1
|
Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021; 12:742806. [PMID: 34764944 PMCID: PMC8576121 DOI: 10.3389/fmicb.2021.742806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023] Open
Abstract
Translation is an important step in gene expression. Initiation of translation is rate-limiting, and it is phylogenetically more diverse than elongation or termination. Bacteria contain only three initiation factors. In stark contrast, eukaryotes contain more than 10 (subunits of) initiation factors (eIFs). The genomes of archaea contain many genes that are annotated to encode archaeal homologs of eukaryotic initiation factors (aIFs). However, experimental characterization of aIFs is scarce and mostly restricted to very few species. To broaden the view, the protein-protein interaction network of aIFs in the halophilic archaeon Haloferax volcanii has been characterized. To this end, tagged versions of 14 aIFs were overproduced, affinity isolated, and the co-isolated binding partners were identified by peptide mass fingerprinting and MS/MS analyses. The aIF-aIF interaction network was resolved, and it was found to contain two interaction hubs, (1) the universally conserved factor aIF5B, and (2) a protein that has been annotated as the enzyme ribose-1,5-bisphosphate isomerase, which we propose to rename to aIF2Bα. Affinity isolation of aIFs also led to the co-isolation of many ribosomal proteins, but also transcription factors and subunits of the RNA polymerase (Rpo). To analyze a possible coupling of transcription and translation, seven tagged Rpo subunits were overproduced, affinity isolated, and co-isolated proteins were identified. The Rpo interaction network contained many transcription factors, but also many ribosomal proteins as well as the initiation factors aIF5B and aIF2Bα. These results showed that transcription and translation are coupled in haloarchaea, like in Escherichia coli. It seems that aIF5B and aIF2Bα are not only interaction hubs in the translation initiation network, but also key players in the transcription-translation coupling.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Phillipps University Marburg, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
2
|
Burgers LD, Fürst R. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation. Pharmacol Res 2021; 170:105535. [PMID: 34058326 DOI: 10.1016/j.phrs.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic protein synthesis is the highly conserved, complex mechanism of translating genetic information into proteins. Although this process is essential for cellular homoeostasis, dysregulations are associated with cellular malfunctions and diseases including cancer and diabetes. In the challenging and ongoing search for adequate treatment possibilities, natural products represent excellent research tools and drug leads for new interactions with the translational machinery and for influencing mRNA translation. In this review, bacterial-, marine- and plant-derived natural compounds that interact with different steps of mRNA translation, comprising ribosomal assembly, translation initiation and elongation, are highlighted. Thereby, the exact binding and interacting partners are unveiled in order to accurately understand the mode of action of each natural product. The pharmacological relevance of these compounds is furthermore assessed by evaluating the observed biological activities in the light of translational inhibition and by enlightening potential obstacles and undesired side-effects, e.g. in clinical trials. As many of the natural products presented here possess the potential to serve as drug leads for synthetic derivatives, structural motifs, which are indispensable for both mode of action and biological activities, are discussed. Evaluating the natural products emphasises the strong diversity of their points of attack. Especially the fact that selected binding partners can be set in direct relation to different diseases emphasises the indispensability of natural products in the field of drug development. Discovery of new, unique and unusual interacting partners again renders them promising tools for future research in the field of eukaryotic mRNA translation.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
3
|
Schmitz A, Pinheiro Marques J, Oertig I, Maharjan N, Saxena S. Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Front Cell Neurosci 2021; 15:637548. [PMID: 33679328 PMCID: PMC7930069 DOI: 10.3389/fncel.2021.637548] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options.
Collapse
Affiliation(s)
- Alexander Schmitz
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - João Pinheiro Marques
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irina Oertig
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47:101169. [PMID: 33484951 PMCID: PMC7887651 DOI: 10.1016/j.molmet.2021.101169] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global rise of metabolic disorders, such as obesity, type 2 diabetes, and cardiovascular disease, demands a thorough molecular understanding of the cellular mechanisms that govern health or disease. The endoplasmic reticulum (ER) is a key organelle for cellular function and metabolic adaptation and, therefore disturbed ER function, known as "ER stress," is a key feature of metabolic disorders. SCOPE OF REVIEW As ER stress remains a poorly defined phenomenon, this review provides a general guide to understanding the nature, etiology, and consequences of ER stress in metabolic disorders. We define ER stress by its type of stressor, which is driven by proteotoxicity, lipotoxicity, and/or glucotoxicity. We discuss the implications of ER stress in metabolic disorders by reviewing evidence implicating ER phenotypes and organelle communication, protein quality control, calcium homeostasis, lipid and carbohydrate metabolism, and inflammation as key mechanisms in the development of ER stress and metabolic dysfunction. MAJOR CONCLUSIONS In mammalian biology, ER is a phenotypically and functionally diverse platform for nutrient sensing, which is critical for cell type-specific metabolic control by hepatocytes, adipocytes, muscle cells, and neurons. In these cells, ER stress is a distinct, transient state of functional imbalance, which is usually resolved by the activation of adaptive programs such as the unfolded protein response (UPR), ER-associated protein degradation (ERAD), or autophagy. However, challenges to proteostasis also impact lipid and glucose metabolism and vice versa. In the ER, sensing and adaptive measures are integrated and failure of the ER to adapt leads to aberrant metabolism, organelle dysfunction, insulin resistance, and inflammation. In conclusion, the ER is intricately linked to a wide spectrum of cellular functions and is a critical component in maintaining and restoring metabolic health.
Collapse
Affiliation(s)
- Imke L Lemmer
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nazia Hilal
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany; Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|
5
|
Chen B, Hong W, Yang P, Tang Y, Zhao Y, Aguilar ZP, Xu H. Nano Zinc Oxide Induced Fetal Mice Growth Restriction, Based on Oxide Stress and Endoplasmic Reticulum Stress. NANOMATERIALS 2020; 10:nano10020259. [PMID: 32024284 PMCID: PMC7075166 DOI: 10.3390/nano10020259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
ZnO NPs have been assessed to show adverse effects on reproductive organs, but the molecular mechanisms of reproductive toxicity have not been sufficiently studied. In this research, the dosage effects from the oral exposure of ZnO NPs (30 nm) to pregnant mice in gestation day 10.5 to 17.5 was analyzed. Pregnant mice exposed to ZnO NPs induced dam injury, mice fetal growth restriction, and the fetus number decreased. The pathological evaluation showed that ZnO NPs exposure caused placental spongiotrophoblast area decease and structural damage. The RT-qPCR and immunocytochemistry data indicated that ZnO NPs could induce placenta oxide stress, endoplasmic reticulum stress responses, apoptosis, and altered placental function. These findings indicated that ZnO NPs could induce dam injury and fetal growth restriction. Reproductive toxicity of ZnO NPs may be due to placental injury and function alteration caused by apoptosis, oxide stress, and endoplasmic reticulum stress after ZnO NPs exposure.
