1
|
Saba E, Irfan M, Jeong D, Ameer K, Lee YY, Park CK, Hong SB, Rhee MH. Mediation of antiinflammatory effects of Rg3-enriched red ginseng extract from Korean Red Ginseng via retinoid X receptor α-peroxisome-proliferating receptor γ nuclear receptors. J Ginseng Res 2018; 43:442-451. [PMID: 31308816 PMCID: PMC6606843 DOI: 10.1016/j.jgr.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Background Ginseng has a wide range of beneficial effects on health, such as the mitigation of minor and major inflammatory diseases, cancer, and cardiovascular diseases. There are abundant data regarding the health-enhancing properties of whole ginseng extracts and single ginsenosides; however, no study to date has determined the receptors that mediate the effects of ginseng extracts. In this study, for the first time, we explored whether the antiinflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE) are mediated by retinoid X receptor α–peroxisome-proliferating receptor γ (RXRα-PPARγ) heterodimer nuclear receptors. Methods Nitric oxide assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, quantitative reverse transcription polymerase chain reaction, nuclear hormone receptor–binding assay, and molecular docking analyses were used for this study. Results Rg3-RGE exerted antiinflammatory effects via nuclear receptor heterodimers between RXRα and PPARγ agonists and antagonists. Conclusion These findings indicate that Rg3-RGE can be considered a potent antiinflammatory agent, and these effects are likely mediated by the nuclear receptor RXRα-PPARγ heterodimer.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dahye Jeong
- Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kashif Ameer
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Yuan Yee Lee
- Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Cosmetic Research, R&D Headquarters, Korean Ginseng Cooperation, Daejeon, Republic of Korea
| | - Seung-Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health & Science University, Cheongju, Republic of Korea
| | - Man Hee Rhee
- Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author: Department of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Firmin FF, Oger F, Gheeraert C, Dubois-Chevalier J, Vercoutter-Edouart AS, Alzaid F, Mazuy C, Dehondt H, Alexandre J, Derudas B, Dhalluin Q, Ploton M, Berthier A, Woitrain E, Lefebvre T, Venteclef N, Pattou F, Staels B, Eeckhoute J, Lefebvre P. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep 2017; 7:14087. [PMID: 29075020 PMCID: PMC5658386 DOI: 10.1038/s41598-017-14570-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 02/03/2023] Open
Abstract
Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.
Collapse
Affiliation(s)
- François F Firmin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Frederik Oger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Fawaz Alzaid
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - Claire Mazuy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Hélène Dehondt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jeremy Alexandre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Quentin Dhalluin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Maheul Ploton
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Nicolas Venteclef
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190- EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
3
|
Galvagni F, Lentucci C, Neri F, Dettori D, De Clemente C, Orlandini M, Anselmi F, Rapelli S, Grillo M, Borghi S, Oliviero S. Snai1 Promotes ESC Exit from the Pluripotency by Direct Repression of Self-Renewal Genes. Stem Cells 2015; 33:742-50. [DOI: 10.1002/stem.1898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Federico Galvagni
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | - Claudia Lentucci
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | | | | | - Caterina De Clemente
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | | | - Stefania Rapelli
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
- HuGeF; Torino Italy
| | - Michela Grillo
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | - Sara Borghi
- Dipartimento di Biotecnologie; Chimica e Farmacia, Università di Siena; Siena Italy
| | - Salvatore Oliviero
- HuGeF; Torino Italy
- Dipartimento di Scienze Della Vita e Biologia Dei Sistemi; Università di Torino; Torino Italy
| |
Collapse
|
4
|
|
5
|
Flajollet S, Rachez C, Ploton M, Schulz C, Gallais R, Métivier R, Pawlak M, Leray A, Issulahi AA, Héliot L, Staels B, Salbert G, Lefebvre P. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors. PLoS One 2013; 8:e64880. [PMID: 23762261 PMCID: PMC3677938 DOI: 10.1371/journal.pone.0064880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation.
