systematic alanine mutagenesis of the entire carboxyl tail of an L-type CaV1.3 channel casts doubt on this paradigm. To identify the actual molecular states underlying channel regulation, we develop a structure-function approach relating the strength of regulation to the affinity of underlying calmodulin/channel interactions, by a Langmuir relation (individually transformed Langmuir analysis). Accordingly, we uncover frank exchange of Ca(2+)-calmodulin to interfaces beyond the IQ domain, initiating substantial rearrangements of the calmodulin/channel complex. The N-lobe of Ca(2+)-calmodulin binds an N-terminal spatial Ca(2+) transforming element module on the channel amino terminus, whereas the C-lobe binds an EF-hand region upstream of the IQ domain. This system of structural plasticity furnishes a next-generation blueprint for CaV channel modulation.
Collapse
Affiliation(s)
- Manu Ben Johny
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - Philemon S. Yang
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - Hojjat Bazzazi
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - David T. Yue
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| |
Collapse
|
23
|
The proximal C-terminus of α1C subunits is necessary for junctional membrane targeting of cardiac L-type calcium channels. Biochem J 2012; 448:221-31. [DOI: 10.1042/bj20120773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In cardiac myocytes, LTCCs (L-type calcium channels) form a functional signalling complex with ryanodine receptors at the JM (junctional membrane). Although the specific localization of LTCCs to the JM is critical for excitation–contraction coupling, their targeting mechanism is unclear. Transient transfection of GFP (green fluorescent protein)–α1S or GFP–α1C, but not P/Q-type calcium channel α1A, in dysgenic (α1S-null) GLT myotubes results in correct targeting of these LTCCs to the JMs and restoration of action-potential-induced Ca2+ transients. To identify the sequences of α1C responsible for JM targeting, we generated a range of α1C–α1A chimaeras, deletion mutants and alanine substitution mutants and studied their targeting properties in GLT myotubes. The results revealed that amino acids L1681QAGLRTL1688 and P1693EIRRAIS1700, predicted to form two adjacent α-helices in the proximal C-terminus, are necessary for the JM targeting of α1C. The efficiency of restoration of action-potential-induced Ca2+ transients in GLT myotubes was significantly decreased by mutations in the targeting motif. JM targeting was not disrupted by the distal C-terminus of α1C which binds to the second α-helix. Therefore we have identified a new structural motif in the C-terminus of α1C that mediates the targeting of cardiac LTCCs to JMs independently of the interaction between proximal and distal C-termini of α1C.
Collapse
|
24
|
Soldatov NM. Molecular Determinants of Cav1.2 Calcium Channel Inactivation. ISRN MOLECULAR BIOLOGY 2012; 2012:691341. [PMID: 27335667 PMCID: PMC4890872 DOI: 10.5402/2012/691341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Voltage-gated L-type Cav1.2 calcium channels couple membrane depolarization to transient increase in cytoplasmic free Ca2+ concentration that initiates a number of essential cellular functions including cardiac and vascular muscle contraction, gene expression, neuronal plasticity, and exocytosis. Inactivation or spontaneous termination of the calcium current through Cav1.2 is a critical step in regulation of these processes. The pathophysiological significance of this process is manifested in hypertension, heart failure, arrhythmia, and a number of other diseases where acceleration of the calcium current decay should present a benefit function. The central issue of this paper is the inactivation of the Cav1.2 calcium channel mediated by multiple determinants.
Collapse
|
25
|
Sale JE, Lehmann AR, Woodgate R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 2012; 13:141-52. [PMID: 22358330 PMCID: PMC3630503 DOI: 10.1038/nrm3289] [Citation(s) in RCA: 525] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past 15 years have seen an explosion in our understanding of how cells replicate damaged DNA and how this can lead to mutagenesis. The Y-family DNA polymerases lie at the heart of this process, which is commonly known as translesion synthesis. This family of polymerases has unique features that enable them to synthesize DNA past damaged bases. However, as they exhibit low fidelity when copying undamaged DNA, it is essential that they are only called into play when they are absolutely required. Several layers of regulation ensure that this is achieved.