Collapse
Affiliation(s)
- Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Pengfei Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
- Correspondence: ; Tel.: +0086-791-8830-4447 ext. 9520; Fax: +008s6-791-8830-4400
| |
Collapse
|
6
|
Young-Baird SK, Lourenço MB, Elder MK, Klann E, Liebau S, Dever TE. Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB. Mol Cell 2019; 77:875-886.e7. [PMID: 31836389 DOI: 10.1016/j.molcel.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Dysregulation of cellular protein synthesis is linked to a variety of diseases. Mutations in EIF2S3, encoding the γ subunit of the heterotrimeric eukaryotic translation initiation factor eIF2, cause MEHMO syndrome, an X-linked intellectual disability disorder. Here, using patient-derived induced pluripotent stem cells, we show that a mutation at the C terminus of eIF2γ impairs CDC123 promotion of eIF2 complex formation and decreases the level of eIF2-GTP-Met-tRNAiMet ternary complexes. This reduction in eIF2 activity results in dysregulation of global and gene-specific protein synthesis and enhances cell death upon stress induction. Addition of the drug ISRIB, an activator of the eIF2 guanine nucleotide exchange factor, rescues the cell growth, translation, and neuronal differentiation defects associated with the EIF2S3 mutation, offering the possibility of therapeutic intervention for MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA.
| | - Maíra Bertolessi Lourenço
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. Int J Mol Sci 2019; 20:ijms20040939. [PMID: 30795538 PMCID: PMC6412873 DOI: 10.3390/ijms20040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.
Collapse
|
8
|
Okamoto K, Rausch JW, Wakashin H, Fu Y, Chung JY, Dummer PD, Shin MK, Chandra P, Suzuki K, Shrivastav S, Rosenberg AZ, Hewitt SM, Ray PE, Noiri E, Le Grice SFJ, Hoek M, Han Z, Winkler CA, Kopp JB. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 2018; 1:188. [PMID: 30417125 PMCID: PMC6220249 DOI: 10.1038/s42003-018-0188-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
APOL1 risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that APOL1 risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to APOL1 risk alleles, suggesting that APOL1 RNA but not protein is required for the effect. Podocyte expression of APOL1 risk allele RNA, but not protein, in transgenic mice induces glomerular injury and proteinuria. Structural analysis of the APOL1 RNA shows that the risk variants possess secondary structure serving as a scaffold for tandem PKR binding and activation. These findings provide a mechanism by which APOL1 variants damage podocytes and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Koji Okamoto
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Jason W Rausch
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Hidefumi Wakashin
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Joon-Yong Chung
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Myung K Shin
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Preeti Chandra
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Kosuke Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shashi Shrivastav
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD, 21287, USA
| | - Stephen M Hewitt
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patricio E Ray
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Eisei Noiri
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Stuart F J Le Grice
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Maarten Hoek
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Zhe Han
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, 8560 Progress Dr., Frederick, MD, 21702, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Kashiwagi K, Ito T, Yokoyama S. Crystal structure of eIF2B and insights into eIF2-eIF2B interactions. FEBS J 2016; 284:868-874. [PMID: 27627185 DOI: 10.1111/febs.13896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Eukaryotic translation initiation factor 2B (eIF2B), a heterodecameric complex of two sets of the α, β, γ, δ, and ε subunits, is the guanine nucleotide exchange factor (GEF) specific for eIF2, a heterotrimeric G protein consisting of the α, β, and γ subunits. The eIF2 protein binds GTP on the γ subunits and delivers an initiator methionyl-tRNA (Met-tRNAiMet ) to the ribosome. The GEF activity of eIF2B is inhibited by stress-induced phosphorylation of Ser51 in the α subunit of eIF2, which leads to lower amounts of active eIF2 and a limited quantity of Met-tRNAiMet for the ribosome, resulting in global repression of translation. However, the structural mechanism of the GEF activity inhibition remained enigmatic, and therefore the three-dimensional structure of the entire eIF2B molecule had been awaited. Recently, we determined the crystal structure of Schizosaccharomyces pombe eIF2B. In this Structural Snapshot, we present the structural features of eIF2B and the mechanism underlying the GEF activity inhibition by the phosphorylation of eIF2α, elucidated from structure-based in vitro analyses.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama, Japan
| | - Takuhiro Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama, Japan
| | | |
Collapse
|
10
|
eIF2 interactions with initiator tRNA and eIF2B are regulated by post-translational modifications and conformational dynamics. Cell Discov 2015; 1:15020. [PMID: 27462419 PMCID: PMC4860841 DOI: 10.1038/celldisc.2015.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Translation of messenger RNA (mRNA) into proteins is key to eukaryotic gene expression and begins when initiation factor-2 (eIF2) delivers methionyl initiator tRNA (Met-tRNAiMet) to ribosomes. This first step is controlled by eIF2B mediating guanine nucleotide exchange on eIF2. We isolated eIF2 from yeast and used mass spectrometry to study the intact complex, and found that eIF2β is the most labile of the three subunits (eIF2α/β/γ). We then compared conformational dynamics of the ternary complex eIF2:GTP:Met-tRNAiMet with apo eIF2 using comparative chemical cross-linking. Results revealed high conformational dynamics for eIF2α in apo eIF2 while in the ternary complex all three subunits are constrained. Novel post-translational modifications identified here in both eIF2 and eIF2B were combined with established sites, and located within protein sequences and homology models. We found clustering at subunit interfaces and highly phosphorylated unstructured regions, at the N-terminus of eIF2β, and also between the eIF2Bε core and catalytic domains. We propose that modifications of these unstructured regions have a key role in regulating interactions between eIF2 and eIF2B, as well as other eIFs.
Collapse
|
11
|
Phosphorylation stoichiometries of human eukaryotic initiation factors. Int J Mol Sci 2014; 15:11523-38. [PMID: 24979134 PMCID: PMC4139797 DOI: 10.3390/ijms150711523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors), this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation.
