1
|
Chatterjee R, Setty SRG, Chakravortty D. SNAREs: a double-edged sword for intravacuolar bacterial pathogens within host cells. Trends Microbiol 2024; 32:477-493. [PMID: 38040624 DOI: 10.1016/j.tim.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
In the tug-of-war between host and pathogen, both evolve to combat each other's defence arsenals. Intracellular phagosomal bacteria have developed strategies to modify the vacuolar niche to suit their requirements best. Conversely, the host tries to target the pathogen-containing vacuoles towards the degradative pathways. The host cells use a robust system through intracellular trafficking to maintain homeostasis inside the cellular milieu. In parallel, intracellular bacterial pathogens have coevolved with the host to harbour strategies to manipulate cellular pathways, organelles, and cargoes, facilitating the conversion of the phagosome into a modified pathogen-containing vacuole (PCV). Key molecular regulators of intracellular traffic, such as changes in the organelle (phospholipid) composition, recruitment of small GTPases and associated effectors, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs), etc., are hijacked to evade lysosomal degradation. Legionella, Salmonella, Coxiella, Chlamydia, Mycobacterium, and Brucella are examples of pathogens which diverge from the endocytic pathway by using effector-mediated mechanisms to overcome the challenges and establish their intracellular niches. These pathogens extensively utilise and modulate the end processes of secretory pathways, particularly SNAREs, in repurposing the PCV into specialised compartments resembling the host organelles within the secretory network; at the same time, they avoid being degraded by the host's cellular mechanisms. Here, we discuss the recent research advances on the host-pathogen interaction/crosstalk that involves host SNAREs, conserved cellular processes, and the ongoing host-pathogen defence mechanisms in the molecular arms race against each other. The current knowledge of SNAREs, and intravacuolar bacterial pathogen interactions, enables us to understand host cellular innate immune pathways, maintenance of homeostasis, and potential therapeutic strategies to combat ever-growing antimicrobial resistance.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Adv 2021; 5:459-474. [PMID: 33496744 DOI: 10.1182/bloodadvances.2020002833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutrient sequestration is an essential facet of host innate immunity. Macrophages play a critical role in controlling iron availability through expression of the iron transport protein ferroportin (FPN), which extrudes iron from the cytoplasm to the extracellular milieu. During phagocytosis, the limiting phagosomal membrane, which derives from the plasmalemma, can be decorated with FPN and, if functional, will move iron from the cytosol into the phagosome lumen. This serves to feed iron to phagocytosed microbes and would be counterproductive to the many other known host mechanisms working to starve microbes of this essential metal. To understand how FPN is regulated during phagocytosis, we expressed FPN as a green fluorescent protein-fusion protein in macrophages and monitored its localization during uptake of various phagocytic targets, including Staphylococcus aureus, Salmonella enterica serovar Typhimurium, human erythrocytes, and immunoglobulin G opsonized latex beads. We find that FPN is rapidly removed, independently of Vps34 and PI(3)P, from early phagosomes and does not follow recycling pathways that regulate transferrin receptor recycling. Live-cell video microscopy showed that FPN movement on the phagosome is dynamic, with punctate and tubular structures forming before FPN is trafficked back to the plasmalemma. N-ethylmaleimide-sensitive factor, which disrupts soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion and trafficking, prevented FPN removal from the phagosome. Our data support the hypothesis that removal of FPN from the limiting phagosomal membrane will, at the cellular level, ensure that iron cannot be pumped into phagosomes. We propose this as yet another mechanism of host nutritional immunity to subvert microbial growth.
Collapse
|
3
|
Maxson ME, Sarantis H, Volchuk A, Brumell JH, Grinstein S. Rab5 regulates macropinocytosis by recruiting the inositol 5-phosphatases OCRL and Inpp5b that hydrolyse PtdIns(4,5)P2. J Cell Sci 2021; 134:237783. [PMID: 33722976 DOI: 10.1242/jcs.252411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Rab5 is required for macropinosome formation, but its site and mode of action remain unknown. We report that Rab5 acts at the plasma membrane, downstream of ruffling, to promote macropinosome sealing and scission. Dominant-negative Rab5, which obliterates macropinocytosis, had no effect on the development of membrane ruffles. However, Rab5-containing vesicles were recruited to circular membrane ruffles, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent endomembrane fusion was necessary for the completion of macropinocytosis. This fusion event coincided with the disappearance of PtdIns(4,5)P2 that accompanies macropinosome closure. Counteracting the depletion of PtdIns(4,5)P2 by expression of phosphatidylinositol-4-phosphate 5-kinase impaired macropinosome formation. Importantly, we found that the removal of PtdIns(4,5)P2 is dependent on Rab5, through the Rab5-mediated recruitment of the inositol 5-phosphatases OCRL and Inpp5b, via APPL1. Knockdown of OCRL and Inpp5b, or APPL1, prevented macropinosome closure without affecting ruffling. We therefore propose that Rab5 is essential for the clearance of PtdIns(4,5)P2 needed to complete the scission of macropinosomes or to prevent their back-fusion with the plasmalemma.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Helen Sarantis
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - John H Brumell
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
4
|
Stévenin V, Chang YY, Le Toquin Y, Duchateau M, Gianetto QG, Luk CH, Salles A, Sohst V, Matondo M, Reiling N, Enninga J. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche. Cell Rep 2020; 29:3958-3973.e7. [PMID: 31851926 PMCID: PMC6931108 DOI: 10.1016/j.celrep.2019.11.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a human and animal pathogen that causes gastro-enteric diseases. The key to Salmonella infection is its entry into intestinal epithelial cells, where the bacterium resides within a Salmonella-containing vacuole (SCV). Salmonella entry also induces the formation of empty macropinosomes, distinct from the SCV, in the vicinity of the entering bacteria. A few minutes after its formation, the SCV increases in size through fusions with the surrounding macropinosomes. Salmonella also induces membrane tubules that emanate from the SCV and lead to SCV shrinkage. Here, we show that these antipodal events are utilized by Salmonella to either establish a vacuolar niche or to be released into the cytosol by SCV rupture. We identify the molecular machinery underlying dynamic SCV growth and shrinkage. In particular, the SNARE proteins SNAP25 and STX4 participate in SCV inflation by fusion with macropinosomes. Thus, host compartment size control emerges as a pathogen strategy for intracellular niche regulation. The early SCV simultaneously grows and shrinks through fusion and tubule formation SCV shrinkage promotes vacuolar rupture and cytosolic release IAMs are enriched in the host SNAREs SNAP25 and STX4, enabling IAM-SCV fusion Promoting SNX1-mediated tubule formation, SopB fosters SCV ruptures
Collapse
Affiliation(s)
- Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yoann Le Toquin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics HUB, C3BI, USR CNRS 3756, Paris, France
| | - Chak Hon Luk
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Audrey Salles
- Institut Pasteur, UtechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Paris, France
| | - Victoria Sohst
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Norbert Reiling
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France.