Collapse
Affiliation(s)
- Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | |
Collapse
|
26
|
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta Gen Subj 2011; 1820:1243-52. [PMID: 22223119 DOI: 10.1016/j.bbagen.2011.12.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF). SCOPE OF REVIEW This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems. MAJOR CONCLUSIONS Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored. GENERAL SIGNIFICANCE Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
Affiliation(s)
- Carl Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
The IQ motif is crucial for Cav1.1 function. J Biomed Biotechnol 2011; 2011:504649. [PMID: 22162637 PMCID: PMC3228397 DOI: 10.1155/2011/504649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022] Open
Abstract
Ca2+-dependent modulation via calmodulin, with consensus CaM-binding IQ motif playing a key role, has been documented for most high-voltage-activated Ca2+ channels. The skeletal muscle Cav1.1 also exhibits Ca2+-/CaM-dependent modulation. Here, whole-cell Ca2+ current, Ca2+ transient, and maximal, immobilization-resistant charge movement (Qmax) recordings were obtained from cultured mouse myotubes, to test a role of IQ motif in function of Cav1.1. The effect of introducing mutation (IQ to AA) of IQ motif into Cav1.1 was examined. In dysgenic myotubes expressing YFP-Cav1.1AA, neither Ca2+ currents nor evoked Ca2+ transients were detectable. The loss of Ca2+ current and excitation-contraction coupling did not appear to be a consequence of defective trafficking to the sarcolemma. The Qmax in dysgenic myotubes expressing YFP-Cav1.1AA was similar to that of normal myotubes. These findings suggest that the IQ motif of the Cav1.1 may be an unrecognized site of structural and functional coupling between DHPR and RyR.
Collapse
|
28
|
Evans TIA, Hell JW, Shea MA. Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of Ca(V)1.2. Biophys Chem 2011; 159:172-87. [PMID: 21757287 PMCID: PMC3340011 DOI: 10.1016/j.bpc.2011.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
Abstract
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca(2+) channel (Ca(V)1.2) regulates Ca(2+) entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with Ca(V)1.2 under low resting [Ca(2+)], but is poised to change conformation and position when intracellular [Ca(2+)] rises. CaM binding Ca(2+), and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A(1588), and C(1614) and the IQ motif studied as overlapping peptides IQ(1644) and IQ'(1650) as well as their effect on calcium binding. (Ca(2+))(4)-CaM bound to all four peptides very favorably (K(d)≤2 nM). Linkage analysis showed that IQ(1644-1670) bound with a K(d)~1 pM. In the pre-IQ region, (Ca(2+))(2)-N-domain bound preferentially to A(1588), while (Ca(2+))(2)-C-domain preferred C(1614). When bound to C(1614), calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.
Collapse
Affiliation(s)
- T Idil Apak Evans
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, United States.
| | | | | |
Collapse
|
29
|
Minobe E, Asmara H, Saud ZA, Kameyama M. Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. J Biol Chem 2011; 286:39013-22. [PMID: 21937422 DOI: 10.1074/jbc.m111.242248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cav1.2 Ca(2+) channel activity diminishes in inside-out patches (run-down). Previously, we have found that with ATP, calpastatin domain L (CSL) and calmodulin (CaM) recover channel activity from the run-down in guinea pig cardiac myocytes. Because the potency of the CSL repriming effect was smaller than that of CaM, we hypothesized that CSL might act as a partial agonist of CaM in the channel-repriming effect. To examine this hypothesis, we investigated the effect of the competitions between CSL and CaM on channel activity and on binding in the channel. We found that CSL suppressed the channel-activating effect of CaM in a reversible and concentration-dependent manner. The channel-inactivating effect of CaM seen at high concentrations of CaM, however, did not seem to be affected by CSL. In the GST pull-down assay, CSL suppressed binding of CaM to GST fusion peptides derived from C-terminal regions in a competitive manner. The inhibition of CaM binding by CSL was observed with the IQ peptide but not the PreIQ peptide, which is the CaM-binding domain in the C terminus. The results are consistent with the hypothesis that CSL competes with CaM as a partial agonist for the site in the IQ domain in the C-terminal region of the Cav1.2 channel, which may be involved in activation of the channel.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
30
|
Satin J, Schroder EA, Crump SM. L-type calcium channel auto-regulation of transcription. Cell Calcium 2011; 49:306-13. [PMID: 21295347 PMCID: PMC3097264 DOI: 10.1016/j.ceca.2011.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 01/24/2023]
Abstract
L-type calcium channels (LTCC) impact the function of nearly all excitable cells. The classical LTCC function is to mediate trans-sarcolemmal Ca(2+) flux. This review focuses on the contribution of a mobile segment of the LTCC that regulates ion channel function, and also serves as a regulator of transcription in the nucleus. Specifically we highlight recent work demonstrating an auto-feedback regulatory pathway whereby the LTCC transcription factor regulates the LTCC. Also discussed is acute and long-term regulation of function by the LTCC-transcription regulator.