Collapse
Affiliation(s)
- Sébastien Flajollet
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Rachez
- Unité de Régulation Epigénétique, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Céline Schulz
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Rozenn Gallais
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Raphaël Métivier
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Aymeric Leray
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Al Amine Issulahi
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Laurent Héliot
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Gilles Salbert
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
6
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
7
|
Higazi A, Abed M, Chen J, Li Q. Promoter context determines the role of proteasome in ligand-dependent occupancy of retinoic acid responsive elements. Epigenetics 2011; 6:202-11. [PMID: 20948287 DOI: 10.4161/epi.6.2.13658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinoid acid receptors are DNA-binding proteins mediating the biological effects of ligands through transcriptional activation. It is known that the activity of the 26S proteasome is important for nuclear receptor-activated gene transcription. However, the molecular mechanism by which the 26S proteasome participates in this process is not well understood. Here we report that the proteasome activity is essential for ligand-dependent interaction of RAR with its co-regulators such as SRC, p300 and RXR. We also determined that the proteasome activity is required for the association of liganded RAR to the genomic DNA and, consequently, for the recruitment of the coactivator complex to the retinoic acid responsive elements. Moreover, the requirement of proteasome activity for the activator activity of RAR is determined by the promoter context. Our study suggests that the 26S proteasome regulates directly the activity of RAR as an activator.
Collapse
Affiliation(s)
- Aliaa Higazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 2010; 21:676-83. [PMID: 20674387 DOI: 10.1016/j.tem.2010.06.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 01/19/2023]
Abstract
Retinoid X receptors (RXRs) have been implicated in a diversity of cellular processes ranging from cellular proliferation to lipid metabolism. These pleiotropic effects stem not only from the ability of RXRs to dimerize with diverse nuclear receptors, which exert transcriptional control on specific aspects of cell biology, but also because binding of RXR ligands to heterodimers can stimulate transcriptional activation by RXR partner receptors. This signaling network is rendered more complex by the existence of different RXR isotypes (RXRα, RXRβ, RXRγ) with distinct properties that thereby modulate the transcriptional activity of RXR-containing heterodimers. This review discusses the emerging roles of RXR isotypes in the RXR signaling network and possible implications for our understanding of nuclear receptor biology and pharmacology.
Collapse
|
9
|
Lefebvre B, Benomar Y, Guédin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Pénicaud L, Casteilla L, Pattou F, Ktorza A, Staels B, Lefebvre P. Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans. J Clin Invest 2010; 120:1454-68. [PMID: 20364085 DOI: 10.1172/jci38606] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/27/2010] [Indexed: 12/14/2022] Open
Abstract
Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.
Collapse
|
10
|
Chai Z, Yang L, Yu B, He Q, Li WI, Zhou R, Zhang T, Zheng X, Xie J. p38 Mitogen-activated protein kinase-dependent regulation of SRC-3 and involvement in retinoic acid receptor α signaling in embryonic cortical neurons. IUBMB Life 2009; 61:670-8. [DOI: 10.1002/iub.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Abstract
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.
Collapse
Affiliation(s)
- Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|
12
|
Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P. The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol Cell Endocrinol 2007; 270:23-32. [PMID: 17363140 DOI: 10.1016/j.mce.2007.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/10/2007] [Accepted: 02/05/2007] [Indexed: 11/20/2022]
Abstract
Retinoic acid receptors (RARs) activate transcription by recruiting coactivator complexes such as histone acetyltransferases (HAT) and the mediator complex, to increase chromatin accessibility by general transcription factors and to promote transcription initiation. Indirect evidences have suggested a role for the ATP-dependent chromatin remodeling complex SWI/SNF in RAR-mediated transcription. Here we demonstrate that two highly related subunits of the core SWI/SNF complex, BAF60c1 and BAF60c2, interact physically with retinoid receptors and are coactivators for RARs. This coactivating property is dependent on SRC1 expression, showing that HATs and SWI/SNF cooperate in this retinoid-controlled transcriptional process.
