1
|
Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein. Molecules 2015; 20:9468-86. [PMID: 26007194 PMCID: PMC6272592 DOI: 10.3390/molecules20059468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP), which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.
Collapse
|
2
|
Huang VW, Lee CL, Lee YL, Lam KK, Ko JK, Yeung WS, Ho PC, Chiu PC. Sperm fucosyltransferase-5 mediates spermatozoa–oviductal epithelial cell interaction to protect human spermatozoa from oxidative damage. ACTA ACUST UNITED AC 2015; 21:516-26. [DOI: 10.1093/molehr/gav015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
|
3
|
Carvalho AS, Harduin-Lepers A, Magalhães A, Machado E, Mendes N, Costa LT, Matthiesen R, Almeida R, Costa J, Reis CA. Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int J Biochem Cell Biol 2009; 42:80-9. [PMID: 19781661 DOI: 10.1016/j.biocel.2009.09.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
Sialyl Lewis x and sialyl Lewis a expression depends on sialyltransferases and fucosyltransferases. In this study, we screened for major variations of sialyltransferases and fucosyltransferases involved in the synthesis and regulation of sialyl Lewis x and sialyl Lewis a epitopes in gastrointestinal carcinoma cells. Our results show that expression of ST3Gal IV in several gastrointestinal cell lines is correlated with the expression of sialyl Lewis x at the cell surface. ST3Gal IV overexpressed in the gastric MKN45 cell line, showed exclusive enzymatic activity towards glycoproteins containing terminal Galbeta1-4GlcNAc structure. On the other hand, when ST3Gal III was overexpressed in MKN45, an increase in the expression levels of both sialyl Lewis epitopes was observed. ST3Gal III and ST3Gal IV lead to de novo synthesis of sialyl Lewis x determinant on different molecular weight glycoproteins of MKN45 cells suggesting that each enzyme used different substrates within the available glycoproteome. The final glycosylation step in sialyl Lewis x and sialyl Lewis a biosynthesis in MKN45 cell line was shown to be associated to FUT5, which efficiently fucosylated sialyl Lewis precursors on glycoproteins. Moreover we demonstrate that the expression of sialyl Lewis epitopes in the MKN45 was induced by cell confluence, which can be regarded as a model to study altered glycosylation during tumour progression. This increase was observed together with an increase in mRNA levels of ST3GAL3, FUT5 and FUT6, and a decrease in FUT4 transcript levels in MKN45 confluent cells, suggesting a possible control at the transcriptional level.
Collapse
Affiliation(s)
- A S Carvalho
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shetterly S, Jost F, Watson SR, Knegtel R, Macher BA, Holmes EH. Site-specific fucosylation of sialylated polylactosamines by alpha1,3/4-fucosyltransferases-V and -VI Is defined by amino acids near the N terminus of the catalytic domain. J Biol Chem 2007; 282:24882-92. [PMID: 17604274 DOI: 10.1074/jbc.m702395200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucose transfer from GDP-fucose to GlcNAc residues of the sialylated polylactosamine acceptor NeuAcalpha2-3Galbeta1-4Glc-NAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-ceramide leads to two isomeric monofucosyl antigens, VIM2 and sialyl-Le(x). Human alpha1,3/4-fucosyltransferase (FucT)-V catalyzes primarily the synthesis of VIM2, whereas human FucT-VI catalyzes primarily the synthesis of sialyl-Le(x). Thus, these two enzymes have distinct "site-specific fucosylation" properties. Amino acid sequence alignment of these enzymes showed that there are 24 amino acid differences in their catalytic domains. Studies were conducted to determine which of the amino acid differences are responsible for the site-specific fucosylation properties of each enzyme. Domain swapping (replacing a portion of the catalytic domain from one enzyme with an analogous portion from the other enzyme) demonstrated that site-specific fucosylation was defined within a 40-amino acid segment containing 8 amino acid differences between the two enzymes. Site-directed mutagenesis studies demonstrated that the site-specific fucosylation properties of these enzymes could be reversed by substituting 4 amino acids from one sequence with the other. These results were observed in both in vitro enzyme assays and flow cytometric analyses of Chinese hamster ovary cells transfected with plasmids containing the various enzyme constructs. Modeling studies of human FucT using a structure of a bacterial fucosyltransferase as a template demonstrated that the amino acids responsible for site-specific fucosylation map near the GDP-fucose-binding site. Additional enzyme studies demonstrated that FucT-VI has approximately 12-fold higher activity compared with FucT-V and that the Trp(124)/Arg(110) site in these enzymes is responsible primarily for this activity difference.
