1
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2025; 62:2230-2249. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
2
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
3
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Ananta, Benerjee S, Tchounwou PB, Kumar S. Mechanistic update of Trisenox in blood cancer. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100166. [PMID: 38074774 PMCID: PMC10701371 DOI: 10.1016/j.crphar.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Acute promyelocytic leukemia (APL)/blood cancer is M3 type of acute myeloid leukemia (AML) formed inside bone marrow through chromosomal translocation mutation usually between chromosome 15 & 17. It accounts around 10% cases of AML worldwide. Trisenox (TX/ATO) is used in chemotherapy for treatment of all age group of APL patients with highest efficacy and survival rate for longer period. High concentration of TX inhibits growth of APL cells by diverse mechanism however, it cures only PML-RARα fusion gene/oncogene containing APL patients. TX resistant APL patients (different oncogenic make up) have been reported from worldwide. This review summarizes updated mechanism of TX action via PML nuclear bodies formation, proteasomal degradation, autophagy, p53 activation, telomerase activity, heteromerization of pRb & E2F, and regulation of signaling mechanism in APL cells. We have also provided important information of combination therapy of TX with other molecules mechanism of action in acute leukemia cells. It provides updated information of TX action for researcher which may help finding new target for further research in APL pathophysiology or new TX resistant APL patients drug designing.
Collapse
Affiliation(s)
- Ananta
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Swati Benerjee
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD 21251, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
5
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
7
|
SAJI R, UCHIO R, FUWA A, OKUDA-HANAFUSA C, KAWASAKI K, MUROYAMA K, MUROSAKI S, YAMAMOTO Y, HIROSE Y. Turmeronols (A and B) from Curcuma longa have anti-inflammatory effects in lipopolysaccharide-stimulated BV-2 microglial cells by reducing NF-κB signaling. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:172-179. [PMID: 37404570 PMCID: PMC10315188 DOI: 10.12938/bmfh.2022-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 07/06/2023]
Abstract
Turmeronols (A and B), bisabolane-type sesquiterpenoids found in turmeric, reduce inflammation outside the brain in animals; however, their effects on neuroinflammation, a common pathology of various neurodegenerative diseases, are not understood. Inflammatory mediators produced by microglial cells play a key role in neuroinflammation, so this study evaluated the anti-inflammatory effects of turmeronols in BV-2 microglial cells stimulated with lipopolysaccharide (LPS). Pretreatment with turmeronol A or B significantly inhibited LPS-induced nitric oxide (NO) production; mRNA expression of inducible NO synthase; production of interleukin (IL)-1β, IL-6, and tumor necrosis factor α and upregulation of their mRNA expression; phosphorylation of nuclear factor-κB (NF-κB) p65 proteins and inhibitor of NF-κB kinase (IKK); and nuclear translocation of NF-κB. These results suggest that these turmeronols may prevent the production of inflammatory mediators by inhibiting the IKK/NF-κB signaling pathway in activated microglial cells and can potentially treat neuroinflammation associated with microglial activation.
Collapse
Affiliation(s)
- Ryosuke SAJI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Ryusei UCHIO
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Arisa FUWA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Chinatsu OKUDA-HANAFUSA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Kengo KAWASAKI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Koutarou MUROYAMA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Shinji MUROSAKI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Yoshihiro YAMAMOTO
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Yoshitaka HIROSE
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| |
Collapse
|
8
|
Fan TWM, Sun Q, Higashi RM. Ultrahigh resolution MS 1/MS 2-based reconstruction of metabolic networks in mammalian cells reveals changes for selenite and arsenite action. J Biol Chem 2022; 298:102586. [PMID: 36223837 PMCID: PMC9667311 DOI: 10.1016/j.jbc.2022.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, Kentucky, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, Kentucky, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, Kentucky, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Shang B, Venkatratnam A, Hartwell H, Douillet C, Cable P, Liu T, Zou F, Ideraabdullah FY, Fry RC, Stýblo M. Ex vivo exposures to arsenite and its methylated trivalent metabolites alter gene transcription in mouse sperm cells. Toxicol Appl Pharmacol 2022; 455:116266. [PMID: 36209798 PMCID: PMC9753555 DOI: 10.1016/j.taap.2022.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
Abstract
We have previously reported that preconception exposure to iAs may contribute to the development of diabetes in mouse offspring by altering gene expressions in paternal sperm. However, the individual contributions of iAs and its methylated metabolites, monomethylated arsenic (MAs) and dimethylated arsenic (DMAs), to changes in the sperm transcriptome could not be determined because all three As species are present in sperm after in vivo iAs exposure. The goal of the present study was to assess As species-specific effects using an ex vivo model. We exposed freshly isolated mouse sperm to either 0.1 or 1 μM arsenite (iAsIII) or the methylated trivalent arsenicals, MAsIII and DMAsIII, and used RNA-sequencing to identify differentially expressed genes, enriched pathways, and associated protein networks. For all arsenicals tested, the exposures to 0.1 μM concentrations had greater effects on gene expression than 1 μM exposures. Transcription factor AP-1 and B cell receptor complexes were the most significantly enriched pathways in sperm exposed to 0.1 μM iAsIII. The Mre11 complex and Antigen processing were top pathways targeted by exposure to 0.1 μM MAsIII and DMAsIII, respectively. While there was no overlap between gene transcripts altered by ex vivo exposures in the present study and those altered by in vivo exposure in our prior work, several pathways were shared, including PI3K-Akt signaling, Focal adhesion, and Extracellular matrix receptor interaction pathways. Notably, the protein networks associated with these pathways included those with known roles in diabetes. This study is the first to assess the As species-specific effects on sperm transcriptome, linking these effects to the diabetogenic effects of iAs exposure.