| |
Collapse
|
5
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
6
|
Van Ngo H, Bhalla M, Chen DY, Ireton K. A role for host cell exocytosis in InlB-mediated internalisation ofListeria monocytogenes. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Hoan Van Ngo
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Manmeet Bhalla
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Da-Yuan Chen
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| |
Collapse
|
7
|
Pearson JS, Giogha C, Mühlen S, Nachbur U, Pham CLL, Zhang Y, Hildebrand JM, Oates CV, Lung TWF, Ingle D, Dagley LF, Bankovacki A, Petrie EJ, Schroeder GN, Crepin VF, Frankel G, Masters SL, Vince J, Murphy JM, Sunde M, Webb AI, Silke J, Hartland EL. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat Microbiol 2017; 2:16258. [PMID: 28085133 DOI: 10.1038/nmicrobiol.2016.258] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022]
Abstract
Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-β (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1-3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.
Collapse
Affiliation(s)
- Jaclyn S Pearson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Cristina Giogha
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Sabrina Mühlen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.,Department of Molecular Infection Biology, Helmholtz-Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, New South Wales 2006, Australia
| | - Ying Zhang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Danielle Ingle
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute and Centre for Systems Genomics, University of Melbourne, Victoria 3010, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Aleksandra Bankovacki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Emma J Petrie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Gunnar N Schroeder
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ, UK.,Centre for Experimental Medicine, Queen's University Belfast, BT9 7BL, UK
| | - Valerie F Crepin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - James Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, New South Wales 2006, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
8
|
Wehrendt DP, Carmona F, González Wusener AE, González Á, Martínez JML, Arregui CO. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex. PLoS One 2016; 11:e0156758. [PMID: 27254316 PMCID: PMC4890775 DOI: 10.1371/journal.pone.0156758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface.
Collapse
Affiliation(s)
- Diana P. Wehrendt
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Fernando Carmona
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Ana E. González Wusener
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Juan M. Lázaro Martínez
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Cagliani R, Pozzoli U, Forni D, Cassinotti A, Fumagalli M, Giani M, Fichera M, Lombardini M, Ardizzone S, Asselta R, de Franchis R, Riva S, Biasin M, Comi GP, Bresolin N, Clerici M, Sironi M. Crohn's disease loci are common targets of protozoa-driven selection. Mol Biol Evol 2013; 30:1077-87. [PMID: 23389767 DOI: 10.1093/molbev/mst020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies indicated that a few risk variants for autoimmune diseases are subject to pathogen-driven selection. Nonetheless, the proportion of risk loci that has been targeted by pathogens and the type of infectious agent(s) that exerted the strongest pressure remain to be evaluated. We assessed whether different pathogens exerted a pressure on known Crohn's disease (CD) risk variants and demonstrate that these single-nucleotide polymorphisms (SNPs) are preferential targets of protozoa-driven selection (P = 0.008). In particular, 19% of SNPs associated with CD have been subject to protozoa-driven selective pressure. Analysis of P values from genome-wide association studies (GWASs) and meta-analyses indicated that protozoan-selected SNPs display significantly stronger association with CD compared with nonselected variants. This same behavior was not observed for GWASs of other autoimmune diseases. Thus, we integrated selection signatures and meta-analysis results to prioritize five genic SNPs for replication in an Italian cohort. Three SNPs were significantly associated with CD risk, and combination with meta-analysis results yielded P values < 4 × 10(-6). The bona fide risk alleles are located in ARHGEF2, an interactor of NOD2, NSF, a gene involved in autophagy, and HEBP1, encoding a possible mediator of inflammation. Pathway analysis indicated that ARHGEF2 and NSF participate in a molecular network, which also contains VAMP3 (previously associated to CD) and is centered around miR-31 (known to be disregulated in CD). Thus, we show that protozoa-driven selective pressure had a major role in shaping predisposition to CD. We next used this information for the identification of three bona fide novel susceptibility loci.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics Laboratory, Scientific Institute IRCCS E Medea, Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Canton J, Kima PE. Interactions of pathogen-containing compartments with the secretory pathway. Cell Microbiol 2012; 14:1676-86. [PMID: 22862745 DOI: 10.1111/cmi.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/03/2023]
Abstract