Collapse
Affiliation(s)
- Sébastien Flajollet
- Institut Pasteur de Lille, Département d'Athérosclérose, Lille F-59019, France
| | | | | | | | | |
Collapse
|
13
|
Lefebvre B, Brand C, Flajollet S, Lefebvre P. Down-Regulation of the Tumor Suppressor Gene Retinoic Acid Receptor β2 through the Phosphoinositide 3-Kinase/Akt Signaling Pathway. Mol Endocrinol 2006; 20:2109-21. [PMID: 16613989 DOI: 10.1210/me.2005-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The retinoic acid receptor β2 (RARβ2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARβ2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARβ2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARβ2 promoter, decreased histone acetylation, down-regulation of the RARβ2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Institut National de la Santé et de la Recherche Médicale, Unité 545, Faculté de Médecine Henri Warembourg, 1 Place de Verdun, 59045 Lille cedex, France.
| | | | | | | |
Collapse
|
14
|
Flajollet S, Lefebvre B, Rachez C, Lefebvre P. Distinct Roles of the Steroid Receptor Coactivator 1 and of MED1 in Retinoid-induced Transcription and Cellular Differentiation. J Biol Chem 2006; 281:20338-48. [PMID: 16723356 DOI: 10.1074/jbc.m603023200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid receptors (RARs) are the molecular relays of retinoid action on transcription, cellular differentiation and apoptosis. Transcriptional activation of retinoid-regulated promoters requires the dismissal of corepressors and the recruitment of coactivators to promoter-bound RAR. RARs recruit in vitro a plethora of coactivators whose actual contribution to retinoid-induced transcription is poorly characterized in vivo. Embryonal carcinoma P19 cells, which are highly sensitive to retinoids, were depleted from archetypical coactivators by RNAi. SRC1-deficient P19 cells showed severely compromised retinoid-induced responses, in agreement with the supposed role of SRC1 as a RAR coactivator. Unexpectedly, Med1/TRAP220/DRIP205-depleted cells exhibited an exacerbated response to retinoids, both in terms transcriptional responses and of cellular differentiation. Med1 depletion affected TFIIH and cdk9 detection at the prototypical retinoid-regulated RARbeta2 promoter, and favored a higher RNA polymerase II detection in transcribed regions of the RARbeta2 gene. Furthermore, the nature of the ligand impacted strongly on the ability of RARs to interact with a given coactivator and to activate transcription in intact cells. Thus RAR accomplishes transcriptional activation as a function of the ligand structure, by recruiting regulatory complexes which control distinct molecular events at retinoid-regulated promoters.
Collapse
|
15
|
Martin PJ, Lardeux V, Lefebvre P. The proliferating cell nuclear antigen regulates retinoic acid receptor transcriptional activity through direct protein-protein interaction. Nucleic Acids Res 2005; 33:4311-21. [PMID: 16055921 PMCID: PMC1182168 DOI: 10.1093/nar/gki745] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Retinoic acid receptors (RARs) interact, in a ligand-dependent fashion, with many coregulators that participate in a wide spectrum of biological responses, ranging from embryonic development to cellular growth control. The transactivating function of these ligand-inducible transcription factors reside mainly, but not exclusively, in their ligand-binding domain (AF2), which recruits or dismiss coregulators in a ligand-dependent fashion. However, little is known about AF2-independent function(s) of RARs. We have isolated the proliferating cell nuclear antigen (PCNA) as a repressor of RAR transcriptional activity, able to interact with an AF2-crippled RAR. The N-terminus of PCNA interacts directly with the DNA-binding domain of RAR, and PCNA is recruited to a retinoid-regulated promoter in intact cells. This interaction affects the transcriptional response to retinoic acid in a promoter-specific manner, conferring an unanticipated role to PCNA in transcriptional regulation. Our findings also suggest a role for RAR as a factor coordinating DNA transcription and repair.
Collapse
Affiliation(s)
| | | | - Philippe Lefebvre
- To whom correspondence should be addressed. Tel: +33 3 20626876; Fax: +33 3 20 626884;
| |
Collapse
|
16
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Geffroy N, Guédin A, Dacquet C, Lefebvre P. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases. Mol Cell Endocrinol 2005; 237:11-23. [PMID: 15925090 DOI: 10.1016/j.mce.2005.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/05/2005] [Accepted: 04/06/2005] [Indexed: 11/26/2022]
Abstract
The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.