Collapse
Affiliation(s)
- Jonathan Satin
- Department of Physiology, MS-508, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | | | |
Collapse
|
31
|
Kim EY, Rumpf CH, Van Petegem F, Arant RJ, Findeisen F, Cooley ES, Isacoff EY, Minor DL. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization. EMBO J 2010; 29:3924-38. [PMID: 20953164 PMCID: PMC3020648 DOI: 10.1038/emboj.2010.260] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.
Collapse
Affiliation(s)
- Eun Young Kim
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Christine H Rumpf
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Filip Van Petegem
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Ryan J Arant
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Felix Findeisen
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Elizabeth S Cooley
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
32
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2010; 4:459-74. [PMID: 21139419 PMCID: PMC3018750 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/03/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
33
|
Asmara H, Minobe E, Saud ZA, Kameyama M. Interactions of calmodulin with the multiple binding sites of Cav1.2 Ca2+ channels. J Pharmacol Sci 2010; 112:397-404. [PMID: 20308803 DOI: 10.1254/jphs.09342fp] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although calmodulin binding to various sites of the Cav1.2 Ca(2+) channel has been reported, the mechanism of the interaction is not fully understood. In this study we examined calmodulin binding to fragment channel peptides using a semi-quantitative pull-down assay. Calmodulin bound to the peptides with decreasing affinity order: IQ > preIQ > I-II loop > N-terminal peptide. A peptide containing both preIQ and IQ regions (Leu(1599) - Leu(1668)) bound with approximately 2 mol of calmodulin per peptide. These results support the hypothesis that two molecules of calmodulin can simultaneously bind to the C-terminus of the Cav1.2 channel and modulate its facilitatory and inhibitory activities.
Collapse
Affiliation(s)
- Hadhimulya Asmara
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | | |
Collapse
|
34
|
Han DY, Minobe E, Wang WY, Guo F, Xu JJ, Hao LY, Kameyama M. Calmodulin- and Ca2+-dependent facilitation and inactivation of the Cav1.2 Ca2+ channels in guinea-pig ventricular myocytes. J Pharmacol Sci 2010; 112:310-9. [PMID: 20197640 DOI: 10.1254/jphs.09282fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The L-type Ca(2+) channel (Ca(V)1.2) shows clear Ca(2+)-dependent facilitation and inactivation. Here we have examined the effects of calmodulin (CaM) and Ca(2+) on Ca(2+) channel in guinea-pig ventricular myocytes in the inside-out patch mode, where rundown of the channels was controlled. At a free [Ca(2+)] of 0.1 microM, CaM (0.15, 0.7, 1.4, 2.1, 3.5, and 7.0 microM) + ATP (2.4 mM) induced channel activities of 27%, 98%, 142%, 222%, 65%, and 20% relative to the control activity, respectively, showing a bell-shaped relationship. Similar results were observed at a free [Ca(2+)] <0.01 microM or with a Ca(2+)-insensitive mutant, CaM(1234), suggesting that apoCaM may induce facilitation and inactivation of the channel activity. The bell-shaped curve of CaM was shifted to the lower concentration side with increasing [Ca(2+)]. A simple model for CaM- and Ca(2+)-dependent modulations of the channel activity, which involves two CaM-binding sites, was proposed. We suggest that both apoCaM and Ca(2+)/CaM can induce facilitation and inactivation of Ca(V)1.2 Ca(2+) channels and that the basic role of Ca(2+) is to accelerate CaM-dependent facilitation and inactivation.