A subgroup of intracellular pathogens reside and replicate within membrane-bound compartments often termed pathogen-containing compartments (PCC). PCCs navigate around a wide range of host cell vesicles and organelles. In light of the perils of engaging with vesicles of the endocytic pathway, most PCCs modulate their interactions with endocytic vesicles while a few avoid those interactions. The secretory pathway constitutes another important grouping of vesicles and organelles in host cells. Although the negative consequences of engaging with the secretory pathway are not known, there is evidence that PCCs interact differentially with vesicles and organelles in this pathway as well. In this review, we consider three prokaryote pathogens and two protozoan parasites for which there is information on the interactions of their PCCs with the secretory pathway. Current understandings of the molecular interactions as well as the metabolic benefits that accompany those interactions are discussed. Not unexpectedly, our understanding of the extent of these interactions is variable. An underlying theme that is brought to the fore is that PCCs establish preferential interactions with distinct compartments of the secretory pathway.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
12
|
Castañeda-Ramírez A, Puente JL, González-Noriega A, Verdugo-Rodríguez A. Silencing of VAMP3 expression does not affect Brucella melitensis infection in mouse macrophages. Virulence 2012; 3:434-9. [PMID: 23076244 DOI: 10.4161/viru.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has been proposed that intracellular pathogens may interfere with expression or function of proteins that mediate vesicular traffic in order to survive inside cells. Brucella melitensis is an intracellular pathogen that evades phagosome-lysosome fusion, surviving in the so-called Brucella-containing vacuoles (BCV). Vesicle-associated membrane protein 3 (VAMP3) is a v-SNARE protein that promotes the exocytosis of the proinflammatory cytokine TNF at the phagocytic cup when docking to its cognate t-SNARE proteins syntaxin-4 and SNAP-23 at the plasma membrane. We determined the expression level of VAMP3 in J774.1 murine macrophages stimulated with B. melitensis lipopolysaccharide (LPS) and detected a transitory increase of VAMP3 mRNA expression at 30 min. A similar result was obtained when cells were incubated in the presence of LPS from Salmonella enterica serovar Minnesota (SeM). This increase of VAMP3 mRNA was also observed on infected cells with B. melitensis even after one hour. In contrast, infection with Salmonella enterica serovar Enteritidis (SeE) did not cause such increase, suggesting that membrane components other than LPS modulate VAMP3 expression differently. To determine the effect of VAMP3 inhibition on macrophages infection, the expression of VAMP3 in J774.A1 cells was silenced and then infected with wild-type B. melitensis. Although a slight decrease in the rate of recovery of surviving bacteria was observed between 12 h and 36 h post-infection with B. melitensis, this was not significant indicating that VAMP3 is not involved in Brucella survival.
Collapse
Affiliation(s)
- Alfredo Castañeda-Ramírez
- Departamento de Microbiología e Inmunología, Universidad Nacional Autónoma de México, Distrito Federal, México
| | | | | | | |
Collapse
|
13
|
Canton J, Ndjamen B, Hatsuzawa K, Kima PE. Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection. Cell Microbiol 2012; 14:937-48. [PMID: 22309219 DOI: 10.1111/j.1462-5822.2012.01767.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Phagocytosis is used by macrophages, dendritic cells and neutrophils to capture and destroy pathogens and particulate antigens. Although localized assembly of actin filaments is the driving force for particle internalization, exocytosis of intracellular compartments, and in particular endocytic compartments, has been shown recently to be required for the early steps of phagosome formation. Here we report on the different compartments undergoing exocytosis during phagocytosis, with a special focus on late endosomes. We then compare this process with secretion from lysosomes or lysosome-related organelles in specialized cells. Finally, we discuss how some of the molecular mechanisms responsible for lysosome-related organelle secretion could also be implicated in phagosome formation.
Collapse
Affiliation(s)
- Virginie Braun
- Membrane and Cytoskeleton Dynamics group, Institut Curie, CNRS UMR144, 75005 Paris, France
| | | |
Collapse
|
15
|
Parashuraman S, Madan R, Mukhopadhyay A. NSF independent fusion of Salmonella-containing late phagosomes with early endosomes. FEBS Lett 2010; 584:1251-6. [PMID: 20176016 DOI: 10.1016/j.febslet.2010.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/04/2010] [Accepted: 02/16/2010] [Indexed: 11/27/2022]
Abstract
Initial characterizations of live-Salmonella-containing early (LSEP) and late phagosomes (LSLP) in macrophages show that both phagosomes retain Rab5 and EEA1. In addition, LSEP specifically contain transferrin receptor whereas LSLP possess relatively more rabaptin-5. In contrast to LSLP, late-Salmonella-containing vacuoles in epithelial cells show significantly reduced levels of Rab5 and EEA1. Subsequent results demonstrate that both phagosomes efficiently fuse with early endosomes (EE). In contrast to LSEP, fusion between LSLP and EE is insensitive to ATPgammaS treatment. Furthermore, LSLP fuses with EE in absence of NEM-sensitive fusion factor (NSF) as well as in the presence of NSF:D1EQ mutant demonstrating that LSLP fusion with EE is NSF independent.