Collapse
Affiliation(s)
- Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Hadley Hartwell
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Peter Cable
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
10
|
Balkrishna A, Solleti SK, Singh H, Singh R, Bhattacharya K, Varshney A. Herbo-metallic ethnomedicine 'Malla Sindoor' ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115120. [PMID: 35202713 DOI: 10.1016/j.jep.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is the leading inflammatory disease of the airways with inadequate therapeutic options. 'Malla Sindoor' (MS) is a metal-based ethnomedicinal formulation that has been prescribed in the ancient traditional medicinal system for treating chronic inflammations. AIM OF THE STUDY Here, we validated the anti-inflammatory and anti-asthmatic properties of traditional metallic medicine MS in asthmatic mice model and in LPS stimulated human monocytic THP-1 cells, by examining the relevant cellular, biochemical and molecular intermediates. MATERIALS AND METHODS Scanning Electron Microscope (SEM), Electron Dispersive X-ray (EDX), and X-Ray Diffraction (XRD) were performed to characterize MS particles. Allergic asthma was induced in Balb/c mice through intraperitoneal ovalbumin (OVA) injection. Experimental groups include, normal control, disease control, Dexamethasone (2 mg/kg) and three MS treated groups: 4.3 mg/kg, 13 mg/kg, and 39 mg/kg. Quantitative PCR, inflammatory cytokines and anti-oxidant enzymes, and histological analysis were performed, in the treated mice and LPS stimulated human monocytic THP-1 cells for determining the MS efficacy. RESULTS SEM image analysis showed the MS to be heterogenous in shape with a particle size distribution between 100 nm-1 μm. Elemental composition showed the presence of mercury (Hg), arsenic (As), and sulphur (S) along with other elements in the forms of mercury sulfide, arsenic trioxide, and their alloy crystals. OVA-challenge of the Balb/c mice resulted in the development of overt pathological features for allergic asthma including smooth muscle thickening and collagen deposition. Mice receiving MS-exhibited alleviation of allergic asthma features. BAL fluid analysis showed a decrease in the total cell count and decreases in neutrophils, monocytes, lymphocytes, and eosinophils. Further, the stimulated levels of interleukin (IL)-1β, -6, and TNF-α cytokines and antioxidant levels were also reduced upon MS-treatment. At the molecular level, MS-treatment reduced stimulated mRNA expression levels for IL-4, -5, -10, -13, -33, and IFN-γ cytokines. Histological analysis following MS-treatment of OVA-stimulated mice lungs showed a reduction in mucus accumulation in airways, decreases in peribronchial collagen deposition, bronchial smooth muscle thickening, and attenuation of inflammatory cell infiltration. In addition, under in-vitro conditions, MS-treatment attenuated the LPS induced secretion of IL-1β, -6, and TNF-α from THP-1 cells. CONCLUSION Collectively, the results suggest that MS acts as an effective anti-asthmatic and anti-inflammatory agent, by regulating various cellular, biochemical and molecular intermediates.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Patanjali UK Trust, Glasgow, United Kingdom
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
11
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Song ZL, Zhang J, Xu Q, Shi D, Yao X, Fang J. Structural Modification of Aminophenylarsenoxides Generates Candidates for Leukemia Treatment via Thioredoxin Reductase Inhibition. J Med Chem 2021; 64:16132-16146. [PMID: 34704769 DOI: 10.1021/acs.jmedchem.1c01441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upregulation of the selenoprotein thioredoxin reductase (TrxR) is of pathological significance in maintaining tumor phenotypes. Thus, TrxR inhibitors are promising cancer therapeutic agents. We prepared different amino-substituted phenylarsine oxides and evaluated their cytotoxicity and inhibition of TrxR. Compared with our reported p-substituted molecule (8), the o-substituted molecule (10) shows improved efficacy (nearly a fourfold increase) to kill leukemia HL-60 cells. Although the compounds 8 and 10 display similar potency to inhibit the purified TrxR, the o-substitution 10 exhibits higher potency than the p-substitution 8 to inhibit the cellular TrxR activity. Molecular docking results demonstrate the favorable weak interactions of the o-amino group with the TrxR C-terminal active site. Efficient inhibition of TrxR consequently induces the oxidative stress-mediated apoptosis of cancer cells. Silence of the TrxR expression sensitizes the cells to the arsenic compound treatment, further supporting the critical involvement of TrxR in the cellular actions of compound 10.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Efremenko A, Balbuena P, Clewell RA, Black M, Pluta L, Andersen ME, Gentry PR, Yager JW, Clewell HJ. Time-dependent genomic response in primary human uroepithelial cells exposed to arsenite for up to 60 days. Toxicology 2021; 461:152893. [PMID: 34425169 DOI: 10.1016/j.tox.2021.152893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Evidence from both in vivo and in vitro studies suggests that gene expression changes from long-term exposure to arsenite evolve markedly over time, including reversals in the direction of expression change in key regulatory genes. In this study, human uroepithelial cells from the ureter segments of 4 kidney-donors were continuously treated in culture with arsenite at concentrations of 0.1 or 1 μM for 60 days. Gene expression at 10, 20, 30, 40, and 60 days was determined using Affymetrix human genome microarrays and signal pathway analysis was performed using GeneGo Metacore. Arsenic treated cells continued to proliferate for the full 60-day period, whereas untreated cells ceased proliferating after approximately 30 days. A peak in the number of gene changes in the treated cells compared to untreated controls was observed between 30 and 40 days of exposure, with substantially fewer changes at 10 and 60 days, suggesting remodeling of the cells over time. Consistent with this possibility, the direction of expression change for a number of key genes was reversed between 20 and 30 days, including CFOS and MDM2. While the progression of gene changes was different for each subject, a common pattern was observed in arsenic treated cells over time, with early upregulation of oxidative stress responses (HMOX1, NQ01, TXN, TXNRD1) and down-regulation of immune/inflammatory responses (IKKα). At around 30 days, there was a transition to increased inflammatory and proliferative signaling (AKT, CFOS), evidence of epithelial-to-mesenchymal transition (EMT), and alterations in DNA damage responses (MDM2, ATM). A common element in the changing response of cells to arsenite over time appears to involve up-regulation of MDM2 by inflammatory signaling (through AP-1 and NF-κB), leading to inhibition of P53 function.