Collapse
Affiliation(s)
- Dong-Yun Han
- School of Pharmaceutical Science, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Teng J, Iida K, Ito M, Izumi-Nakaseko H, Kojima I, Adachi-Akahane S, Iida H. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:966-74. [PMID: 20067760 DOI: 10.1016/j.bbamem.2010.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
Abstract
The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.
Collapse
Affiliation(s)
- Jinfeng Teng
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei-shi, Tokyo 184-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Mark R. Fowler
- Faculty of Biomedical & Life Sciences, West Medical Building, University of Glasgow, United Kingdom
| | - Godfrey L. Smith
- Faculty of Biomedical & Life Sciences, West Medical Building, University of Glasgow, United Kingdom
| |
Collapse
|
37
|
Wang WY, Hao LY, Minobe E, Saud ZA, Han DY, Kameyama M. CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca(2+) channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 2009; 59:283-90. [PMID: 19340532 PMCID: PMC10717815 DOI: 10.1007/s12576-009-0033-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 11/26/2022]
Abstract
We have previously found that both CaMKII-mediated phosphorylation and calmodulin (CaM) binding to the channels are required for maintaining basal activity of the Cav1.2 Ca(2+) channels. In this study, we investigated the hypothetical CaMKII phosphorylation site on Cav1.2 that contributes to the channel regulation. We found that CaMKII phosphorylates the Thr1603 residue (Thr1604 in rabbit) within the preIQ region in the C-terminal tail of the guinea-pig Cav1.2 channel. Mutation of Thr1603 to Asp (T1603D) slowed the run-down of the channel in inside-out patch mode and abolished the time-dependency of the CaM's effects to reverse run-down. We also found that CaMKII-mediated phosphorylation of the proximal C-terminal fragment (CT1) increased, while dephosphorylation of CT1 decreased its binding with CaM. These findings suggest that CaMKII regulates the CaM binding to the channel, and thereby maintains basal activity of the Cav1.2 Ca(2+) channel.
Collapse
Affiliation(s)
- Wu-Yang Wang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Li-Ying Hao
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Zahangir Alam Saud
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Dong-Yun Han
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| |
Collapse
|
38
|
Halling DB, Georgiou DK, Black DJ, Yang G, Fallon JL, Quiocho FA, Pedersen SE, Hamilton SL. Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. J Biol Chem 2009; 284:20041-51. [PMID: 19473981 DOI: 10.1074/jbc.m109.013326] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin binds to IQ motifs in the alpha(1) subunit of Ca(V)1.1 and Ca(V)1.2, but the affinities of calmodulin for the motif and for Ca(2+) are higher when bound to Ca(V)1.2 IQ. The Ca(V)1.1 IQ and Ca(V)1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to Ca(V)1.1 IQ and compared it with that of calmodulin bound to Ca(V)1.2 IQ. Four methionines in Ca(2+)-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of Ca(V)1.1 and Tyr-1675 of Ca(V)1.2) contacts this calmodulin pocket. However, Tyr-1675 in Ca(V)1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in Ca(V)1.2 contribute significantly to the difference in the Ca(2+) affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca(2+)-bound and one lobe Ca(2+)-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to Ca(V)1.2.