Collapse
|
16
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Hatsuzawa K, Hashimoto H, Hashimoto H, Arai S, Tamura T, Higa-Nishiyama A, Wada I. Sec22b is a negative regulator of phagocytosis in macrophages. Mol Biol Cell 2009; 20:4435-43. [PMID: 19710423 DOI: 10.1091/mbc.e09-03-0241] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) is proposed to be a membrane donor for phagosome formation. In support of this, we have previously shown that the expression level of syntaxin 18, an ER-localized SNARE protein, correlates with phagocytosis activity. To obtain further insights into the involvement of the ER in phagocytosis we focused on Sec22b, another ER-localized SNARE protein that is also found on phagosomal membranes. In marked contrast to the effects of syntaxin 18, we report here that phagocytosis was nearly abolished in J774 macrophages stably expressing mVenus-tagged Sec22b, without affecting the cell surface expression of the Fc receptor or other membrane proteins related to phagocytosis. Conversely, the capacity of the parental J774 cells for phagocytosis was increased when endogenous Sec22b expression was suppressed. Domain analyses of Sec22b revealed that the R-SNARE motif, a selective domain for forming a SNARE complex with syntaxin18 and/or D12, was responsible for the inhibition of phagocytosis. These results strongly support the ER-mediated phagocytosis model and indicate that Sec22b is a negative regulator of phagocytosis in macrophages, most likely by regulating the level of free syntaxin 18 and/or D12 at the site of phagocytosis.
Collapse
Affiliation(s)
- Kiyotaka Hatsuzawa
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 2009; 165:32-47. [DOI: 10.1016/j.molbiopara.2008.12.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/13/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|
19
|
Abstract
In metazoans macrophage cells use phagocytosis, the process of engulfing large particles, to control the spread of pathogens in the body, to clear dead or dying cells, and to aid in tissue remodelling, while the same process is also used by unicellular eukaryotes to ingest food. Phagocytosing cells essentially swallow the particles, trapping them in vacuoles called phagosomes that go through a series of maturation steps, culminating in the destruction of the internalized cargo. Because of their central role in innate immunity and their relatively simple structure (one membrane bilayer surrounding a single particle), phagosomes have been a popular subject for organelle proteomics studies. Qualitative proteomic technologies are now very sensitive so hundreds of different proteins have been identified in phagosomes from several species, revealing new properties of these intriguing compartments. More recently, quantitative proteomic approaches have also been applied, shedding new light on the dynamics and composition of maturing phagosomes. In this review we summarize the studies that have applied proteomic technologies to phagosomes and how they have changed our understanding of phagosome biology.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Cell Biology Proteomics group, Centre for High-throughput Biology and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
20
|
Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin. J Neurosci 2008; 28:1688-96. [PMID: 18272689 DOI: 10.1523/jneurosci.4130-07.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agrin, a factor used by motoneurons to direct acetylcholine receptor (AChR) clustering at the neuromuscular junction, initiates signal transduction by activating the muscle-specific receptor tyrosine kinase (MuSK). However, the underlying mechanisms remain poorly defined. Here, we demonstrated that MuSK became rapidly internalized in response to agrin, which appeared to be required for induced AChR clustering. Moreover, we provided evidence for a role of N-ethylmaleimide sensitive factor (NSF) in regulating MuSK endocytosis and subsequent signaling in response to agrin stimulation. NSF interacts directly with MuSK with nanomolar affinity, and treatment of muscle cells with the NSF inhibitor N-ethylmaleimide, mutation of NSF, or suppression of NSF expression all inhibited agrin-induced AChR clustering. Furthermore, suppression of NSF expression and NSF mutation attenuate MuSK downstream signaling. Our study reveals a potentially novel mechanism that regulates agrin/MuSK signaling cascade.
Collapse
|
21
|
Huynh KK, Kay JG, Stow JL, Grinstein S. Fusion, fission, and secretion during phagocytosis. Physiology (Bethesda) 2008; 22:366-72. [PMID: 18073409 DOI: 10.1152/physiol.00028.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phagocytosis is essential for the elimination of pathogens and for clearance of apoptotic bodies. The ingestion process entails extensive remodeling of the cellular membranes, particularly when large and/or multiple particles are engulfed. The membrane fusion and fission events that accompany phagocytosis are described. The coordinated sequence of membrane trafficking events required for phagocytosis involves multiple organelles and also serves other cellular functions, such as cytokine secretion.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
22
|
Horan KA, Watanabe KI, Kong AM, Bailey CG, Rasko JEJ, Sasaki T, Mitchell CA. Regulation of FcγR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3–mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 2007; 110:4480-91. [PMID: 17682126 DOI: 10.1182/blood-2007-02-073874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Macrophages phagocytose particles to resolve infections and remove apoptotic cells. Phosphoinositide 3-kinase generates phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] is restricted to the phagocytic cup, promoting phagocytosis. The PtdIns(3,4,5)P3 5-phosphatase (5-ptase) Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) inhibits phagocytosis. We report here that another PtdIns(3,4,5)P3-5-ptase, the 72-kDa-5-phosphatase (72-5ptase), inhibits Fcγ receptor (FcγR)– but not complement receptor 3 (CR3)–mediated phagocytosis, affecting pseudopod extension and phagosome closure. In contrast, SHIP1 inhibited FcγR and CR3 phagocytosis with greater effects on CR3-stimulated phagocytosis. The 72-5ptase and SHIP1 were both dynamically recruited to FcγR-stimulated phagocytic cups, but only SHIP1 was recruited to CR3-stimulated phagocytic cups. To determine whether 5-ptases focally degrade PtdIns(3,4,5)P3 at the phagocytic cup after specific stimuli, time-lapse imaging of specific biosensors was performed. Transfection of dominant-negative 72-5ptase or 72-5ptase small interfering RNA (siRNA) resulted in amplified and prolonged PtdIns(3,4,5)P3 at the phagocytic cup in response to FcγR- but not CR3-stimulation. In contrast, macrophages from Ship1−/−/AktPH-GFP transgenic mice exhibited increased and sustained PtdIns(3,4,5)P3 at the cup in response to CR3 activation, with minimal changes to FcγR activation. Therefore, 72-5ptase and SHIP1 exhibit specificity in regulating FcγR- versus CR3-stimulated phagocytosis by controlling the amplitude and duration of PtdIns(3,4,5)P3 at the phagocytic cup.