Collapse
Affiliation(s)
- Alina Efremenko
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | | | | | - Michael Black
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | | | | | - Janice W Yager
- Ramboll US Corporation, Emeryville, CA, United States(1)
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, RTP, NC, United States.
| |
Collapse
|
14
|
Hu X, Li H, Ip TKY, Cheung YF, Koohi-Moghadam M, Wang H, Yang X, Tritton DN, Wang Y, Wang Y, Wang R, Ng KM, Naranmandura H, Tse EWC, Sun H. Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin. Chem Sci 2021; 12:10893-10900. [PMID: 34476069 PMCID: PMC8372542 DOI: 10.1039/d1sc03119h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of action of arsenic trioxide (ATO), a clinically used drug for the treatment of acute promyelocytic leukemia (APL), have been actively studied mainly through characterization of individual putative protein targets. There appear to be no studies at a system level. Herein, we integrate metalloproteomics through a newly developed organoarsenic probe, As-AC (C20H17AsN4O3S2) with quantitative proteomics, allowing 37 arsenic binding and 250 arsenic regulated proteins to be identified in NB4, a human APL cell line. Bioinformatics analysis reveals that ATO disrupts multiple physiological processes, in particular, chaperone-related protein folding and cellular response to stress. Furthermore, we discover heat shock protein 60 (Hsp60) as a vital target of ATO. Through biophysical and cell-based assays, we demonstrate that ATO binds to Hsp60, leading to abolishment of Hsp60 refolding capability. Significantly, the binding of ATO to Hsp60 disrupts the formation of Hsp60-p53 and Hsp60-survivin complexes, resulting in degradation of p53 and survivin. This study provides significant insights into the mechanism of action of ATO at a systemic perspective, and serves as guidance for the rational design of metal-based anticancer drugs. A highly selective organoarsenic fluorescent probe As-AC and quantitative proteomics were employed to track arsenic-binding and regulating proteins in live leukemia cells. Hsp60 was validated as a new target of ATO.![]()
Collapse
Affiliation(s)
- Xuqiao Hu
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Tiffany Ka-Yan Ip
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yam Fung Cheung
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Mohamad Koohi-Moghadam
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China .,Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong Hong Kong SAR P. R. China
| | - Haibo Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xinming Yang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Daniel N Tritton
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yuchuan Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Runming Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Kwan-Ming Ng
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China .,Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University Hangzhou P.R. China
| | - Eric Wai-Choi Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital Hong Kong P. R. China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
15
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Paligaspe P, Weerasinghe S, Dissanayake D, Senthilnithy R. Identify the effect of As(III) on the structural stability of monomeric PKM2 and its carcinogenicity: A molecular dynamics and QM/MM based approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Mo D, Zhu H, Wang J, Hao H, Guo Y, Wang J, Han X, Zou L, Li Z, Yao H, Zhu J, Zhou J, Peng Y, Li J, Meng K. Icaritin inhibits PD-L1 expression by Targeting Protein IκB Kinase α. Eur J Immunol 2021; 51:978-988. [PMID: 33354776 PMCID: PMC8248075 DOI: 10.1002/eji.202048905] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Icaritin, a small molecule currently being investigated in phase III clinical trials in China (NCT03236636 and NCT03236649) for treatment of advanced hepatocellular carcinoma (HCC), is a prenylflavonoid derivative obtained from the Epimedium genus. Previously, it was found that Icaritin decreased the expression of PD-L1, but its direct molecular targets and the underlying mechanisms have not been identified. In this study, we report the identification of IKK-α as the protein target of Icaritin by biotin-based affinity binding assay. The further mutagenesis assay has provided evidence that C46 and C178 in IKK-α were essential amino acids for Icaritin binding to IKK-α, revealing the binding sites of Icaritin to IKK-α for the first time. Functionally, Icaritin inhibited the NF-κB signalling pathway by blocking IKK complex formation, which led to decreased nuclear translocation of NF-κB p65, and subsequent downregulation of PD-L1 expression in a dose-dependent manner. More importantly, PD-L1-positive patients exhibited longer overall survival upon Icaritin therapy. Finally, Icaritin in combination with checkpoints antibodies, such as α-PD-1, has demonstrated much better efficacy than any single therapy in animal models. This is the first report that anticancer effects of Icaritin are mediated, at least in part, by impairing functions of IKK-α.
Collapse
Affiliation(s)
- Dongliang Mo
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Hai Zhu
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jun Wang
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Haibang Hao
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Yuming Guo
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jiaojiao Wang
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Xu Han
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Liangfeng Zou
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Zhongwan Li
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Hua Yao
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jinsong Zhu
- 13110 NE 177th Place #100Plexera LLCWoodinvilleWAUSA
| | - Junma Zhou
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Yong Peng
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jian Li
- Institute of ImmunologyPLAThird Military Medical University (Army Medical University)ChongqingP. R. China
| | - Kun Meng
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| |
Collapse
|
18
|
Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue? JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123160. [PMID: 32574880 DOI: 10.1016/j.jhazmat.2020.123160] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenicosis leads to various irreversible damages in several organs and is considered to be a carcinogen. The effects of chronic arsenic poisoning are a result of an imbalance between pro- and antioxidant homeostasis, oxidative stress, as well as DNA and protein damage. Curcumin, the polyphenolic pigment extracted from the rhizome of Curcuma longa, is well-known for its pleiotropic medicinal effects. Curcumin has been shown to have ameliorative effects in arsenic-induced genotoxicity, nephrotoxicity, hepatotoxicity, angiogenesis, skin diseases, reproductive toxicity, neurotoxicity, and immunotoxicity. This review aims to summarize the scientific evidence on arsenic toxicity in various organs and the ameliorative effects of curcumin on the arsenic toxicity.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
NF-κB inhibitors in treatment and prevention of lung cancer. Biomed Pharmacother 2020; 130:110569. [PMID: 32750649 DOI: 10.1016/j.biopha.2020.110569] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Intracellular signalling pathways have provided excellent resource for drug development particularly in the development of cancer therapeutics. A wide variety of malignancies common in human exhibit aberrant NF-κB constitutive expression which results in tumorigenic processes and cancer survival in a variety of solid tumour, including pancreatic cancer, lung, cervical, prostate, breast and gastric carcinoma. Numerous evidences indicate that NF-κB signalling mechanism is mainly involved in the progression of several cancers which may intensify an enhanced knowledge on its role in disease particularly lung tumorigenesis. This has led to tremendous research in designing a variety of NF-κB antagonists with enhanced clinical applications through different approaches the most common being suppression of IκB kinase (IKK) beta activity. Many NF-κB inhibitors for lung cancer are now under clinical trials. Preliminary results of clinical trials for several of these agents include small-molecule inhibitors and monoclonal antibodies. A few combinatorial treatment therapies are currently under investigation in the clinics and have shown promise, particularly NF-κB inhibition associated with lung cancer.