Collapse
Affiliation(s)
- Susan Shetterly
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | | | |
Collapse
|
5
|
Holgersson J, Löfling J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 2006; 16:584-93. [PMID: 16484342 DOI: 10.1093/glycob/cwj090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | | |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
7
|
Serpa J, Mesquita P, Mendes N, Oliveira C, Almeida R, Santos-Silva F, Reis CA, LePendu J, David L. Expression of Lea in gastric cancer cell lines depends on FUT3 expression regulated by promoter methylation. Cancer Lett 2006; 242:191-7. [PMID: 16427187 DOI: 10.1016/j.canlet.2005.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/28/2005] [Accepted: 11/04/2005] [Indexed: 02/05/2023]
Abstract
Aberrant expression of Lewis antigens has been demonstrated in gastric lesions, namely gastritis, intestinal metaplasia (IM) and gastric carcinoma (GC), and can be partly due to overexpression of the Lewis (FUT3) enzyme. Our aim was to evaluate the role of promoter methylation in FUT3 and Le(a) expression in gastric carcinoma cell lines. MKN45 cell line showed low amounts of Le(a), in the absence of FUT3; GP220 expressed high levels of Le(a) and FUT3. After 5aza-2'deoxycytidine MKN45 showed increased levels of FUT3 and Le(a), by immunohistochemistry and Real-Time PCR, whereas GP220 showed an increase in FUT3 without increase of Le(a). Enzyme activity assays confirmed an increase in alpha-1,4 fucosyltransferase activity in both cell lines by 5aza-2'deoxycytidine. Luciferase reporter gene assays, using methylated and unmethylated deletion constructs of FUT3 promoter, showed that FUT3 expression is regulated by methylation. Summing up, we showed that FUT3 overexpression in gastric cells depends upon promoter hypomethylation and that FUT3 is responsible for overexpression of Le(a) in gastric cells, in vitro. FUT3, Lea, Methylation.
Collapse
Affiliation(s)
- Jacinta Serpa
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma B, Wang G, Palcic MM, Hazes B, Taylor DE. C-terminal amino acids of Helicobacter pylori alpha1,3/4 fucosyltransferases determine type I and type II transfer. J Biol Chem 2003; 278:21893-900. [PMID: 12676935 DOI: 10.1074/jbc.m301704200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha1,3/4 fucosyltransferase (FucT) enzyme from Helicobacter pylori catalyzes fucose transfer from donor GDP-beta-l-fucose to the GlcNAc group of two series of acceptor substrates in H. pylori lipopolysaccharide: betaGal1,3betaGlcNAc (Type I) or betaGal1,4betaGlcNAc (Type II). Fucose is added either in alpha1,3 linkage of Type II acceptor to produce Lewis X or in alpha1,4 linkage of Type I acceptor to produce Lewis A, respectively. H. pylori FucTs from different strains have distinct Type I or Type II substrate specificities. FucT in H. pylori strain NCTC11639 has an exclusive alpha1,3 activity because it recognizes only Type II substrates, whereas FucT in H. pylori strain UA948 can utilize both Type II and Type I acceptors; thus it has both alpha1,3 and alpha1,4 activity, respectively. To identify elements conferring substrate specificity, 12 chimeric FucTs were constructed by domain swapping between 11639FucT and UA948FucT and characterized for their ability to transfer fucose to Type I and Type II acceptors. Our results indicate that the C-terminal region of H. pylori FucTs controls Type I and Type II acceptor specificity. In particular, the highly divergent C-terminal portion, seven amino acids DNPFIFC at positions 347-353 in 11639FucT, and the corresponding 10 amino acids CNDAHYSALH at positions 345-354 in UA948FucT, controls the Type I and Type II acceptor recognition. This is the opposite of mammalian FucTs where acceptor preference is determined primarily by the N-terminal residues in the hypervariable stem domain.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
9
|
Toivonen S, Nishihara S, Narimatsu H, Renkonen O, Renkonen R. Fuc-TIX: a versatile alpha1,3-fucosyltransferase with a distinct acceptor- and site-specificity profile. Glycobiology 2002; 12:361-8. [PMID: 12107078 DOI: 10.1093/glycob/12.6.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