Collapse
Affiliation(s)
- Kristy A Horan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Dai S, Zhang Y, Weimbs T, Yaffe MB, Zhou D. Bacteria-generated PtdIns(3)P Recruits VAMP8 to Facilitate Phagocytosis. Traffic 2007; 8:1365-74. [PMID: 17645435 DOI: 10.1111/j.1600-0854.2007.00613.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enterica serovar Typhimurium invades non-phagocytic cells by inducing macropinocytosis. SopB is involved in modulating actin dynamics to promote Salmonella-induced invasion. We report here that SopB-generated PtdIns(3)P binds VAMP8/endobrevin to promote efficient bacterial phagocytosis. VAMP8 is recruited to Salmonella-induced macropinosomes in a nocodazole-dependent, but Brefeldin A-independent, manner. We found that VAMP8 directly binds to and colocalizes with PtdIns(3)P. The inositol phosphatase activity of SopB is required for PtdIns(3)P and VAMP8 accumulation, while wortmannin, a specific phosphatidylinositol 3-kinase inhibitor, has no effect. Knockdown of endogenous VAMP8 by small interfering RNA or expression of a truncated VAMP8 (1-79aa) reduces the invasion level of wild-type Salmonella to that of the phosphatase-deficient SopB(C460S) mutant. Our study demonstrates that Salmonella exploit host SNARE proteins and vesicle trafficking to promote bacterial entry.
Collapse
Affiliation(s)
- Shipan Dai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
24
|
Lee WL, Mason D, Schreiber AD, Grinstein S. Quantitative analysis of membrane remodeling at the phagocytic cup. Mol Biol Cell 2007; 18:2883-92. [PMID: 17507658 PMCID: PMC1949373 DOI: 10.1091/mbc.e06-05-0450] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nascent phagosomes, which are derived from the plasma membrane, acquire microbicidal properties through multiple fusion and fission events collectively known as maturation. Here we show that remodeling of the phagosomal membrane is apparent even before sealing, particularly when large particles are ingested. Fluorescent probes targeted to the plasma membrane are cleared from the region lining the particle before engulfment is completed. Extensive clearance was noted for components of the inner as well as outer monolayer of the plasmalemma. Segregation of lipid microdomains was ruled out as the mechanism underlying membrane remodeling, because markers residing in rafts and those that are excluded were similarly depleted. Selective endocytosis was also ruled out. Instead, several lines of evidence indicate that endomembranes inserted by exocytosis at sites of ingestion displace the original membrane constituents from the base of the phagosomal cup. The Fcgamma receptors that trigger phagocytosis remain associated with their ligands. By contrast, Src-family kinases that are the immediate effectors of receptor activation are flushed away from the cup by the incoming membranes. Together with the depletion of phosphoinositides required for signal transduction, the disengagement of receptors from their effectors by bulk membrane remodeling provides a novel means to terminate receptor signaling.
Collapse
Affiliation(s)
- Warren L. Lee
- *Programme in Cell Biology, Hospital for Sick Children
- Interdepartmental Division of Critical Care Medicine, and
- the Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, M5G 1X8 Canada; and
| | - David Mason
- *Programme in Cell Biology, Hospital for Sick Children
| | - Alan D. Schreiber
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | |
Collapse
|
25
|
Hatsuzawa K, Tamura T, Hashimoto H, Hashimoto H, Yokoya S, Miura M, Nagaya H, Wada I. Involvement of syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE protein, in ER-mediated phagocytosis. Mol Biol Cell 2006; 17:3964-77. [PMID: 16790498 PMCID: PMC1593171 DOI: 10.1091/mbc.e05-12-1174] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) is thought to play an important structural and functional role in phagocytosis. According to this model, direct membrane fusion between the ER and the plasma or phagosomal membrane must precede further invagination, but the exact mechanisms remain elusive. Here, we investigated whether various ER-localized SNARE proteins are involved in this fusion process. When phagosomes were isolated from murine J774 macrophages, we found that ER-localized SNARE proteins (syntaxin 18, D12, and Sec22b) were significantly enriched in the phagosomes. Fluorescence and immuno-EM analyses confirmed the localization of syntaxin 18 in the phagosomal membranes of J774 cells stably expressing this protein tagged to a GFP variant. To examine whether these SNARE proteins are required for phagocytosis, we generated 293T cells stably expressing the Fc gamma receptor, in which phagocytosis occurs in an IgG-mediated manner. Expression in these cells of dominant-negative mutants of syntaxin 18 or D12 lacking the transmembrane domain, but not a Sec22b mutant, impaired phagocytosis. Syntaxin 18 small interfering RNA (siRNA) selectively decreased the efficiency of phagocytosis, and the rate of phagocytosis was markedly enhanced by stable overexpression of syntaxin 18 in J774 cells. Therefore, we conclude that syntaxin 18 is involved in ER-mediated phagocytosis, presumably by regulating the specific and direct fusion of the ER and plasma or phagosomal membranes.