Collapse
|
20
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Arsenic trioxide and BIBR1532 synergistically inhibit breast cancer cell proliferation through attenuation of NF-κB signaling pathway. Life Sci 2020; 257:118060. [PMID: 32645343 DOI: 10.1016/j.lfs.2020.118060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
AIMS Despite the remarkable anti-proliferative effects of Arsenic trioxide (ATO) in breast cancer cells, the requirement of high, toxic concentrations to induce apoptosis may cause serious side effects in patients. In the present study, we aimed to use BIBR1532, an hTERT inhibitor, in combination with ATO to sensitize MCF7 and MDA-231 cells to lower concentrations of ATO. MAIN METHODS Breast cancer cell lines MCF7 and MDA-231 were cultured and treated with different doses of ATO and BIBR1532 for 48 h and its effects on cell survival and proliferation were analyzed by MTT, crystal violet staining, colony formation assay, cell cycle, AnnexinV/PI and Real-time PCR tests. KEY FINDINGS ATO and BIBR1532 synergistically inhibited proliferation and colony-forming ability of breast cancer cells. Besides, BIBR1532 augmented ATO-induced cytotoxic effects via triggering G1 cell cycle arrest and induction of apoptosis coupled with the down-regulation of NF-κB target genes that were involved in cell cycle progression (e.g. CCND1 and CDK6) and prevention of apoptosis such as Bcl-2, Bcl-xl, c-IAP2, and Survivin Respectively. Moreover, ATO-BIBR1532 significantly reduced the mRNA expression level of RELA, NFKB1, and several validated target genes of the NF-κB signaling pathway including NFKBIA, VEGFC, c-Myc, and hTERT. SIGNIFICANCE The combination of ATO and BIBR1532 synergistically induced its anti-proliferative effect in breast cancer cells by targeting the two key cancer-related pathways, hTERT and NF-κB, and disrupting their feed-forward loop at the same time which result in the reduction of NF-κB transcriptional activity and subsequent down-regulation of its target genes.
Collapse
|
22
|
Edwards RL, Luis PB, Nakashima F, Kunihiro AG, Presley SH, Funk JL, Schneider C. Mechanistic Differences in the Inhibition of NF-κB by Turmeric and Its Curcuminoid Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6154-6160. [PMID: 32378408 PMCID: PMC8406555 DOI: 10.1021/acs.jafc.0c02607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Turmeric extract, a mixture of curcumin and its demethoxy (DMC) and bisdemethoxy (BDMC) isomers, is used as an anti-inflammatory preparation in traditional Asian medicine. Curcumin is considered to be the major bioactive compound in turmeric but less is known about the relative anti-inflammatory potency and mechanism of the other components, their mixture, or the reduced in vivo metabolites. We quantified inhibition of the NF-κB pathway in cells, adduction to a peptide mimicking IκB kinase β, and the role of cellular glutathione as a scavenger of electrophilic curcuminoid oxidation products, suggested to be the active metabolites. Turmeric extracts (IC50 14.5 ± 2.9 μM), DMC (IC50 12.1 ± 7.2 μM), and BDMC (IC50 8.3 ± 1.6 μM), but not reduced curcumin, inhibited NF-κB similar to curcumin (IC50 18.2 ± 3.9 μM). Peptide adduction was formed with turmeric and DMC but not with BDMC, and this correlated with their oxidative degradation. Inhibition of glutathione biosynthesis enhanced the activity of DMC but not BDMC in the cellular assay. These findings suggest that NF-κB inhibition by curcumin and DMC involves their oxidation to reactive electrophiles, whereas BDMC does not require oxidation. Because it has not been established whether curcumin undergoes oxidative transformation in vivo, oxidation-independent BDMC may be a promising alternative to test in clinical trials.
Collapse
Affiliation(s)
- Rebecca L. Edwards
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Paula B. Luis
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Fumie Nakashima
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, U.S.A
| | - Sai-Han Presley
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Janet L. Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, U.S.A
- Department of Medicine, University of Arizona, Tucson, AZ 85719, U.S.A
| | - Claus Schneider
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
23
|
Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation. Clin Sci (Lond) 2020; 133:2045-2059. [PMID: 31654061 DOI: 10.1042/cs20190514] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. METHODS Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. RESULTS We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. CONCLUSION Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.
Collapse
|
24
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
26
|
Zhang D, Liu Y, Luo Z, Chen Y, Xu A, Liang Y, Wu B, Tong X, Liu X, Shen H, Liu L, Wei Y, Zhou H, Liu Y, Zhou F. The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia. Free Radic Biol Med 2020; 146:275-286. [PMID: 31730934 DOI: 10.1016/j.freeradbiomed.2019.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022]
Abstract
Chemoresistance and high incidence of relapse in acute myeloid leukemia (AML) patients are associated with thioredoxin (Trx) overexpression. Thus, targeting the Trx system has emerged as a promising approach to treating AML. Both arsenicals and azelaic acid (AZA) are thioredoxin reductase (TrxR) inhibitors and possess antileukemic effects. In this study, to exploit agents with higher potency and lower toxicity, we got some organic arsenicals and further synthesized a series of targeted compounds by binding AZA to organic arsenicals, and then screened the most effective one, N-(4-(1, 3, 2-dithiarsinan-2-yl) phenyl)-azelamide (A-Z2). A-Z2 showed a stronger inhibitory effect against TrxR activity and in AML cell lines than did AZA or arsenicals. Additionally, A-Z2 was less toxic to healthy cells compared with traditional chemotherapeutic drugs. A-Z2 induces apoptosis by collapsing of mitochondrial membrane potential, reducing ATP level, releasing of cytochrome c and TNF-α, activating of caspase 9, 8 and 3. Analysis of the mechanism revealed that A-Z2 activates the intrinsic apoptotic pathway by directly selectively targeting TrxR/Trx and indirectly inhibiting NF-κB. A-Z2's better efficacy and safety profile against arsenicals and azelaic acid were also evident in vivo. A-Z2 had better plasma stability and biological activity in rats. A-Z2-treated mice displayed significant symptom relief and prolonged survival in a patient-derived xenograft (PDX) AML model. Herein, our study provides a novel antitumor candidate and approach for treating AML.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yujiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyi Luo
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yanling Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Anjie Xu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Haibing Zhou
- State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China.