Collapse
|
12
|
Gordiyenko Y, Schmidt C, Jennings MD, Matak-Vinkovic D, Pavitt GD, Robinson CV. eIF2B is a decameric guanine nucleotide exchange factor with a γ2ε2 tetrameric core. Nat Commun 2014; 5:3902. [PMID: 24852487 PMCID: PMC4046112 DOI: 10.1038/ncomms4902] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/15/2014] [Indexed: 01/21/2023] Open
Abstract
eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross-linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (α–ε), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic γ- and ε-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bγ, prompting us to propose a multi-step mechanism for nucleotide exchange. Eukaryotic Initiation Factor 2 (eIF2) initiates protein synthesis aided by its partner eIF2B, which stimulates guanine nucleotide exchange on eIF2. Here, Gordiyenko et al. show that eIF2B exists as a decamer and propose a model for its subunit arrangement that provides new insight into its function.
Collapse
Affiliation(s)
- Yuliya Gordiyenko
- 1] Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK [2] MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK [3]
| | - Carla Schmidt
- 1] Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK [2]
| | - Martin D Jennings
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Graham D Pavitt
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
13
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
14
|
Tuval-Kochen L, Paglin S, Keshet G, Lerenthal Y, Nakar C, Golani T, Toren A, Yahalom J, Pfeffer R, Lawrence Y. Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment. PLoS One 2013; 8:e77260. [PMID: 24204783 PMCID: PMC3808413 DOI: 10.1371/journal.pone.0077260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
In an effort to circumvent resistance to rapamycin – an mTOR inhibitor - we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF) 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal – an inhibitor of eIF2α dephosphorylation – decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal - the phosphomimetic eIF2α variant - S51D - increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor – vorinostat. Finally, the catalytic competitive inhibitor of mTOR - Ku-0063794 - increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for drug development, with the potential to enhance the cytotoxic effects of established anti-neoplastic therapies and circumvent resistance to rapalogues and possibly to other drugs that inhibit upstream components of the mTOR pathway.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cellular Senescence/drug effects
- Cinnamates/pharmacology
- DNA Repair/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/radiation effects
- Eukaryotic Initiation Factor-2/antagonists & inhibitors
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Gamma Rays
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Morpholines/pharmacology
- Peptidomimetics/pharmacology
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Pyrimidines/pharmacology
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Transgenes
- Vorinostat
Collapse
Affiliation(s)
- Liron Tuval-Kochen
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Paglin
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- * E-mail:
| | - Gilmor Keshet
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lerenthal
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charles Nakar
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Tamar Golani
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Tel-Hashomer, Ramat-Gan, Israel
| | - Joachim Yahalom
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Raphael Pfeffer
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
15
|
Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 2013; 153:1108-19. [PMID: 23706745 DOI: 10.1016/j.cell.2013.04.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/19/2023]
Abstract
Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.
Collapse
Affiliation(s)
- Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Naveau M, Lazennec-Schurdevin C, Panvert M, Dubiez E, Mechulam Y, Schmitt E. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res 2013; 41:1047-57. [PMID: 23193270 PMCID: PMC3553985 DOI: 10.1093/nar/gks1180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 01/09/2023] Open
Abstract
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2-GDPNP-tRNA complex.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau Cedex, France
| |
Collapse
|
17
|
Yung HW, Hemberger M, Watson ED, Senner CE, Jones CP, Kaufman RJ, Charnock-Jones DS, Burton GJ. Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction. J Pathol 2012; 228:554-64. [PMID: 22733590 PMCID: PMC3532660 DOI: 10.1002/path.4068] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 02/01/2023]
Abstract
We recently reported the first evidence of placental endoplasmic reticulum (ER) stress in the pathophysiology of human intrauterine growth restriction. Here, we used a mouse model to investigate potential underlying mechanisms. Eif2s1tm1RjK mice, in which Ser51 of eukaryotic initiation factor 2 subunit alpha (eIF2α) is mutated, display a 30% increase in basal translation. In Eif2s1tm1RjK placentas, we observed increased ER stress and anomalous accumulation of glycoproteins in the endocrine junctional zone (Jz), but not in the labyrinthine zone where physiological exchange occurs. Placental and fetal weights were reduced by 15% (97 mg to 82 mg, p < 0.001) and 20% (1009 mg to 798 mg, p < 0.001), respectively. To investigate whether ER stress affects bioactivity of secreted proteins, mouse embryonic fibroblasts (MEFs) were derived from Eif2s1tm1RjK mutants. These MEFs exhibited ER stress, grew 50% slower, and showed reduced Akt–mTOR signalling compared to wild-type cells. Conditioned medium (CM) derived from Eif2s1tm1RjK MEFs failed to maintain trophoblast stem cells in a progenitor state, but the effect could be rescued by exogenous application of FGF4 and heparin. In addition, ER stress promoted accumulation of pro-Igf2 with altered glycosylation in the CM without affecting cellular levels, indicating that the protein failed to be processed after release. Igf2 is the major growth factor for placental development; indeed, activity in the Pdk1–Akt–mTOR pathways was decreased in Eif2s1tm1RjK placentas, indicating loss of Igf2 signalling. Furthermore, we observed premature differentiation of trophoblast progenitors at E9.5 in mutant placentas, consistent with the in vitro results and with the disproportionate development of the labyrinth and Jz seen in placentas at E18.5. Similar disproportion has been reported in the Igf2-null mouse. These results demonstrate that ER stress adversely affects placental development, and that modulation of post-translational processing, and hence bioactivity, of secreted growth factors contributes to this effect. Placental dysmorphogenesis potentially affects fetal growth through reduced exchange capacity. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gai Z, Kitagawa Y, Tanaka Y, Shimizu N, Komoda K, Tanaka I, Yao M. The binding mechanism of eIF2β with its partner proteins, eIF5 and eIF2Bε. Biochem Biophys Res Commun 2012; 423:515-9. [PMID: 22683627 DOI: 10.1016/j.bbrc.2012.05.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 12/16/2022]
Abstract
The eukaryotic translation initiation factor eIF2 delivers Met-tRNAiMet to the ribosomal small subunit in GTP-bound form associated with eIF1, eIF1A, eIF3 and eIF5, and dissociates together with eIF5 as eIF5-eIF2-GDP complex from the ribosomal small subunit after formation of start codon-anticodon base pairing between Met-tRNAiMet and mRNA. The inactive form eIF2-GDP is then exchanged for the active form eIF2-GTP by eIF2B for further initiation cycle. Previous studies showed that the C-terminal domains of eIF5 (eIF5-CTD) and eIF2Bε (eIF2Bε-CTD) have a common eIF2β-binding site for interacting with an N-terminal region of eIF2β (eIF2β-NTD). Here we have reconstructed the complexes of (eIF5-CTD)-(eIF2β-NTD) and (eIF2Bε-CTD)-(eIF2β-NTD) in vitro, and investigated binding mechanism by circular dichroism spectroscopy and small angle X-ray scattering in solution. The results showed the conformation of eIF2β-NTD was changed when bound to partner proteins, whereas the structures of eIF5-CTD and eIF2Bε-CTD were similar in both isolated and complex states. We propose that eIF2β-NTD works as an intrinsically disordered domain which is disorder in the isolated state, but folds into a definite structure when bound to its partner proteins. Such flexibility of eIF2β-NTD is expected to be responsible for its binding capability.