Collapse
Affiliation(s)
- Kiyotaka Hatsuzawa
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Drecktrah D, Knodler LA, Ireland R, Steele-Mortimer O. The Mechanism of Salmonella Entry Determines the Vacuolar Environment and Intracellular Gene Expression. Traffic 2005; 7:39-51. [PMID: 16445685 DOI: 10.1111/j.1600-0854.2005.00360.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Macrophages are an important intracellular niche for Salmonella particularly for systemic infection. The interaction of Salmonella with these cells is mediated by two type III secretion systems (TTSS), encoded on Salmonella pathogenicity islands 1 and 2 (SPI1, SPI2), which mediate distinct phases of the pathogen-host cell interaction. The SPI1 TTSS mediates invasion whereas the SPI2 TTSS is required for intramacrophage survival. Importantly, however, Salmonella can enter macrophages by either SPI1-dependent invasion or host cell-mediated phagocytosis. Here, we investigated how the mechanism of internalization affects the intracellular environment and TTSS gene expression. Intracellular bacterial survival depended on the method of entry, because complement-opsonized and SPI1-induced Salmonella initiated replication within 8 h whereas immunoglobulin G (IgG)-opsonized and non-opsonized Salmonella were initially killed. Analysis of vacuolar pH showed that acidification of the Salmonella-containing vacuole occurred more rapidly for non-opsonized or SPI1-induced Salmonella compared with IgG-opsonized or complement-opsonized Salmonella. Finally, quantitative polymerase chain reaction was used to compare the transcriptional profiles of selected SPI1 and SPI2 regulon genes. We found that the magnitude of SPI2 gene induction depended on the mechanism of internalization. Unexpectedly, SPI1 genes, which are rapidly downregulated following SPI1-mediated invasion, were induced intracellularly following phagocytic uptake. These results reveal another level of complexity in pathogen-macrophage interactions.
Collapse
Affiliation(s)
- Dan Drecktrah
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
27
|
Gonon EM, Skalski M, Kean M, Coppolino MG. SNARE-mediated membrane traffic modulates RhoA-regulated focal adhesion formation. FEBS Lett 2005; 579:6169-78. [PMID: 16243314 DOI: 10.1016/j.febslet.2005.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
In the present study, we examined the role of soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic in the formation of focal adhesions during cell spreading. CHO-K1 cells expressing a dominant-negative form of N-ethylmaleimide-sensitive factor (E329Q-NSF) were unable to spread as well as control cells and they formed focal adhesions (FAs) that were larger than those in control cells. FA formation was impaired in cells transfected with a dominant-negative form of RhoA, but, significantly, not in cells simultaneously expressing dominant-negative NSF. Treatment of E329Q-NSF-expressing cells with the ROCK inhibitor Y-27632 did inhibit FA formation. The results are consistent with a model of cell adhesion in which SNARE-mediated membrane traffic is required for both the elaboration of lamellipodia and the modulation of biochemical signals that control RhoA-mediated FA assembly.
Collapse
Affiliation(s)
- Eva M Gonon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
28
|
Skalski M, Coppolino MG. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells. Biochem Biophys Res Commun 2005; 335:1199-210. [PMID: 16112083 DOI: 10.1016/j.bbrc.2005.07.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/25/2005] [Indexed: 12/29/2022]
Abstract
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of alpha5beta1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.
Collapse
Affiliation(s)
- Michael Skalski
- Department of Molecular and Cellular Biology, University of Guleph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
29
|
Touret N, Paroutis P, Grinstein S. The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma. J Leukoc Biol 2005; 77:878-85. [PMID: 15728715 DOI: 10.1189/jlb.1104630] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For decades, the vacuole that surrounds particles engulfed by phagocytosis was believed to originate from the plasma membrane. Conversion of the nascent phagosome into a microbicidal organelle was thought to result from the subsequent, orderly fusion of early endosomes, late endosomes, and ultimately, lysosomes with the original plasma membrane-derived vacuole. This conventional model has been challenged, if not superseded, by a revolutionary model that regards phagosome formation as resulting from the particle sliding into the endoplasmic reticulum via an opening at the base of the phagocytic cup. The merits and implications of these two hypotheses are summarized here and analyzed in light of recent results.
Collapse
Affiliation(s)
- Nicolas Touret
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Randhawa VK, Thong FSL, Lim DY, Li D, Garg RR, Rudge R, Galli T, Rudich A, Klip A. Insulin and hypertonicity recruit GLUT4 to the plasma membrane of muscle cells by using N-ethylmaleimide-sensitive factor-dependent SNARE mechanisms but different v-SNAREs: role of TI-VAMP. Mol Biol Cell 2004; 15:5565-73. [PMID: 15469990 PMCID: PMC532034 DOI: 10.1091/mbc.e04-03-0266] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin and hypertonicity each increase the content of GLUT4 glucose transporters at the surface of muscle cells. Insulin enhances GLUT4 exocytosis without diminishing its endocytosis. The insulin but not the hypertonicity response is reduced by tetanus neurotoxin, which cleaves vesicle-associated membrane protein (VAMP)2 and VAMP3, and is rescued upon introducing tetanus neurotoxin-resistant VAMP2. Here, we show that hypertonicity enhances GLUT4 recycling, compounding its previously shown ability to reduce GLUT4 endocytosis. To examine whether the canonical soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) mechanism is required for the plasma membrane fusion of the tetanus neurotoxin-insensitive GLUT4 vesicles, L6 myoblasts stably expressing myc-tagged GLUT4 (GLUT4myc) were transiently transfected with dominant negative N-ethylmaleimide-sensitive factor (NSF) (DN-NSF) or small-interfering RNA to tetanus neurotoxin-insensitive VAMP (TI-VAMP siRNA). Both strategies markedly reduced the basal level of surface GLUT4myc and the surface gain of GLUT4myc in response to hypertonicity. The insulin effect was abolished by DN-NSF, but only partly reduced by TI-VAMP siRNA. We propose that insulin and hypertonicity recruit GLUT4myc from partly overlapping, but distinct sources defined by VAMP2 and TI-VAMP, respectively.