| |
Collapse
|
27
|
Pan SP, Pirker T, Kunert O, Kretschmer N, Hummelbrunner S, Latkolik SL, Rappai J, Dirsch VM, Bochkov V, Bauer R. C13 Megastigmane Derivatives From Epipremnum pinnatum: β-Damascenone Inhibits the Expression of Pro-Inflammatory Cytokines and Leukocyte Adhesion Molecules as Well as NF-κB Signaling. Front Pharmacol 2019; 10:1351. [PMID: 31849641 PMCID: PMC6892967 DOI: 10.3389/fphar.2019.01351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
In order to identify active constituents and to gain some information regarding their mode of action, extracts from leaves of Epipremnum pinnatum were tested for their ability to inhibit inflammatory gene expression in endothelial- and monocyte-like cells (HUVECtert and THP-1, respectively). Bioactivity-guided fractionation using expression of PTGS2 (COX-2) mRNA as a readout resulted in the isolation of two C13 megastigmane glycosides, gusanlungionoside C (1) and citroside A (3), and the phenylalcohol glycoside phenylmethyl-2-O-(6-O-rhamnosyl)-ß-D-galactopyranoside (2). Further analysis identified six additional megastigmane glycosides and the aglycones β-damascenone (10), megastigmatrienone (11), 3-hydroxy-β-damascenone (12), and 3-oxo-7,8-dihydro-α-ionol (13). Pharmacological analysis demonstrated that 10 inhibits LPS-stimulated induction of mRNAs encoding for proinflammatory cytokines and leukocyte adhesion molecules, such as TNF-α, IL-1β, IL-8, COX-2, E-selectin, ICAM-1, and VCAM-1 in HUVECtert and THP-1 cells. 10 inhibited induction of inflammatory genes in HUVECtert and THP-1 cells treated with different agonists, such as TNF-α, IL-1β, and LPS. In addition to mRNA, also the upregulation of inflammatory proteins was inhibited by 10 as demonstrated by immune assays for cell surface E-selectin and secreted TNF-α. Finally, using a luciferase reporter construct, it was shown, that 10 inhibits NF-κB-dependent transcription. Therefore, we hypothesize that inhibition of NF-κB by β-damascenone (10) may represent one of the mechanisms underlying the in vitro anti-inflammatory activity of Epipremnum pinnatum extracts.
Collapse
Affiliation(s)
- San-Po Pan
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Teresa Pirker
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Olaf Kunert
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Scarlet Hummelbrunner
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Simone L Latkolik
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Julia Rappai
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| |
Collapse
|
28
|
Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review. Curr Neuropharmacol 2019; 17:201-213. [PMID: 30081786 PMCID: PMC6425079 DOI: 10.2174/1570159x16666180803164238] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sar-coma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline expo-sure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is corre-lated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mito-gen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen tox-icity and neurotoxicity.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mojtaba Limoee
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Tsuyama H, Fujishiro H, Himeno S, Sumi D. Arsenite suppresses NO production evoked by lipopolysaccharide and poly(I:C) via the suppression of interferon-β expression in RAW264.7 cells. J Toxicol Sci 2019; 44:83-92. [PMID: 30726814 DOI: 10.2131/jts.44.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Immunological functions are disturbed in humans who have been chronically exposed to arsenic via contaminated groundwater. Little is known about the specific mechanisms underlying the impairment of immunological defense system caused by arsenic. The activation of macrophage cells upon infection with bacteria and viruses plays important roles in the defense against these pathogens. Here we show that exposure to arsenite (As(III)) suppresses nitric oxide (NO) production in murine RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS) and poly(I:C), the compounds mimicking bacterial and viral infection, respectively. As(III) suppressed the LPS- or poly(I:C)-evoked induction of inducible NO synthase (iNOS) without affecting the transactivation of NF-κB. As the interferon (IFN)-β/STAT1 pathway is also involved in the induction of iNOS in addition to NF-κB, we examined the effects of As(III) on the expression and secretion of IFN-β, the expression of the components of IFN-α/β receptor, the phosphorylation of STAT1, and the levels of cytokines involved in STAT1 activation. The results showed that the expression and secretion of IFN-β were specifically suppressed by As(III) treatment in RAW264.7 cells stimulated with LPS or poly(I:C). These results suggest that As(III) suppresses the expression and secretion of IFN-β, leading to the reduced STAT1 activation and consequently the reduced iNOS induction in macrophage cells. Our data suggest an important role of the arsenic-induced suppression of IFN-β on the disturbances in immunological defense against both bacteria and viruses.
Collapse
Affiliation(s)
- Hiromasa Tsuyama
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
30
|
Tchounwou PB, Yedjou CG, Udensi UK, Pacurari M, Stevens JJ, Patlolla AK, Noubissi F, Kumar S. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. ENVIRONMENTAL TOXICOLOGY 2019; 34:188-202. [PMID: 30511785 PMCID: PMC6328315 DOI: 10.1002/tox.22673] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 05/06/2023]
Abstract
Human exposure to inorganic arsenic (iAs) is a global health issue. Although there is strong evidence for iAs-induced toxicity at higher levels of exposure, many epidemiological studies evaluating its effects at low exposure levels have reported mixed results. We comprehensively reviewed the literature and evaluated the scientific knowledge on human exposure to arsenic, mechanisms of action, systemic and carcinogenic effects, risk characterization, and regulatory guidelines. We identified areas where additional research is needed. These priority areas include: (1) further development of animal models of iAs carcinogenicity to identify molecular events involved in iAs carcinogenicity; (2) characterization of underlying mechanisms of iAs toxicity; (3) assessment of gender-specific susceptibilities and other factors that modulate arsenic metabolism; (4) sufficiently powered epidemiological studies to ascertain relationship between iAs exposure and reproductive/developmental effects; (5) evaluation of genetic/epigenetic determinants of iAs effects in children; and (6) epidemiological studies of people chronically exposed to low iAs concentrations.
Collapse
Affiliation(s)
- Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Clement G. Yedjou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Udensi K. Udensi
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Maricica Pacurari
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Jacqueline J. Stevens
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Anita K. Patlolla
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| |
Collapse
|
31
|
Robak P, Drozdz I, Szemraj J, Robak T. Drug resistance in multiple myeloma. Cancer Treat Rev 2018; 70:199-208. [DOI: 10.1016/j.ctrv.2018.09.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
|
32
|
Clewell HJ, Yager JW, Greene TB, Gentry PR. Application of the adverse outcome pathway (AOP) approach to inform mode of action (MOA): A case study with inorganic arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:893-912. [PMID: 30230972 DOI: 10.1080/15287394.2018.1500326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to establish a process for deriving a chemical-specific mode of action (MOA) from chemical-agnostic adverse outcome pathway (AOPs), using inorganic arsenic (iAs) as a case study. The AOP developed for this case study are related to disruption of cellular signaling by chemicals that strongly bind to vicinal dithiols in cellular proteins, leading to disruption of inflammatory and oxidative stress signaling along with inhibition of the DNA damage responses. The proposed MOA for iAs incorporates this AOP, overlaid on a background of increasing oxidative stress and/or co-exposure to mutagenic chemicals or radiation. The most challenging aspect of developing a MOA from AOP is the incorporation of metabolism and dose-response, neither of which may be considered in the development of an AOP. The cellular responses to relatively low concentrations (below 100 parts per billion) of iAs in drinking water appear to be secondary to binding of trivalent arsenite and its trivalent metabolite, monomethyl arsenous acid to key cellular vicinal dithiols in target tissues, resulting in a co-carcinogenic MOA. The proposed AOP may also be applied to non-cancer endpoints, enabling an integrated approach to conducting a risk assessment for iAs.