Collapse
Affiliation(s)
- D Brent Halling
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kobrinsky E, Abrahimi P, Duong SQ, Thomas S, Harry JB, Patel C, Lao QZ, Soldatov NM. Effect of Ca(v)beta subunits on structural organization of Ca(v)1.2 calcium channels. PLoS One 2009; 4:e5587. [PMID: 19492014 PMCID: PMC2688388 DOI: 10.1371/journal.pone.0005587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/18/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Voltage-gated Ca(v)1.2 calcium channels play a crucial role in Ca(2+) signaling. The pore-forming alpha(1C) subunit is regulated by accessory Ca(v)beta subunits, cytoplasmic proteins of various size encoded by four different genes (Ca(v)beta(1)-beta(4)) and expressed in a tissue-specific manner. METHODS AND RESULTS Here we investigated the effect of three major Ca(v)beta types, beta(1b), beta(2d) and beta(3), on the structure of Ca(v)1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Ca(v)1.2 to form clusters depends on the type of the Ca(v)beta subunit present. The highest density of Ca(v)1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac beta(1b) present. Ca(v)1.2 channels containing beta(3), the predominant Ca(v)beta subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between alpha(1C) and Ca(v)beta in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Ca(v)1.2 channels in the plasma membrane depends on the Ca(v)beta type. The presence of different Ca(v)beta subunits does not result in significant differences in the intramolecular distance between the termini of alpha(1C), but significantly affects the distance between the termini of neighbor alpha(1C) subunits, which varies from 67 A with beta(1b) to 79 A with beta(3). CONCLUSIONS Thus, our results show that the structural organization of Ca(v)1.2 channels in the plasma membrane depends on the type of Ca(v)beta subunits present.
Collapse
Affiliation(s)
- Evgeny Kobrinsky
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Parwiz Abrahimi
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Son Q. Duong
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sam Thomas
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jo Beth Harry
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chirag Patel
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Qi Zong Lao
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nikolai M. Soldatov
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
40
|
Fallon JL, Baker MR, Xiong L, Loy RE, Yang G, Dirksen RT, Hamilton SL, Quiocho FA. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc Natl Acad Sci U S A 2009; 106:5135-40. [PMID: 19279214 PMCID: PMC2654391 DOI: 10.1073/pnas.0807487106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.
Collapse
Affiliation(s)
- Jennifer L. Fallon
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- Department of Molecular Physiology and Biophysics, and
| | - Mariah R. Baker
- Department of Molecular Physiology and Biophysics, and
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030; and
| | | | - Ryan E. Loy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Guojun Yang
- Department of Molecular Physiology and Biophysics, and
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Susan L. Hamilton
- Department of Molecular Physiology and Biophysics, and
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030; and
| | - Florante A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- Department of Molecular Physiology and Biophysics, and
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
41
|
Kim EY, Rumpf CH, Fujiwara Y, Cooley ES, Van Petegem F, Minor DL. Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure 2008; 16:1455-67. [PMID: 18940602 PMCID: PMC2701236 DOI: 10.1016/j.str.2008.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 01/22/2023]
Abstract
Calcium influx drives two opposing voltage-activated calcium channel (Ca(V)) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca(2+)/calmodulin (Ca(2+)/CaM) lobes produce CDI and CDF through interactions with the Ca(V)alpha(1) subunit IQ domain. Curiously, Ca(2+)/CaM lobe modulation polarity appears inverted between Ca(V)1s and Ca(V)2s. Here, we present crystal structures of Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3 Ca(2+)/CaM-IQ domain complexes. All display binding orientations opposite to Ca(V)1.2 with a physical reversal of the CaM lobe positions relative to the IQ alpha-helix. Titration calorimetry reveals lobe competition for a high-affinity site common to Ca(V)1 and Ca(V)2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca(V)2 Ca(2+)/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca(V) feedback modulation and indicate that Ca(V)1 and Ca(V)2 IQ domains bear a dedicated CDF site that exchanges Ca(2+)/CaM lobe occupants.