alpha1,3-Fucosyltransferases (Fuc-Ts) convert N-acetyllactosamine (LN, Galbeta1-4GlcNAc) to Galbeta1-4(Fucalpha1-3)GlcNAc, the Lewis x (CD15, SSEA-1) epitope, which is involved in various recognition phenomena. We describe details of the acceptor specificity of alpha1,3-fucosyltransferase IX (Fuc-TIX). The unconjugated N- and O-glycan analogs LNbeta1-2Man, LNbeta1-6Manalpha1-OMe, LNbeta1-2Manalpha1-3(LNbeta1-2Manalpha1-6)Manbeta1-4GlcNAc, and Galbeta1-3(LNbeta1-6)GalNAc reacted well in vitro with Fuc-TIX present in lysates of appropriately transfected Namalwa cells. Fuc-TIX reacted well with the reducing end LN of GlcNAcbeta1-3'LN (underscored site reacted) and GlcNAcbeta1-3'LNbeta1-3'LN (both LNs reacted), but very poorly with the reducing end LN of LNbeta1-3'LN. However, Fuc-TIX reacted significantly better with the non-reducing end LN as compared to the other LN units in the glycans LNbeta1-3'LN and LNbeta1-3'LNbeta1-3'LNbeta1-3'LN, confirming our previous data on LNbeta1-3'LNbeta1-OR. In contrast, the sialylated glycan Neu5Acalpha2-3'LNbeta1-3'LNbeta1-3'LNbeta1-3'LN was fucosylated preferentially at the two most reducing end LN units. We conclude that Fuc-TIX is a versatile alpha1,3-Fuc-T, that (1) generates distal Lewis x epitopes from many different acceptors, (2) possesses inherent ability for the biosynthesis of internal Lewis x epitopes on growing polylactosamine backbones, and (3) fucosylates the remote internal LN units of alpha2,3-sialylated i-type polylactosamines.
Collapse
Affiliation(s)
- Suvi Toivonen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
10
|
Salo H, Aitio O, Ilves K, Bencomo E, Toivonen S, Penttilä L, Niemelä R, Salminen H, Grabenhorst E, Renkonen R, Renkonen O. Several polylactosamine-modifying glycosyltransferases also use internal GalNAcbeta1-4GlcNAc units of synthetic saccharides as acceptors. Glycobiology 2002; 12:217-28. [PMID: 11971866 DOI: 10.1093/glycob/12.3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GalNAcbeta1-4GlcNAc determinant (LdN) occurs in some human and bovine glycoconjugates and also in lower vertebrates and invertebrates. It has been found in unsubstituted as well as terminally substituted forms at the distal end of conjugated glycans, but it has not been reported previously at truly internal positions of polylactosamine chains. Here, we describe enzyme-assisted conversion of LdNbeta1-OR oligosaccharides into GlcNAcbeta1-3GalNAcbeta1-4GlcNAcbeta1-OR. The extension reactions, catalyzed by human serum, were modeled after analogous beta3-GlcNAc transfer processes that generate GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-OR. The newly synthesized GlcNAcbeta1-3GalNAc linkages were unambiguously identified by nuclear magnetic resonance data, including the appropriate long-range correlations in heteronuclear multiple bond correlation spectra. The novel GlcNAcbeta1-3'LdN determinant proved to be a functional acceptor for several mammalian glycosyltransferases, suggesting that human polylactosamines may contain internal LdN units in many distinct forms. The GlcNAcbeta1-3'LdN determinant was unusually resistant toward jackbean beta-N-acetylhexosaminidase; the slow degradation should lead to a convenient method for the search of putative internal LdN determinants in natural polylactosamine chains.
Collapse
Affiliation(s)
- Hanna Salo
- Institute of Biotechnology, Laboratory of Glycobiology, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Toivonen S, Aitio O, Renkonen O. alpha 2,3-Sialylation of terminal GalNAc beta 1-3Gal determinants by ST3Gal II reveals the multifunctionality of the enzyme. The resulting Neu5Ac alpha 2-3GalNAc linkage is resistant to sialidases from Newcastle disease virus and Streptococcus pneumoniae. J Biol Chem 2001; 276:37141-8. [PMID: 11479313 DOI: 10.1074/jbc.m105715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.
Collapse
Affiliation(s)
- S Toivonen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|