Collapse
|
33
|
Nagai K, Hou L, Li L, Nguyen B, Seale T, Shirley C, Ma H, Levis M, Ghiaur G, Duffield A, Small D. Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 2018; 9:32885-32899. [PMID: 30250637 PMCID: PMC6152471 DOI: 10.18632/oncotarget.25972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with FLT3/ITD mutations have a poor prognosis. Monotherapy with selective FLT3 tyrosine kinase inhibitors (TKIs) have shown transient and limited efficacy due to the development of resistance. Arsenic trioxide (ATO, As2O3) has been proven effective in treating acute promyelocytic leukemia (APL) and has shown activity in some cases of refractory and relapsed AML and other hematologic malignances. We explored the feasibility of combining FLT3 TKIs with ATO in the treatment of FLT3/ITD+ leukemias. The combination of FLT3 TKIs with ATO showed synergistic effects in reducing proliferation, viability and colony forming ability, and increased apoptosis in FLT3/ITD+ cells and primary patient samples. In contrast, no cooperativity was observed against wild-type FLT3 leukemia cells. ATO reduced expression of FLT3 RNA and its upstream transcriptional regulators (HOXA9, MEIS1), and induced poly-ubiquitination and degradation of the FLT3 protein, partly through reducing its binding with USP10. ATO also synergizes with FLT3 TKIs to inactivate FLT3 autophosphorylation and phosphorylation of its downstream signaling targets, including STAT5, AKT and ERK. Furthermore, ATO combined with sorafenib, a FLT3 TKI, in vivo reduced growth of FLT3/ITD+ leukemia cells in NSG recipients. In conclusion, these results suggest that ATO is a potential candidate to study in clinical trials in combination with FLT3 TKIs to improve the treatment of FLT3/ITD+ leukemia.
Collapse
Affiliation(s)
- Kozo Nagai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lihong Hou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hayley Ma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriel Ghiaur
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Zhou Y, Tan Z, Chen K, Wu W, Zhu J, Wu G, Cao L, Zhang X, Zeng X, Li J, Zhang W. Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway. Mol Carcinog 2018; 57:1181-1190. [PMID: 29745440 DOI: 10.1002/mc.22834] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 01/11/2023]
Abstract
Gliomas are common, aggressive central nervous system tumors with poor overall survival rates. Despite improvements in neurosurgery, chemotherapy, and radiotherapy, the outcomes of patients with malignant gliomas remain poor. Therefore, increased knowledge of the molecular mechanisms that regulate glioma progression is crucial to identify novel therapeutic targets. Here, we reported that SHCBP1, a member of Src homolog and collagen homolog (Shc) family, was significantly overexpressed in glioma tissues and glioma cell lines compared to the corresponding normal tissues and cells. Ectopic overexpression of SHCBP1 promoted glioma cell migration and invasion, whereas knockdown of endogenous SHCBP1 had the opposite effects. Importantly, we demonstrated that SHCBP1 promoted aggressiveness in gliomas by activating the NF-κB signaling pathway. Collectively, our study indicates that SHCBP1 plays a pivotal role to promote progression in gliomas and targeting the oncogenic effects of SHCBP1 may provide a clinical strategy to treat gliomas.
Collapse
Affiliation(s)
- Yanqing Zhou
- Neurosurgical Research Institute, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, Guangdong, China
| | - Zhanyao Tan
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jinrong Zhu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Geyan Wu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Department of Pathology (Clinical Biobanks), Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Xin Zeng
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhang
- Neurosurgical Research Institute, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Abstract
The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.
Collapse
|
36
|
Targeting GLI Transcription Factors in Cancer. Molecules 2018; 23:molecules23051003. [PMID: 29695137 PMCID: PMC6100584 DOI: 10.3390/molecules23051003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been observed in a wide variety of tumors and accounts for more than 25% of human cancer deaths. Inhibitors targeting the Hh signal transducer Smoothened (SMO) are widely used and display a good initial efficacy in patients suffering from basal cell carcinoma (BCC); however, a large number of patients relapse. Though SMO mutations may explain acquired therapy resistance, a growing body of evidence suggests that the non-canonical, SMO-independent activation of the Hh pathway in BCC patients can also account for this adverse effect. In this review, we highlight the importance of glioma-associated oncogene (GLI) transcription factors (the main downstream effectors of the canonical and the non-canonical Hh cascade) and their putative role in the regulation of multiple oncogenic signaling pathways. Moreover, we discuss the contribution of the Hh signaling to malignant transformation and propose GLIs as central hubs in tumor signaling networks and thus attractive molecular targets in anti-cancer therapies.
Collapse
|
37
|
Novel dual-targeting anti-proliferative dihydrotriazine-chalcone derivatives display suppression of cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Food Chem Toxicol 2018; 116:238-248. [PMID: 29630947 DOI: 10.1016/j.fct.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 02/03/2023]
Abstract
Chalcones present in edible plants possess anti-cancer and anti-inflammatory properties, with the Michael acceptor moiety reported to be responsible for their biological activities. In this study, two novel dihydrotriazine-chalcone compounds previously identified to exert anti-proliferative effects through dual-targeting of dihydrofolate reductase (DHFR) and thioredoxin reductase (TrxR), were evaluated for their anti-invasive and anti-inflammatory abilities. At non-lethal concentrations, the compounds suppressed in vitro migration of MDA-MB-231 breast carcinoma cells, which was correlated with a dose-dependent downregulation of phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) expression and secretion. At similar concentrations, these chalcone-based compounds suppressed expression of inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-stimulated murine macrophage-like RAW 264.7 cells, as well as tumor necrosis factor alpha (TNF-α) in LPS-stimulated human monocytes isolated from healthy donors. Mechanistically, inhibition of cancer cell invasion and inflammation by the compounds were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway, which corroborated with the reported mechanism of action of chalcones. Their abilities to target multiple biological mediators relevant to multi-step carcinogenesis and with bioactivities stronger than those of the parent chalcone scaffold have warranted dihydrotriazine-chalcone compounds as promising candidates for use in pharmacological intervention of aggressive cancers.