Collapse
Affiliation(s)
- Varinder K Randhawa
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dalal S, Rosser MFN, Cyr DM, Hanson PI. Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol Biol Cell 2003; 15:637-48. [PMID: 14617820 PMCID: PMC329284 DOI: 10.1091/mbc.e03-02-0097] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NSF and p97 are related AAA proteins implicated in membrane trafficking and organelle biogenesis. p97 is also involved in pathways that lead to ubiquitin-dependent proteolysis, including ER-associated degradation (ERAD). In this study, we have used dominant interfering ATP-hydrolysis deficient mutants (NSF(E329Q) and p97(E578Q)) to compare the function of these AAA proteins in the secretory pathway of mammalian cells. Expressing NSF(E329Q) promotes disassembly of Golgi stacks into dispersed vesicular structures. It also rapidly inhibits glycosaminoglycan sulfation, reflecting disruption of intra-Golgi transport. In contrast, expressing p97(E578Q) does not affect Golgi structure or function; glycosaminoglycans are normally sulfated and secreted, as is the VSV-G ts045 protein. Instead, expression of p97(E578Q) causes ubiquitinated proteins to accumulate on ER membranes and slows degradation of the ERAD substrate cystic-fibrosis transmembrane-conductance regulator. In addition, expression of p97(E578Q) eventually causes the ER to swell. More specific assessment of effects of p97(E578Q) on organelle assembly shows that the Golgi apparatus disperses and reassembles normally after treatment with brefeldin A and during mitosis. These findings demonstrate that ATP-hydrolysis-dependent activities of NSF and p97 in the cell are not equivalent and suggest that only NSF is directly involved in regulating membrane fusion.
Collapse
Affiliation(s)
- Seema Dalal
- Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
32
|
Scott CC, Furuya W, Trimble WS, Grinstein S. Activation of store-operated calcium channels: assessment of the role of snare-mediated vesicular transport. J Biol Chem 2003; 278:30534-9. [PMID: 12764154 DOI: 10.1074/jbc.m304718200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated calcium channels (SOC) play a central role in cellular calcium homeostasis. Although it is well established that SOC are activated by depletion of the endoplasmic reticulum calcium stores, the molecular mechanism underlying this effect remains ill defined. It has been suggested that SOC activation requires fusion of endomembrane vesicles with the plasmalemma. In this model, SNARE-dependent exocytosis is proposed to deliver channels or their activators to the surface membrane to initiate calcium influx. To test this hypothesis, we studied the requirement for membrane fusion events in SOC activation, using a variety of dominant-negative constructs and toxins that interfere with SNARE function. Botulinum neurotoxin A (BotA), which cleaves SNAP-25, did not prevent SOC activation. Moreover, SNAP-25 was not detectable in the cells where BotA was reported earlier to inhibit SOC. Instead, the BotA-insensitive SNAP-23 was present. Impairment of VAMP function was similarly without effect on SOC opening. We also tested the role of N-ethylmaleimide-sensitive factor, a global regulator of SNARE-mediated membrane fusion. Expression of a mutated N-ethylmaleimide-sensitive factor construct inhibited all aspects of membrane traffic tested, including recycling of transferrin receptors to the plasma membrane, fusion of endosomes with lysosomes, and retrograde traffic to the Golgi complex. Despite this global inhibition of vesicular fusion, which was accompanied by gross alterations in cell morphology, SOC activation persisted. These observations cannot be easily reconciled with the vesicle-mediated coupling hypothesis of SOC activation. Our findings imply that the SOC and the machinery necessary to activate them exist in the plasma membrane or are associated with it prior to activation.
Collapse
Affiliation(s)
- Cameron C Scott
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
33
|
Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 2003; 5:245-52. [PMID: 12675682 DOI: 10.1046/j.1462-5822.2003.t01-1-00271.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli K1 has been shown to invade human brain microvascular endothelial cells (HBMEC) in vitro and translocate the blood-brain barrier in vivo, but it is unclear how E. coli K1 traverses HBMEC. We have previously shown that internalized E. coli K1 is localized within membrane-bound vacuole in HBMEC. The present study was carried out to understand intracellular trafficking of E. coli K1 containing vacuoles (ECVs) in HBMEC. ECVs initially acquired two early endosomal marker proteins, EEA1 and transferrin receptor. Rab7 and Lamp-1, markers for late endosome and late endosome/lysosome, respectively, were subsequently recruited on the ECVs, which was confirmed with flow cytometry analysis of ECVs. However, ECVs did not obtain cathepsin D, a lysosomal enzyme, even after 120 min incubation, suggesting that E. coli K1 avoids lysosomal fusion. In contrast, isogenic K1 capsule-deletion mutant obtained early and late endosomal markers on vacuolar membranes and allowed lysosomal fusion with subsequent degradation inside vacuoles. This observation was consistent with the decreased intracellular survival of K1 capsule-deletion mutant, even though the binding and internalization rates of the mutant were higher than those of the parent E. coli K1 strain. This is the first demonstration that E. coli K1, via the K1 capsule on the bacterial surface, modulates the maturation process of ECVs and prevents fusion with lysosomes, which is an event necessary for traversal of the blood-brain barrier as live bacteria.