Collapse
Affiliation(s)
- Zuoqi Gai
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J, Thompson A, Mechulam Y. Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat Struct Mol Biol 2012; 19:450-4. [PMID: 22447243 DOI: 10.1038/nsmb.2259] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/07/2012] [Indexed: 01/09/2023]
Abstract
Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that has a crucial role in the selection of the correct start codon on messenger RNA. We report the 5-Å resolution crystal structure of the ternary complex formed by archaeal aIF2 from Sulfolobus solfataricus, the GTP analog GDPNP and methionylated initiator tRNA. The 3D model is further supported by solution studies using small-angle X-ray scattering. The tRNA is bound by the α and γ subunits of aIF2. Contacts involve the elbow of the tRNA and the minor groove of the acceptor stem, but not the T-stem minor groove. We conclude that despite considerable structural homology between the core γ subunit of aIF2 and the elongation factor EF1A, these two G proteins of the translation apparatus use very different tRNA-binding strategies.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2012; 75:434-67, first page of table of contents. [PMID: 21885680 DOI: 10.1128/mmbr.00008-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5' end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an "open" conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a "closed" conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the "P" site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded "landing pad" for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.
Collapse
|
21
|
Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. BIOCHEMISTRY (MOSCOW) 2011; 76:283-94. [PMID: 21568863 DOI: 10.1134/s0006297911030011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translation initiation factor 2 (IF2) is one of key components of the translation initiation system in living cells. In bacteria IF2 is a multidomain monomeric protein, while in eukaryotic and archaean cells e/aIF2 is heterotrimer (αβγ). Data, including our own, on eukaryotic type translation initiation factor 2 (e/aIF2) structure and functioning are presented. There are also new data on initiation factors eIF5 and eIF2B that directly interact with eIF2 and control its participation in nucleotide exchange.
Collapse
Affiliation(s)
- E A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
22
|
Andaya A, Jia W, Sokabe M, Fraser CS, Hershey JWB, Leary JA. Phosphorylation of human eukaryotic initiation factor 2γ: novel site identification and targeted PKC involvement. J Proteome Res 2011; 10:4613-23. [PMID: 21854064 DOI: 10.1021/pr200429y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Eukaryotic translation requires a suite of proteins known as eukaryotic initiation factors (eIFs). These molecular effectors oversee the highly regulated initiation phase of translation. Essential to eukaryotic translation initiation is the protein eIF2, a heterotrimeric protein composed of the individually distinct subunits eIF2α, eIF2β, and eIF2γ. The ternary complex, formed when eIF2 binds to GTP and Met-tRNA(i), is responsible for shuttling Met-tRNA(i) onto the awaiting 40S ribosome. As a necessary component for translation initiation, much attention has been given to the phosphorylation of eIF2α. Despite several previous investigations into eIF2 phosphorylation, most have centered on α- or β-subunit phosphorylation and little is known regarding γ-subunit phosphorylation. Herein, we report eight sites of phosphorylation on the largest eIF2 subunit with seven novel phosphosite identifications via high resolution mass spectrometry. Of the eight sites identified, three are located in either the switch regions or nucleotide binding pocket domain. In addition, we have identified a possible kinase of eIF2, protein kinase C (PKC), which is capable of phosphorylating threonine 66 (thr-66) on the intact heterotrimer. These findings may shed new light on the regulation of ternary complex formation and alternate molecular effectors involved in this process prior to 80S ribosome formation and subsequent translation elongation and termination.
Collapse
Affiliation(s)
- Armann Andaya
- Department of Molecular and Cellular Biology and ‡Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis , Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
23
|
Naveau M, Lazennec-Schurdevin C, Panvert M, Mechulam Y, Schmitt E. tRNA Binding Properties of Eukaryotic Translation Initiation Factor 2 from Encephalitozoon cuniculi. Biochemistry 2010; 49:8680-8. [DOI: 10.1021/bi1009166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Naveau
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France, and CNRS, UMR7654, Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Christine Lazennec-Schurdevin
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France, and CNRS, UMR7654, Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Michel Panvert
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France, and CNRS, UMR7654, Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Yves Mechulam
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France, and CNRS, UMR7654, Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Emmanuelle Schmitt
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France, and CNRS, UMR7654, Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| |
Collapse
|
24
|
Lorsch JR, Dever TE. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 2010; 285:21203-7. [PMID: 20444698 PMCID: PMC2898419 DOI: 10.1074/jbc.r110.119743] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central step to high fidelity protein synthesis is selection of the proper start codon. Recent structural, biochemical, and genetic analyses have provided molecular insights into the coordinated activities of the initiation factors in start codon selection. A molecular model is emerging in which start codon recognition is linked to dynamic reorganization of factors on the ribosome and structural changes in the ribosome itself.
Collapse
Affiliation(s)
- Jon R. Lorsch
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Thomas E. Dever
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
26
|
Schmitt E, Naveau M, Mechulam Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 2009; 584:405-12. [PMID: 19896944 DOI: 10.1016/j.febslet.2009.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Eukaryotic/archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that plays a key role in selection of the correct start codon on messenger RNA. This review integrates structural and functional data to discuss the involvement of the three subunits in initiator tRNA binding. A possible role of the peripheral subunits in modulating the guanine nucleotide cycle on the core subunit is also addressed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France.
| | | | | |
Collapse
|
27
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
28
|
Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Biochem Soc Trans 2008; 36:658-64. [PMID: 18631136 DOI: 10.1042/bst0360658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A variety of cellular processes rely on G-proteins, which cycle through active GTP-bound and inactive GDP-bound forms. The switch between these states is commonly regulated by GEFs (guanine-nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Although G-proteins have structural similarity, GEFs are very diverse proteins. A complex example of this system is seen in eukaryotic translation initiation between eIF (eukaryotic initiation factor) 2, a G-protein, its five-subunit GEF, eIF2B, and its GAP, eIF5. eIF2 delivers Met-tRNA(i) (initiator methionyl-tRNA) to the 40S ribosomal subunit before mRNA binding. Upon AUG recognition, eIF2 hydrolyses GTP, aided by eIF5. eIF2B then re-activates eIF2 by removing GDP, thereby promoting association of GTP. In the present article, we review data from studies of representative G-protein-GEF pairs and compare these with observations from our research on eIF2 and eIF2B to propose a model for how interactions between eIF2B and eIF2 promote guanine nucleotide exchange.