Collapse
Affiliation(s)
- Eun Young Kim
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | - Christine H. Rumpf
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | - Yuichiro Fujiwara
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | - Elizabeth S. Cooley
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | | | - Daniel L. Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| |
Collapse
|
42
|
Ohrtman J, Ritter B, Polster A, Beam KG, Papadopoulos S. Sequence differences in the IQ motifs of CaV1.1 and CaV1.2 strongly impact calmodulin binding and calcium-dependent inactivation. J Biol Chem 2008; 283:29301-11. [PMID: 18718913 DOI: 10.1074/jbc.m805152200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proximal C terminus of the cardiac L-type calcium channel (Ca(V)1.2) contains structural elements important for the binding of calmodulin (CaM) and calcium-dependent inactivation, and exhibits extensive sequence conservation with the corresponding region of the skeletal L-type channel (Ca(V)1.1). However, there are several Ca(V)1.1 residues that are both identical in six species and are non-conservatively changed from the corresponding Ca(V)1.2 residues, including three of the "IQ motif." To investigate the functional significance of these residue differences, we used native gel electrophoresis and expression in intact myotubes to compare the binding of CaM to extended regions (up to 300 residues) of the C termini of Ca(V)1.1 and Ca(V)1.2. We found that in the presence of Ca(2+) (either millimolar or that in resting myotubes), CaM bound strongly to C termini of Ca(V)1.2 but not of Ca(V)1.1. Furthermore, replacement of two residues (Tyr(1657) and Lys(1662)) within the IQ motif of a C-terminal Ca(V)1.2 construct with the divergent residues of Ca(V)1.1 (His(1532) and Met(1537)) led to a weakening of CaM binding (native gels), whereas the reciprocal substitution in Ca(V)1.1 caused a gain of CaM binding. In full-length Ca(V)1.2, substitution of these same two divergent residues with those of Ca(V)1.1 (Y1657H, K1662M) eliminated calcium-dependent inactivation of the heterologously expressed channel. Thus, our results reveal that a conserved difference between the IQ motifs of Ca(V)1.2 and Ca(V)1.1 has a profound effect on both CaM binding and calcium-dependent inactivation.
Collapse
Affiliation(s)
- Joshua Ohrtman
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
43
|
Woods AS, Marcellino D, Jackson SN, Franco R, Ferré S, Agnati LF, Fuxe K. How calmodulin interacts with the adenosine A(2A) and the dopamine D(2) receptors. J Proteome Res 2008; 7:3428-34. [PMID: 18590318 PMCID: PMC2538563 DOI: 10.1021/pr8001782] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor heteromerization is a mechanism used by G protein-coupled receptors to diversify their properties and function. We previously demonstrated that these interactions occur through salt bridge formation between epitopes of the involved receptors. Recent studies claim that calmodulin (CaM) binds to an Arg-rich epitope located in the amino-terminus of the dopamine D(2) receptor third intracellular loop. This is the same epitope involved in adenosine A(2A)-D(2) receptor heteromerization, through Coulombic interaction between the Arg residues and a phosphorylated serine (pS) located in the medial segment of the C-terminus of the A(2A) receptor. Mass spectrometric analysis indicates that an electrostatic interaction involving the D(2) receptor Arg-rich epitope and several CaM acidic epitopes are mainly responsible for the D(2) receptor-CaM binding. CaM could also form multiple noncovalent complexes by means of electrostatic interactions with an epitope localized in the proximal segment of the C-terminus of the A(2A) receptor. Ca(2+) disrupted the binding of CaM to the D(2) but not to the A(2A) receptor epitope, and CaM disrupted the electrostatic interactions between the D(2) receptor epitope and the more distal A(2A) receptor epitope. A model is introduced with the possible functional implications of A(2A)-D(2)-CaM interactions. These in vitro findings imply a possible regulatory role for CaM in receptor heteromers formation.
Collapse
Affiliation(s)
- Amina S Woods
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Morad M, Soldatov N. Calcium channel inactivation: possible role in signal transduction and Ca2+ signaling. Cell Calcium 2008; 38:223-31. [PMID: 16098584 DOI: 10.1016/j.ceca.2005.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Voltage gated Ca2+ channels are major routes for the entry of intracellular Ca2+ coupled to membrane depolarization that appear to vary greatly with respect to their voltage dependence and kinetics. Such variability maybe in part related to the attached signaling properties of the channel, in addition to the transport of calcium. In the present review we consider the possible role of calcium-dependent inactivation of Cav1.2 in Ca2+ signal transduction and signaling of calcium release from the cardiac sarcoplasmic reticulum. We explore the specific roles of Ca2+-sensing calmodulin-binding domains of the C-terminal tail (LA and K) of the channel in mediating Ca2+-induced Ca2+ release and signal transduction. Our experiments point to an intriguing possibility that the C-terminal tail of Cav1.2 may translocate the Ca2+ signal as a part of inactivation mechanism and the corresponding voltage-gated rearrangement of the C-terminus. We show how a dynamic and transient regulation, in a Ca2+-dependent manner, defines molecular events including Ca2+ release and signaling of cAMP-responsive element-binding protein (CREB)-dependent transcription. We propose that such Ca2+-dependent C-tail translocation that also initiates the channel inactivation, may have evolved specifically for the Cav1.2 channel.