Collapse
Affiliation(s)
- Kee Jun Kim
- Division of Pediatrics Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 2128, USA
| | | | | | | | | |
Collapse
|
34
|
Plattner H, Kissmehl R. Molecular Aspects of Membrane Trafficking in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:185-216. [PMID: 14711119 DOI: 10.1016/s0074-7696(03)32005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
35
|
García‐García E, Rosales C. Signal transduction during Fc receptor‐mediated phagocytosis. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.6.1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Erick García‐García
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Carlos Rosales
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| |
Collapse
|
36
|
Collins RF, Schreiber AD, Grinstein S, Trimble WS. Syntaxins 13 and 7 function at distinct steps during phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3250-6. [PMID: 12218144 DOI: 10.4049/jimmunol.169.6.3250] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phagosome is a dynamic organelle that undergoes progressive changes to acquire the machinery required to kill and degrade internalized foreign particles. This maturation process involves sequential interaction of newly formed phagosomes with several components of the endocytic pathway. The proteins that mediate the ordered fusion of endosomes and lysosomes with the phagosome are not known. In this study, we investigated the possible role of syntaxins present in the endo/lysosomal pathway in directing phagosomal maturation. We show that in phagocytic cells syntaxin 13 is localized to the recycling endosome compartment, while syntaxin 7 is found in late endosomes/lysosomes. Both proteins are recruited to the phagosome, but syntaxin 13 is acquired earlier and rapidly recycles off the phagosome, while syntaxin 7 is recruited later and continues to accumulate throughout the maturation process. Overexpression of truncated (cytosolic) forms of syntaxin 13 or 7 had no effect on phagocytosis, but exerted an inhibitory effect on phagosomal maturation. These results indicate that syntaxins 13 and 7 are both required for interaction of endosomes and/or lysosomes with the phagosome, but play distinct roles in the maturation process.
Collapse
Affiliation(s)
- Richard F Collins
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
The phagocytic response of innate immune cells such as macrophages is defined by the activation of complex signaling networks that are stimulated by microbial contact. Many individual proteins have been demonstrated to participate in phagocytosis, and the application of high-throughput tools has indicated that many more remain to be described. In this review, we examine this complexity and describe how during recognition, multiple receptors are simultaneously engaged to mediate internalization, activate microbial killing, and induce the production of inflammatory cytokines and chemokines. Many signaling molecules perform multiple functions during phagocytosis, and these molecules are likely to be key regulators of the process. Indeed, pathogenic microorganisms target many of these molecules in their attempts to evade destruction.
Collapse
Affiliation(s)
- David M Underhill
- Institute for Systems Biology, 1441 North 34 Street, Seattle, Washington 98103, USA.
| | | |
Collapse
|
38
|
Abstract
Phagocytosis is an evolutionarily conserved process utilized by many cells to ingest microbial pathogens, and apoptotic and necrotic corpses. Recent investigation has revealed a fundamental requirement for two co-ordinated cellular processes--cytoskeletal alterations and membrane trafficking--in the phagocytic event. Some elements of this machinery are co-opted by certain pathogens to gain entry into host cells.
Collapse
Affiliation(s)
- Steven Greenberg
- Columbia University, Departments of Medicine and Pharmacology/BB914, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
39
|
Cuellar-Mata P, Jabado N, Liu J, Furuya W, Finlay BB, Gros P, Grinstein S. Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem 2002; 277:2258-65. [PMID: 11700301 DOI: 10.1074/jbc.m105508200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella survive and replicate within mammalian cells by becoming secluded within specialized membrane-bound vacuoles inaccessible to the host defense mechanisms. Delayed acidification of the vacuole and its incomplete fusion with lysosomes have been implicated in intracellular Salmonella survival. Nramp1 confers to macrophages resistance to a variety of intracellular pathogens, including Salmonella, but its precise mode of action is not understood. We investigated whether Nramp1 affects the maturation and acidification of Salmonella-containing vacuoles (SCV). A mouse-derived macrophage line (RAW/Nramp1(-)) devoid of Nramp1 and therefore susceptible to infection was compared with isogenic clones stably transfected with Nramp1 (RAW/Nramp1(+)). Intravacuolar pH, measured in situ, was similar in Nramp1-expressing and -deficient cells. SCV acquired LAMP1 and fused with preloaded fluid-phase markers in both cell types. In contrast, although few vacuoles in RAW/Nramp1(-) acquired mannose 6-phosphate receptor, many more contained M6PR in RAW/Nramp1(+) cells. Shortly after closure, SCV in RAW/Nramp1(-) became inaccessible to extracellular markers, suggesting inability to fuse with newly formed endosomes. Expression of Nramp1 markedly increased the access to extracellularly added markers. We propose that Nramp1 counteracts the ability of Salmonella to become secluded in a compartment that limits access of bactericidal agents, allowing the normal degradative pathway of the macrophage to proceed.
Collapse
Affiliation(s)
- Patricia Cuellar-Mata
- Division of Cell Biology, Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Engulfment of particles by phagocytes involves remodeling of the plasma membrane. We review recent work that suggests that focal exocytosis of endomembranes plays an important role in pseudopod extension during phagocytosis.
Collapse
Affiliation(s)
- J W Booth
- Programme in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5X 1G8, Canada
| | | | | |
Collapse
|