Collapse
|
29
|
Rajesh K, Iyer A, Suragani RNVS, Ramaiah KVA. Intersubunit and interprotein interactions of alpha- and beta-subunits of human eIF2: Effect of phosphorylation. Biochem Biophys Res Commun 2008; 374:336-40. [PMID: 18639529 DOI: 10.1016/j.bbrc.2008.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Purified recombinant human subunits of eukaryotic initiation factor 2 (eIF2) expressed in bacteria are found to interact with each other to form alphabeta, alphagamma, and betagamma complexes in a pull-down experiment. Recombinant phosphorylated human eIF2alpha that cannot interact with purified eIF2B, the GDP/GTP exchange factor of eIF2, however interacts efficiently with eIF2B along with the beta-subunit of eIF2 of the rabbit reticulocyte lysates and also with the purified recombinant beta-subunit. These findings therefore suggest that the beta-subunit of eIF2 mediates the productive and non-productive interactions between eIF2 and 2B. Recombinant alpha and beta-subunits serve as substrates for not only kinases but also for caspase 3 and interestingly phosphorylated subunits resist caspase action. Phosphorylation also modifies the beta-subunit's interaction with Nck1, a cofactor of eIF2alpha phosphatase, but not with eIF5, the GTPase activating protein. These findings suggest that subunits of mammalian eIF2 interact with each other and the beta-subunit plays a critical role both in the regulation and function of eIF2.
Collapse
Affiliation(s)
- Kamindla Rajesh
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Andhra Pradesh, India
| | | | | | | |
Collapse
|
30
|
Sokabe M, Yao M, Sakai N, Toya S, Tanaka I. Structure of archaeal translational initiation factor 2 betagamma-GDP reveals significant conformational change of the beta-subunit and switch 1 region. Proc Natl Acad Sci U S A 2006; 103:13016-21. [PMID: 16924118 PMCID: PMC1559745 DOI: 10.1073/pnas.0604165103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archaeal/eukaryotic initiation factor 2 (a/eIF2) consists of alpha-, beta-, and gamma-subunits and delivers initiator methionine tRNA (Met-tRNA(i)) to a small ribosomal subunit in a GTP-dependent manner. The structures of the aIF2betagamma (archaeal initiation factor 2 betagamma) heterodimeric complex in the apo and GDP forms were analyzed at 2.8- and 3.4-A resolution, respectively. The results showed that the N-terminal helix and the central helix-turn-helix domain of the beta-subunit bind to the G domain of the gamma-subunit but are distant from domains 2 and 3, to which the alpha-subunit and Met-tRNA(i) bind. This result is consistent with most of the previous analyses of eukaryotic factors, and thus indicates that the binding mode is essentially conserved among a/eIF2. Comparison with the uncomplexed structure showed significant differences between the two forms of the beta-subunit, particularly the C-terminal zinc-binding domain, which does not interact with the gamma-subunit and was suggested previously to be involved in GTP hydrolysis. Furthermore, the switch 1 region in the gamma-subunit, which is shown to be responsible for Met-tRNA(i) binding by mutational analysis, is moved away from the nucleotide through the interaction with highly conserved R87 in the beta-subunit. These results implicate that conformational change of the beta-subunit facilitates GTP hydrolysis by inducing the conformational change of the switch 1 region toward the off state.
Collapse
Affiliation(s)
- Masaaki Sokabe
- *Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Min Yao
- *Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and
- RIKEN Harima Institute/SPring-8, Hyogo 679-5148, Japan
| | - Naoki Sakai
- *Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Shingo Toya
- *Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Isao Tanaka
- *Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Ghosh A, Datta R, Majumdar A, Bhattacharya M, Datta B. The N-terminal lysine residue-rich domain II and the 340-430 amino acid segment of eukaryotic initiation factor 2-associated glycoprotein p67 are the binding sites for the gamma-subunit of eIF2. Exp Cell Res 2006; 312:3184-203. [PMID: 16857189 DOI: 10.1016/j.yexcr.2006.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein, p67, plays an important role in protecting eIF2alpha from phosphorylation by eIF2alpha-specific kinases. To understand the molecular details of interaction between p67 and the subunits of eIF2, we applied several biochemical and mutational analyses to identify interacting domains within p67 and eIF2gamma. These studies were combined with functional in vivo and in vitro assays to address the importance of the interactions between p67 and eIF2gamma in eIF2alpha phosphorylation. Studies from yeast two-hybrid assays show that p67 interacts strongly with eIF2gamma, relatively weakly with eIF2alpha, and no interaction with eIF2beta. Further mutational analyses provided evidence that the N-terminal lysine-rich domain II and the 340-430 amino acid segment of p67 interact strongly with the C-terminal 409-472 amino acid segment of eIF2gamma. GST pull-down assays show that the interaction between p67 and eIF2gamma is direct. From co-immunoprecipitation studies, we find that the interaction between p67 and eIF2gamma could not only be detected in mammalian cells growing in growth medium, it could also be detected in transiently transfected cells with expression plasmids encoding p67 and eIF2gamma. However, this interaction could not be detected in p67 mutants lacking lysine-rich domain II and the 340-430 amino acid segment. We also find a very good correlation between p67 binding to eIF2gamma and the protection of eIF2alpha from phosphorylation. Altogether, our data provide genetic evidence for the interaction between p67 and eIF2gamma and that this interaction modulates the phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Chemistry, Kent State University, Kent, OH 44242, USA
| | | | | | | | | |
Collapse
|
32
|
Yatime L, Mechulam Y, Blanquet S, Schmitt E. Structural switch of the gamma subunit in an archaeal aIF2 alpha gamma heterodimer. Structure 2006; 14:119-28. [PMID: 16407071 DOI: 10.1016/j.str.2005.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/25/2022]
Abstract
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. This study reports the crystallographic structure of an aIF2alphagamma heterodimer from Sulfolobus solfataricus bound to Gpp(NH)p-Mg(2+). aIF2gamma is in a closed conformation with the G domain packed on domains II and III. The C-terminal domain of aIF2alpha interacts with domain II of aIF2gamma. Conformations of the two switch regions involved in GTP binding are similar to those encountered in an EF1A:GTP:Phe-tRNA(Phe) complex. Comparison with the EF1A structure suggests that only the gamma subunit of the aIF2alphagamma heterodimer contacts tRNA. Because the alpha subunit markedly reinforces the affinity of tRNA for the gamma subunit, a contribution of the alpha subunit to the switch movements observed in the gamma structure is considered.