Collapse
|
38
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
39
|
Abstract
The transcription factor nuclear factor-κB (NF-κB) modulates gene expression in diverse cellular processes such as innate immune response, embryogenesis and organ development, cell proliferation and apoptosis, and stress responses to a variety of noxious stimuli. When cellular production of reactive oxygen species (ROS) overwhelms its antioxidant capacity, it leads to a state of oxidative stress, which in turn contributes to the pathogenesis of several human diseases. Different models of oxidative stress have been studied to elucidate the effects of oxidant stress on NF-κB related activities. ROS can both activate and repress NF-κB signaling in a phase and context dependent manner. The NF-κB pathway can have both anti- and pro-oxidant roles in the setting of oxidative stress. In this review, we focus on role of oxidative stress on different mediators of the NF-κB pathway, and the role of NF-κB activation in the modulation of oxidative stress. A greater understanding of the complex interplay between the NF-κB signaling and oxidative stress may lead to the development of therapeutic strategies for the treatment of a myriad of human diseases for which oxidative stress has an etiologic role.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA. Address: 1102 Bates Avenue, MC: FC530.01, Houston, Texas 77030
| |
Collapse
|
40
|
Chowdhury M, Mesalam A, Khan I, Joo MD, Lee KL, Xu L, Afrin F, Kong IK. Improved developmental competence in embryos treated with lycopene during in vitro culture system. Mol Reprod Dev 2018; 85:46-61. [DOI: 10.1002/mrd.22937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Affiliation(s)
- M.M.R. Chowdhury
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
- Faculty of Animal Science and Veterinary Medicine, Department of Physiology and Pharmacology; Patuakhali Science and Technology University; Patuakhali Bangladesh
| | - Ayman Mesalam
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
- Faculty of Veterinary Medicine, Department of Theriogenology; Zagazig University; Zagazig Egypt
| | - Imran Khan
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
- Department of Chemistry; Bacha khan University; Charsadda Khyber Pakhtunkhwa Pakistan
| | - Myeong-Don Joo
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
| | - Kyeong-Lim Lee
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
| | - Lianguang Xu
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
| | - Fahmida Afrin
- Department of Microbiology and Virology, College of Veterinary Medicine; Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science; Division of Applied Life Science (BK21 Plus); Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
- Institute of Agriculture and Life Science; Gyeongsang National University; Jinju Gyeongnam Province Republic of Korea
| |
Collapse
|
41
|
Sharma A, Flora SJS. Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol 2018; 45:11-20. [PMID: 29173466 DOI: 10.1016/j.jtemb.2017.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
Abstract
Consumption of arsenic contaminated water causes serious skin disease and cancer in a significant number of exposed people. Chelating agents, consider an expensive therapy, are employed in the treatment of arsenic intoxication. There are reports which suggest that the poorest suffer the most from arsenicosis. This may be due to improper diet intake, consist of low protein and micronutrients which increase the vulnerability to arsenic-related disorders. Several human studies demonstrated the associations between malnourishment and the development of arsenic-caused skin lesions, skin cancer and cardiovascular effects. Thus, there is an urgent need of implementation of mitigation strategies for improving the health of exposed populations. Nutrition enhances the detoxification process so food rich in vitamins, protein, antioxidants help in its detoxification process. Methylation is the detoxification process which takes place via S-adenosylmethionine (SAM). It is a methyl group donor and it derived its methyl group from diet. Nutritional intervention thus may appear as a practical and inexpensive approach. Nutrition provides protection from toxic effect of arsenic by two ways (i) methylation of As (ii) antioxidants which provides protection against free radical species. The governments and NGOs may run awareness programmes in arsenic affected area regarding prevention and alternate therapy which can decrease the susceptibility of the exposed population. They could also help in distributing cheaper, high protein diets particularly to the masses who cannot afford such foods. Thus, to prevent arsenicosis alternate therapy and proper nutrition could be the important strategy for alleviating its toxic effects. This mini review provides an insight on the importance of nutrition in preventing adverse effect cause by arsenic to suffer population.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
42
|
Del Prete D, Taglialatela-Scafati O, Minassi A, Sirignano C, Cruz C, Bellido ML, Muñoz E, Appendino G. Electrophilic Triterpenoid Enones: A Comparative Thiol-Trapping and Bioactivity Study. JOURNAL OF NATURAL PRODUCTS 2017; 80:2276-2283. [PMID: 28753294 DOI: 10.1021/acs.jnatprod.7b00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bardoxolone methyl (1) is the quintessential member of triterpenoid cyanoacrylates, an emerging class of bioactive compounds capable of transient covalent binding to thiols. The mechanistic basis for this unusual "pulsed reactivity" profile and the mode of its biological translation are unknown. To provide clues on these issues, a series of Δ1-dehydrooleanolates bearing an electron-withdrawing group at C-2 (7a-m) were prepared from oleanolic acid (3a) and comparatively investigated in terms of reactivity with thiols and bioactivity against a series of electrophile-sensitive transcription factors (Nrf2, NF-κB, STAT3). The emerging picture suggests that the triterpenoid scaffold sharply decreases the reactivity of the enone system by steric encumbrance and that only strongly electrophilic and sterically undemanding substituents such as a cyanide or a carboxylate group can re-establish Michael reactivity, albeit in a transient way for the cyanide group. In general, a substantial dissection between the thiol-trapping ability and the modulation of biological end-points sensitive to thiol alkylation was observed, highlighting the role of shape complementarity for the activity of triterpenoid thia-Michael acceptors.
Collapse
Affiliation(s)
- Danilo Del Prete
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Largo Donegani 2, 28100 Novara, Italy
| | | | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Largo Donegani 2, 28100 Novara, Italy
| | - Carmina Sirignano
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Montesano 49, 80131 Napoli, Italy
| | - Cristina Cruz
- VivaCell Biotechnology España, Parque Científico Tecnológico de Córdoba , 14014 Córdoba, Spain
| | - Maria L Bellido
- VivaCell Biotechnology España, Parque Científico Tecnológico de Córdoba , 14014 Córdoba, Spain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba , Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
43
|
Tan ZH, Zhang Y, Tian Y, Tan W, Li YH. IκB kinase b Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16 + Cervical Cancer Cells. Chin Med J (Engl) 2017; 129:2703-2707. [PMID: 27824003 PMCID: PMC5126162 DOI: 10.4103/0366-6999.193463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Methods: Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16− (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. Results: The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16− (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. Conclusions: IKKβ may mediate the downregulation of p53 and p21 by LPS in HPV16+ cervical cancer cells.