Collapse
Affiliation(s)
- Martin Morad
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| | | |
Collapse
|
45
|
Abstract
Calcium (Ca) is a universal intracellular second messenger. In muscle, Ca is best known for its role in contractile activation. However, in recent years the critical role of Ca in other myocyte processes has become increasingly clear. This review focuses on Ca signaling in cardiac myocytes as pertaining to electrophysiology (including action potentials and arrhythmias), excitation-contraction coupling, modulation of contractile function, energy supply-demand balance (including mitochondrial function), cell death, and transcription regulation. Importantly, although such diverse Ca-dependent regulations occur simultaneously in a cell, the cell can distinguish distinct signals by local Ca or protein complexes and differential Ca signal integration.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology and Cardiovascular Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
46
|
Mori MX, Vander Kooi CW, Leahy DJ, Yue DT. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 2008; 16:607-20. [PMID: 18400181 PMCID: PMC2363160 DOI: 10.1016/j.str.2008.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022]
Abstract
Calmodulin (CaM) regulation of Ca(2+) channels is central to Ca(2+) signaling. Ca(V)1 versus Ca(V)2 classes of these channels exhibit divergent forms of regulation, potentially relating to customized CaM/IQ interactions among different channels. Here we report the crystal structures for the Ca(2+)/CaM IQ domains of both Ca(V)2.1 and Ca(V)2.3 channels. These highly similar structures emphasize that major CaM contacts with the IQ domain extend well upstream of traditional consensus residues. Surprisingly, upstream mutations strongly diminished Ca(V)2.1 regulation, whereas downstream perturbations had limited effects. Furthermore, our Ca(V)2 structures closely resemble published Ca(2+)/CaM-Ca(V)1.2 IQ structures, arguing against Ca(V)1/2 regulatory differences based solely on contrasting CaM/IQ conformations. Instead, alanine scanning of the Ca(V)2.1 IQ domain, combined with structure-based molecular simulation of corresponding CaM/IQ binding energy perturbations, suggests that the C lobe of CaM partially dislodges from the IQ element during channel regulation, allowing exposed IQ residues to trigger regulation via isoform-specific interactions with alternative channel regions.
Collapse
Affiliation(s)
- Masayuki X. Mori
- Ca Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Craig W. Vander Kooi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel J. Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David T. Yue
- Ca Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Ca Signals Laboratory, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Calpastatin binds to a calmodulin-binding site of cardiac Cav1.2 Ca2+ channels. Biochem Biophys Res Commun 2007; 364:372-7. [PMID: 17950697 DOI: 10.1016/j.bbrc.2007.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
Abstract
Calpastatin is an endogenous inhibitor of calpain and composed of domain L (CS(L)), which interacts with the Cav1.2 channels, and four repetitive calpain inhibitory domains. We have previously found that CS(L) reprimes activity of the Cav1.2 channels in cell-free patches of cardiac myocytes [L.Y. Hao, A. Kameyama, S. Kuroki, J. Takano, E. Takano, M. Maki, M. Kameyama, Calpastatin domain L is involved in the regulation L-type of Ca2+ channels in guinea pig cardiac myocytes, Biochem. Biophys. Res. Commun. 279 (2000) 756-761; E. Minobe, L.Y. Hao, Z.A. Saud, J.J. Xu, A. Kameyama, M. Maki, K.K. Jewell, T. Parr, R.G. Bardsley, M. Kameyama, A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels, Biochem. Biophys. Res. Commun. 348 (2006) 288-294]. In this study, we explored the CS(L) interaction site in the Ca2+ channel by the pull-down method, using glutathione-S-transferase-fused fragment peptides of the Cav1.2 channel. CS(L) bound directly to a proximal region of the C-terminal tail of the channel, but not with the N-terminal tail, a distal region of the C-terminal tail or cytoplasmic loops between repeats I-II, II-III or III-IV. Furthermore IQ domain, but not EF-hand-like region or CB domain, in the C-terminal tail was found to bind with CS(L) in a partially Ca2+-dependent manner and in a probably competitive manner with calmodulin. These results suggest that CS(L) modulates Ca2+-channel activity through interacting with the calmodulin-binding site on the C-terminal tail of the Cav1.2 channel.