Collapse
Affiliation(s)
- Laure Yatime
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | |
Collapse
|
33
|
Llorens F, Sarno S, Sarró E, Duarri A, Roher N, Meggio F, Plana M, Pinna LA, Itarte E. Cross talk between protein kinase CK2 and eukaryotic translation initiation factor eIF2beta subunit. Mol Cell Biochem 2006; 274:53-61. [PMID: 16335529 DOI: 10.1007/s11010-005-3081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The beta-subunit of eukaryotic translation initiation factor eIF2 is a substrate and a partner for protein kinase CK2. Surface plasmon resonance analysis shows that the truncated form corresponding to residues 138-333 of eIF2beta (eIF2beta-CT) interacts with CK2beta as efficiently as full length eIF2beta, whereas the form corresponding to residues 1-137, which contains the CK2 phosphorylation sites, (eIF2beta-NT) does not bind. The use of different mutants and truncated forms of CK2alpha allowed us to map the basic segment K74-K83 at the beginning of helix alphaC and residues R191R195K198 in the p + 1 loop as the main determinants for the binding to eIF2beta-CT of either the isolated CK2alpha subunit or the CK2 holoenzyme. The presence of eIF2beta-CT stimulated the activity of CK2alpha towards the RRRAADSDDDDD peptide substrate; effect that was not observed with the CK2a K74-77A whose ability to bind to eIF2beta-CT is severely impaired. Gel filtration analysis confirmed the ability of CK2alpha to form complexes with eIF2beta-CT, and the contribution of the basic cluster in CK2alpha (K74-K77) in this association.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autinòma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Llorens F, Duarri A, Sarró E, Roher N, Plana M, Itarte E. The N-terminal domain of the human eIF2beta subunit and the CK2 phosphorylation sites are required for its function. Biochem J 2006; 394:227-36. [PMID: 16225457 PMCID: PMC1386020 DOI: 10.1042/bj20050605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2alpha evidenced the direct involvement of this protein kinase in eIF2beta phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2beta or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2beta phosphorylation, whereas phosphorylation at Ser67 seems more restricted. In vitro phosphorylation of eIF2beta also pointed to Ser2 as a preferred site for CK2 phosphorylation. Overexpression of the eIF2beta S2/67A mutant slowed down the rate of protein synthesis stimulated by serum, although less markedly than the overexpression of the Delta2-138 N-terminal-truncated form of eIF2beta (eIF2beta-CT). Mutation at Ser2 and Ser67 did not affect eIF2beta integrating into the eIF2 trimer or being able to complex with eIF5 and CK2alpha. The eIF2beta-CT form was also incorporated into the eIF2 trimer but did not bind to eIF5. Overexpression of eIF2beta slightly decreased HeLa cell viability, an effect that was more evident when overexpressing the eIF2beta S2/67A mutant. Cell death was particularly marked when overexpressing the eIF2beta-CT form, being detectable at doses where eIF2beta and eIF2beta S2/67A were ineffective. These results suggest that Ser2 and Ser67 contribute to the important role of the N-terminal region of eIF2beta for its function in mammals.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
36
|
Suragani RNVS, Ghosh S, Ehtesham NZ, Ramaiah KVA. Expression and purification of the subunits of human translational initiation factor 2 (eIF2): phosphorylation of eIF2 alpha and beta. Protein Expr Purif 2005; 47:225-33. [PMID: 16289913 DOI: 10.1016/j.pep.2005.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/01/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
Eukaryotic initiation factor 2 (eIF2) is a GDP-binding protein with three subunits: alpha, beta, and gamma. It delivers initiator tRNA (Met-tRNAi) to 40S ribosomes in a GTP-dependent manner. The factor regulates the translation of messenger RNAs through the phosphorylation of serine 51 residue in the small or alpha-subunit of eIF2 (eIF2alpha) and modulation of its interaction with a rate-limiting heteropentameric protein eIF2B. To understand the structural, functional, and regulatory roles of each of these subunits in the various activities of phosphorylated and unphosphorylated eIF2, such, as its ability to interact with GTP, Met-tRNAi, 40S ribosomes and with various proteins, we have for the first time over expressed all the three subunits of human eIF2 independently, and, also together in Sf9 cells using pFast Bac HT vector of baculovirus expression system. The expression of all subunits increased with increase in infection time up to 72 h. We have also over expressed three mutant forms of eIF2alpha viz, S51A, S51D, and S48A in which the serine at 51 or 48 position is replaced by an alanine or aspartic acid with 6x histidine tag at the N-terminus. Further, any of the two subunits or all the three subunits of eIF2 were coexpressed by multiple infection of cells with recombinant viruses. Purified alpha (wt and mutants) and beta subunits were found suitable to serve as substrates for different kinases. The recombinant subunits of eIF2alpha and beta-subunits were also phosphorylated in cultured insect cells. Phosphorylation of eIF2alpha in vitro was not significantly different in the presence and absence of the other subunits.
Collapse
|
37
|
Li KC, Liu CT, Sun W, Yuan S, Yu T. A system for enhancing genome-wide coexpression dynamics study. Proc Natl Acad Sci U S A 2004; 101:15561-6. [PMID: 15492223 PMCID: PMC524832 DOI: 10.1073/pnas.0402962101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Statistical similarity analysis has been instrumental in elucidation of the voluminous microarray data. Genes with correlated expression profiles tend to be functionally associated. However, the majority of functionally associated genes turn out to be uncorrelated. One conceivable reason is that the expression of a gene can be sensitively dependent on the often-varying cellular state. The intrinsic state change has to be plastically accommodated by gene-regulatory mechanisms. To capture such dynamic coexpression between genes, a concept termed "liquid association" (LA) has been introduced recently. LA offers a scoring system to guide a genome-wide search for critical cellular players that may interfere with the coexpression of a pair of genes, thereby weakening their overall correlation. Although the LA method works in many cases, a direct extension to more than two genes is hindered by the "curse of dimensionality." Here we introduce a strategy of finding an informative 2D projection to generalize LA for multiple genes. A web site is constructed that performs on-line LA computation for any user-specified group of genes. We apply this scoring system to study yeast protein complexes by using the Saccharomyces cerevisiae protein complexes database of the Munich Information Center for Protein Sequences. Human genes are also investigated by profiling of 60 cancer cell lines of the National Cancer Institute. In particular, our system links the expression of the Alzheimer's disease hallmark gene APP (amyloid-beta precursor protein) to the beta-site-cleaving enzymes BACE and BACE2, the gamma-site-cleaving enzymes presenilin 1 and 2, apolipoprotein E, and other Alzheimer's disease-related genes.