Collapse
Affiliation(s)
- Zhi-Hui Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Yan Tian
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Wei Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ying-Hua Li
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
44
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
45
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
46
|
Xie SL, Yang MH, Chen K, Huang H, Zhao XW, Zang YS, Li B. Efficacy of Arsenic Trioxide in the Treatment of Malignant Pleural Effusion Caused by Pleural Metastasis of Lung Cancer. Cell Biochem Biophys 2016; 71:1325-33. [PMID: 25413961 DOI: 10.1007/s12013-014-0352-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the study was to investigate the mechanism of arsenic trioxide (As2O3) in the treatment of malignant pleural effusion (MPE) caused by pleural metastasis of lung cancer. A mouse model of MPE caused by pleural metastasis of lung cancer was first established, and As2O3 was then intraperitoneally injected to treat the MPE. Mice treated with bevacizumab and bleomycin were included as positive controls, and placebo equivalents were also used as negative controls. The effects of As2O3 on MPE volume, pleural vessel density, vascular permeability, expression of angiogenic function-related factors, including vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-α), as well as nuclear factor-κB (NF-κB) activity in pleural carcinomatosis, were observed. Intraperitoneal injection of As2O3 reduced the volume of MPE and decreased vascular density and permeability in pleural metastatic nodules in a dose-dependent manner. Moreover, dose-dependent decreases in VEGF and TNF-α expression in MPE, and NF-κB activity in pleural carcinomatosis, were also found after As2O3 treatment. We showed that As2O3 can down-regulate VEGF expression via inhibition of NF-κB, and decrease vascular density and permeability in pleural metastatic nodules, thereby eliciting its effects on MPE caused by pleural metastasis of lung cancer. Our results provide a foundation for an As2O3-based clinical treatment program.
Collapse
Affiliation(s)
- She-Ling Xie
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Meng-Hang Yang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Kun Chen
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Hai Huang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yuan-Sheng Zang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China.
| | - Bing Li
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China.
| |
Collapse
|
47
|
Li T, Wong VKW, Jiang ZH, Jiang SP, Liu Y, Wang TY, Yao XJ, Su XH, Yan FG, Liu J, Leung ELH, Yi XQ, Wong YF, Zhou H, Liu L. Mutation of cysteine 46 in IKK-beta increases inflammatory responses. Oncotarget 2016; 6:31805-19. [PMID: 26378659 PMCID: PMC4741641 DOI: 10.18632/oncotarget.5567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/13/2015] [Indexed: 12/27/2022] Open
Abstract
Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Zhi Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Shui Ping Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yan Liu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ting Yu Wang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiao Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Xiao Hui Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Feng Gen Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Xiao Qin Yi
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yuen Fan Wong
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| |
Collapse
|
48
|
Zhou Y, Wu Z, Cao X, Ding L, Wen Z, Bian JS. HNO suppresses LPS-induced inflammation in BV-2 microglial cells via inhibition of NF-κB and p38 MAPK pathways. Pharmacol Res 2016; 111:885-895. [PMID: 27507578 DOI: 10.1016/j.phrs.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Both hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous mediators. We and others previously reported that these two gases react with each other to generate a new mediator, nitroxyl (HNO), and regulate cardiovascular functions. In this study, we demonstrated for the first time that the interaction between the two gases also existed in microglia. The biological functions of HNO in microglial cells were further studied with Angeli's salt (AS), an HNO donor. We found that AS attenuated lipopolysaccharide (LPS)-evoked production of reactive oxygen species (ROS) and pro-inflammatory cytokines (e.g. IL-1β and TNFα) through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). HNO significantly reduced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor-κB (NF-κB) through suppression of phosphorylation p65 and IκBα. The above effects were abolished by l-cysteine, an HNO scavenger, but were not mimicked by nitrite, another product of AS during generating HNO. A Cys-179-to-Ala mutation in inhibitory κB kinase β (IKKβ) mimicked the effect of HNO on LPS-induced NF-κB activation. Interestingly, AS abolished the inflammation in cells overexpressing WT-IKKβ, but had no significant effect in cells overexpressing C179A-IKKβ. These data suggest that HNO may act on C179 to prevent IKKβ-dependent inflammation. Taken together, our data demonstrated for the first time that H2S interacts with NO to generate HNO in microglial cells. HNO produces anti-inflammatory effects through suppressing the IKKβ dependent NF-κB activation and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yebo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - ZhengShun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
49
|
Hijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance. Sci Rep 2016; 6:30601. [PMID: 27477106 PMCID: PMC4967897 DOI: 10.1038/srep30601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Arsenic-induced altered microglial activity leads to neuronal death, but the causative mechanism remains unclear. The present study showed, arsenic-exposed (10 μM) microglial (N9) culture supernatant induced bystander death of neuro-2a (N2a), which was further validated with primary microglia and immature neuronal cultures. Results indicated that arsenic-induced GSH synthesis by N9 unfavorably modified the extracellular milieu for N2a by lowering cystine and increasing glutamate concentration. Similar result was observed in N9-N2a co-culture. Co-exposure of arsenic and 250 μM glutamate, less than the level (265 μM) detected in arsenic-exposed N9 culture supernatant, compromised N2a viability which was rescued by cystine supplementation. Therefore, microglia executes bystander N2a death by competitive inhibition of system Xc- (xCT) through extracellular cystine/glutamate imbalance. We confirmed the role of xCT in mediating bystander N2a death by siRNA inhibition studies. Ex-vivo primary microglia culture supernatant from gestationally exposed mice measured to contain lower cystine and higher glutamate compared to control and N-acetyl cysteine co-treated group. Immunofluorescence staining of brain cryosections from treated group showed more dead immature neurons with no such effect on microglia. Collectively, we showed, in presence of arsenic microglia alters cystine/glutamate balance through xCT in extracellular milieu leading to bystander death of immature neurons.
Collapse
|
50
|
Rogalska A, Sliwinska A, Kasznicki J, Drzewoski J, Marczak A. Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53. Asian Pac J Cancer Prev 2016; 17:993-1001. [DOI: 10.7314/apjcp.2016.17.3.993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|