Collapse
|
48
|
Stroffekova K. Ca2+/CaM-dependent inactivation of the skeletal muscle L-type Ca2+ channel (Cav1.1). Pflugers Arch 2007; 455:873-84. [PMID: 17899167 DOI: 10.1007/s00424-007-0344-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Ca2+-dependent modulation via calmodulin (CaM) has been documented for most high-voltage-activated Ca2+ channels, but whether the skeletal muscle L-type channel (Cav1.1) exhibits this property has been unknown. In this paper, whole-cell current and fluorescent resonance energy transfer (FRET) recordings were obtained from cultured mouse myotubes to test for potential involvement of CaM in function of Cav1.1. When prolonged depolarization (800 ms) was used to evoke Cav1.1 currents in normal myotubes, the fraction of current remaining at the end of the pulse displayed classic signs of Ca2+-dependent inactivation (CDI), including U-shaped voltage dependence, maximal inactivation (approximately 30%) at potentials eliciting maximal inward current, and virtual elimination of inactivation when Ba2+ replaced external Ca2+ or when 10 mM BAPTA was included in the pipette solution. Furthermore, CDI was virtually eliminated (from 30 to 8%) in normal myotubes overexpressing mutant CaM (CaM1234) that does not bind Ca2+, whereas CDI was unaltered in myotubes overexpressing wild-type CaM (CaMwt). In addition, a significant FRET signal (E=4.06%) was detected between fluorescently tagged Cav1.1 and CaMwt coexpressed in dysgenic myotubes, demonstrating for the first time that these two proteins associate in vivo. These findings show that CaM associates with and modulates Cav1.1.
Collapse
Affiliation(s)
- Katarina Stroffekova
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| |
Collapse
|
49
|
Bannister RA. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling. J Muscle Res Cell Motil 2007; 28:275-83. [PMID: 17899404 DOI: 10.1007/s10974-007-9118-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/28/2007] [Indexed: 01/17/2023]
Abstract
Conformational coupling between the L-type voltage-gated Ca(2+) channel (or 1,4-dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca(2+) release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation-contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I-II, II-III, and III-IV) of the DHPR alpha(1S) subunit in bi-directional communication with RyR1 will be discussed.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado at Denver and Health Sciences Center, RC-1, North Tower, P18-7130, Mail Stop F8307, 12800 E. 19th St, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Wykes RCE, Bauer CS, Khan SU, Weiss JL, Seward EP. Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 2007; 27:5236-48. [PMID: 17494710 PMCID: PMC6672387 DOI: 10.1523/jneurosci.3545-06.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Robust CDI of N-type channels was observed in response to prolonged step depolarizations, as well as repetitive stimulation with either brief step depolarizations or action potential-like voltage stimuli. Adenoviral expression of Ca2+-insensitive calmodulin mutants eliminated CDI of N-type channels. This is the first demonstration of CaM-dependent CDI of a native N-type channel. CDI of P/Q-type channels was by comparison modest and insensitive to expression of CaM mutants. Cloning of the C terminus of the Ca(V)2.1 alpha1 subunit from chromaffin cells revealed multiple splice variants lacking structural motifs required for CaM-dependent CDI. The physiological relevance of CDI on stimulus-coupled exocytosis was revealed by combining perforated-patch voltage-clamp recordings of pharmacologically isolated Ca2+ currents with membrane capacitance measurements of exocytosis. Increasing stimulus intensity to invoke CDI resulted in a significant decrease in the exocytotic efficiency of N-type channels compared with P/Q-type channels. Our results reveal unexpected diversity in CaM regulation of native Ca(V)2 channels and suggest that the ability of individual Ca2+ channel subtypes to undergo CDI may be tailored by alternative splicing to meet the specific requirements of a particular cellular function.
Collapse
Affiliation(s)
- Robert C. E. Wykes
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia S. Bauer
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Saeed U. Khan
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Jamie L. Weiss
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth P. Seward
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|