Collapse
Affiliation(s)
- Ker-Chau Li
- Department of Statistics, 8125 Mathematical Sciences Building, University of California-Los Angeles, Los Angeles, CA 90095-1554, USA.
| | | | | | | | | |
Collapse
|
38
|
Ito T, Marintchev A, Wagner G. Solution Structure of Human Initiation Factor eIF2α Reveals Homology to the Elongation Factor eEF1B. Structure 2004; 12:1693-704. [PMID: 15341733 DOI: 10.1016/j.str.2004.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
The GTP-bound form of the trimeric eukaryotic translation initiation factor 2 (eIF2) transfers aminoacylated initiator methionyl tRNA onto the 40S ribosome. We have solved with solution NMR the structure of the alpha subunit of human eIF2 (heIF2alpha). The protein consists of two domains that are mobile relative to each other. The N-terminal domain has an S1-type oligonucleotide/oligosaccharide binding-fold subdomain and an alpha-helical subdomain. The C-terminal domain adopts an alphabeta-fold very similar to the C-terminal domain of elongation factor (eEF) 1Balpha, the guanine-nucleotide exchange factor for eEF1A. The structural and functional similarities found between eIF2alpha/eIF2gamma and eEF1Balpha/eEF1A suggest a model for the interaction of eIF2alpha with eIF2gamma, and eIF2 with Met-tRNAiMet. It further indicates a previously unrecognized evolutionary lineage of eIF2alpha/gamma from the functionally related elongation factor eEF1Balpha/eEF1A complex.
Collapse
Affiliation(s)
- Takuhiro Ito
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Rosenwald IB. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 2004; 23:3230-47. [PMID: 15094773 DOI: 10.1038/sj.onc.1207552] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increased cell proliferation, which is a hallmark of aggressive malignant neoplasms, requires a general increase in protein synthesis and a specific increase in the synthesis of replication-promoting proteins. Transient increase in the general protein synthesis rate, as well as preferential translation of specific mRNAs coding for growth promoting proteins (e.g. cyclin D1), takes place during normal mitogenic response. A number of extensively studied growth signal transduction pathways (Ras, PI3K, MAPK, mTOR-dependent pathways) activate the function and expression of various components of the translational machinery. In abnormal situations, constitutive activation of signal transduction pathways (e.g. oncogenic activation of Ras or Myc) leads to continuous upregulation of key elements of translational machinery. On the other hand, tumor suppressor genes (p53, pRb) downregulate ribosomal and tRNA synthesis, and their inactivation results in uncontrolled production of these translational components. During recent years, a significant effort has been dedicated to determining whether expression of translation factors is increased in human tumors using clinical biopsy specimens. The results of these studies indicate that expression of particular translation initiation factors is not always increased in human neoplasms. The pattern of expression is characteristic for a particular tumor type. For example, eIF-4E is usually increased in bronchioloalveolar carcinomas but not in squamous cell carcinomas of the lung. Interestingly, in certain highly proliferative and aggressive neoplasms (e.g. squamous cell carcinoma of the lung, melanoma), the expression of eIF-4E is barely detectable. These findings suggest that mechanisms for increasing general protein synthesis in various neoplasms differ significantly. Finally, the possibility of qualitative alterations in the translational machinery, rather than a simple increase in the activity of its components, is discussed along with the possibility of targeting those qualitative differences for tumor therapy.
Collapse
Affiliation(s)
- Igor B Rosenwald
- Department of Pathology, Division of Hematopathology, University of New Mexico, BRF Building, Room 323 B, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
40
|
Perkins DJ, Barber GN. Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol Cell Biol 2004; 24:2025-40. [PMID: 14966282 PMCID: PMC350553 DOI: 10.1128/mcb.24.5.2025-2040.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Suppression of protein synthesis through phosphorylation of the translation initiation factor alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) is known to occur in response to many forms of cellular stress. To further study this, we have developed novel cell lines that inducibly express FLAG-tagged versions of either the phosphomimetic eIF2alpha variant, eIF2alpha-S51D, or the phosphorylation-insensitive eIF2alpha-S51A. These variants showed authentic subcellular localization, were incorporated into endogenous ternary complexes, and were able to modulate overall rates of protein synthesis as well as influence cell division. However, phosphorylation of eIF2alpha failed to induce cell death or sensitize cells to killing by proapoptotic stimuli, though it was able to inhibit viral replication, confirming the role of eIF2alpha in host defense. Further, although the eIF2alpha-S51A variant has been shown to transform NIH 3T3 cells, it was unable to transform the murine fibroblast 3T3 L1 cell line. To therefore clarify this issue, we explored the role of eIF2alpha in growth control and demonstrated that the eIF2alpha-S51A variant is capable of collaborating with hTERT and the simian virus 40 large T antigen in the transformation of primary human kidney cells. Thus, dysregulation of translation initiation is indeed sufficient to cooperate with defined oncogenic elements and participate in the tumorigenesis of human tissue.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
41
|
Yatime L, Schmitt E, Blanquet S, Mechulam Y. Functional Molecular Mapping of Archaeal Translation Initiation Factor 2. J Biol Chem 2004; 279:15984-93. [PMID: 14761973 DOI: 10.1074/jbc.m311561200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) carrying methionylated initiator tRNA to the small subunit of the ribosome. The three-dimensional structure of aIF2gamma from the Archaea Pyrococcus abyssi was previously solved. This subunit forms the core of the heterotrimer. The alpha and beta subunits bind the gamma, but do not interact together. aIF2gamma shows a high resemblance with elongation factor EF1-A. In this study, we characterize the role of each subunit in the binding of the methionylated initiator tRNA. Studying various aminoacyl-tRNA ligands shows that the methionyl group is a major determinant for recognition by aIF2. aIF2gamma alone is able to specifically bind Met-tRNAiMet, although with a reduced affinity as compared with the intact trimer. Site-directed mutagenesis confirms a binding mode of the tRNA molecule similar to that observed with the elongation factor. Under our assay conditions, aIF2beta is not involved in the docking of the tRNA molecule. In contrast, aIF2alpha provides the heterotrimer its full tRNA binding affinity. Furthermore, the isolated C-domain of aIF2alpha is responsible for binding of the alpha subunit to gamma. This binding involves an idiosyncratic loop of domain 2 of aIF2gamma. Association of the C-domain of aIF2alpha to aIF2gamma is enough to retrieve the binding affinity of tRNA for aIF2. The N-terminal and central domains of aIF2alpha do not interfere with tRNA binding. However, the N-domain of aIF2alpha interacts with RNA unspecifically. Based on this property, a possible contribution of aIF2alpha to formation of a productive complex between aIF2 and the small ribosomal subunit is envisaged.
Collapse
Affiliation(s)
- Laure Yatime
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | |
Collapse
|
42
|
Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK. X-ray structure of translation initiation factor eIF2gamma: implications for tRNA and eIF2alpha binding. J Biol Chem 2003; 279:10634-42. [PMID: 14688270 DOI: 10.1074/jbc.m310418200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray structure of the gamma-subunit of the heterotrimeric translation initiation factor eIF2 has been determined to 2.4-A resolution. eIF2 is a GTPase that delivers the initiator Met-tRNA to the P site on the small ribosomal subunit during a rate-limiting initiation step in translation. The structure of eIF2gamma closely resembles that of EF1A.GTP, consisting of an N-terminal G domain followed by two beta-barrels arranged in a closed configuration with domain II packed against the G domain in the vicinity of the Switch regions. The G domain of eIF2gamma has an unusual zinc ribbon motif, not previously found in other GTPases. Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of eIF2gamma that bind the alpha-subunit and Met-tRNA(i)(Met), respectively. These structural, biochemical, and genetic results provide new insights into eIF2 ternary complex assembly.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
43
|
Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E. Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity. Biochem J 2003; 375:623-31. [PMID: 12901717 PMCID: PMC1223719 DOI: 10.1042/bj20030915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 08/05/2003] [Indexed: 11/17/2022]
Abstract
eIF2 (eukaryotic translation-initiation factor 2) is a substrate and an interacting partner for CK2 (protein kinase CK2). Co-immuno-precipitation of CK2 with eIF2beta has now been observed in HeLa cells, overexpressing haemagglutinin-tagged human recombinant eIF2beta. A direct association between His6-tagged human recombinant forms of eIF2beta subunit and both the catalytic (CK2alpha) and the regulatory (CK2beta) subunits of CK2 has also been shown by using different techniques. Surface plasmon resonance analysis indicated a high affinity in the interaction between eIF2beta and CK2alpha, whereas the affinity for the association with CK2beta is much lower. Free CK2alpha is unable to phosphorylate eIF2beta, whereas up to 1.2 mol of phosphate/mol of eIF2beta was incorporated by the reconstituted CK2 holoenzyme. The N-terminal third part of eIF2beta is dispensable for binding to either CK2alpha or CK2beta, although it contains the phosphorylation sites for CK2. The remaining central/C-terminal part of eIF2beta is not phosphorylated by CK2, but is sufficient for binding to both CK2 subunits. The presence of eIF2beta inhibited CK2alpha activity on calmodulin and beta-casein, but it had a minor effect on that of the reconstituted CK2 holoenzyme. The truncated forms corresponding to the N-terminal or central/C-terminal regions of eIF2beta were much less inhibitory than the intact subunit. The results demonstrate that the ability to associate with CK2 subunits and to serve as a CK2 substrate are confined to different regions in eIF2beta and that it may act as an inhibitor on CK2alpha.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asano K, Phan L, Krishnamoorthy T, Pavitt GD, Gomez E, Hannig EM, Nika J, Donahue TF, Huang HK, Hinnebusch AG. Analysis and reconstitution of translation initiation in vitro. Methods Enzymol 2002; 351:221-47. [PMID: 12073347 DOI: 10.1016/s0076-6879(02)51850-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Katsura Asano
- Department of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nonato MC, Widom J, Clardy J. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2alpha. J Biol Chem 2002; 277:17057-61. [PMID: 11859078 DOI: 10.1074/jbc.m111804200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 2alpha (eIF2alpha) is a member of the eIF2 heterotrimeric complex that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Phosphorylation/dephosphorylation of eIF2alpha at Ser-51 is the major regulator of protein synthesis in eukaryotic cells. Here, we report the first structural analysis on eIF2, the three-dimensional structure of a 22-kDa N-terminal portion of human eIF2alpha by x-ray diffraction at 1.9 A resolution. This structure contains two major domains. The N terminus is a beta-barrel with five antiparallel beta-strands in an oligonucleotide binding domain (OB domain) fold. The phosphorylation site (Ser-51) is on the loop connecting beta3 and beta4 in the OB domain. A helical domain follows the OB domain, and the first helix has extensive interactions, including a disulfide bridge, to fix its orientation with respect to the OB domain. The two domains meet along a negatively charged groove with highly conserved residues, indicating a likely site for protein-protein interaction.
Collapse
Affiliation(s)
- M Cristina Nonato
- Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
46
|
Schmitt E, Blanquet S, Mechulam Y. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J 2002; 21:1821-32. [PMID: 11927566 PMCID: PMC125960 DOI: 10.1093/emboj/21.7.1821] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric factor e/aIF2 plays a central role in eukaryotic/archaeal initiation of translation. By delivering the initiator methionyl-tRNA to the ribosome, e/aIF2 ensures specificity of initiation codon selection. The three subunits of aIF2 from the hyperthermophilic archaeon Pyrococcus abyssi could be overproduced in Escherichia coli. The beta and gamma subunits each contain a tightly bound zinc. The large gamma subunit is shown to form the structural core for trimer assembly. The crystal structures of aIF2gamma, free or complexed to GDP-Mg(2+) or GDPNP-Mg(2+), were resolved at resolutions better than 2 A. aIF2gamma displays marked similarities to elongation factors. A distinctive feature of e/aIF2gamma is a subdomain containing a zinc-binding knuckle. Examination of the nucleotide-complexed aIF2gamma structures suggests mechanisms of action and tRNA binding properties similar to those of an elongation factor. Implications for the mechanism of translation initiation in both eukarya and archaea are discussed. In particular, positioning of the initiator tRNA in the ribosomal A site during the search for the initiation codon is envisaged.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France.
| | | | | |
Collapse
|
47
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Erickson FL, Nika J, Rippel S, Hannig EM. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 2001; 158:123-32. [PMID: 11333223 PMCID: PMC1461651 DOI: 10.1093/genetics/158.1.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|