Collapse
Affiliation(s)
- Nancy Geffroy
- INSERM U 459, Faculté de Médecine Henri Warembourg, 1 place de Verdun, 59045 Lille Cedex, France
| | | | | | | |
Collapse
|
18
|
Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 2004; 328:1-16. [PMID: 15019979 DOI: 10.1016/j.gene.2003.12.005] [Citation(s) in RCA: 574] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/02/2003] [Indexed: 11/18/2022]
Abstract
The pleiotropic effects of retinoids are mediated by nuclear retinoid receptors (RARs and RXRs) which are ligand-activated transcription factors. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks, through binding to specific DNA response elements and recruiting cofactor complexes that act to modify local chromatin structure and/or engage the basal transcription machinery. Then the degradation of RARs and RXRs by the ubiquitin-proteasome controls the magnitude and the duration of the retinoid response. RARs and RXRs also integrate a variety of signaling pathways through phosphorylation events which cooperate with the ligand for the control of retinoid-target genes transcription. These different modes of regulation reveal unexpected levels of complexity in the dynamics of retinoid-dependent transcription.
Collapse
Affiliation(s)
- Julie Bastien
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch Cedex 67404, France
| | | |
Collapse
|
19
|
Martin PJ, Delmotte MH, Formstecher P, Lefebvre P. PLZF is a negative regulator of retinoic acid receptor transcriptional activity. NUCLEAR RECEPTOR 2003; 1:6. [PMID: 14521715 PMCID: PMC212040 DOI: 10.1186/1478-1336-1-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 09/06/2003] [Indexed: 11/10/2022]
Abstract
BACKGROUND: Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in response to ligand treatment. Little is known however on how receptor activity is controlled by intermediary factors which interact with RARs in a ligand-independent manner. RESULTS: We have identified the promyelocytic leukemia zinc finger protein (PLZF), a transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar transcriptional interference could be observed with the estrogen receptor alpha and the glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR heterodimerization, both in-vitro and in intact cells. CONCLUSION: Thus RAR and PLZF interact physically and functionally. Intriguingly, these two transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain and may, upon chromosomal translocation, form fusion proteins. Our observations therefore define a novel mechanism by which RARs activity may be controlled.
Collapse
Affiliation(s)
- Perrine J Martin
- INSERM U 459 and Ligue Nationale Contre le Cancer, Faculté de Médecine Henri Warembourg, 1 place de Verdun, 59045 Lille cedex, France
| | - Marie-Hélène Delmotte
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester MA 01605, USA
| | - Pierre Formstecher
- INSERM U 459 and Ligue Nationale Contre le Cancer, Faculté de Médecine Henri Warembourg, 1 place de Verdun, 59045 Lille cedex, France
| | - Philippe Lefebvre
- INSERM U 459 and Ligue Nationale Contre le Cancer, Faculté de Médecine Henri Warembourg, 1 place de Verdun, 59045 Lille cedex, France
| |
Collapse
|
20
|
Gianní M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem 2003; 278:34458-66. [PMID: 12824162 DOI: 10.1074/jbc.m304952200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, liganded RAR gamma 2/RXR alpha heterodimers activate the transcription of retinoic acid (RA) target genes and then are degraded through the ubiquitin-proteasome pathway. In this study, we dissected the role of the RAR gamma 2 and RXR alpha partners as well as of their respective AF-1 and AF-2 domains in the processes of transactivation and degradation. RAR gamma 2 is the "engine" initiating transcription and its own degradation subsequent to ligand binding. Integrity of its AF-2 domain and phosphorylation of its AF-1 domain are required for both the degradation and the transactivation of the receptor. Deletion of the whole AF-1 domain does not impair these processes but shifts the receptor toward other proteolytic pathways through RXR alpha. In contrast, RXR alpha plays only a modulatory role, cooperating with RAR gamma 2 through its AF-2 domain and its phosphorylated AF-1 domain in both the transcription activity and the degradation of the RAR gamma 2/RXR alpha heterodimers. Our results underline that the AF-1 and AF-2 domains of each heterodimer partner cooperate with one other and that this cooperation is relevant for both the transcription and degradation processes.
Collapse
Affiliation(s)
- Maurizio Gianní
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS INSERM ULP, UMR 7104, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Poujol N, Margeat E, Baud S, Royer CA. RAR antagonists diminish the level of DNA binding by the RAR/RXR heterodimer. Biochemistry 2003; 42:4918-25. [PMID: 12718533 DOI: 10.1021/bi027056l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A purified RAR/RXR-DeltaAB heterodimer was obtained by production of His-tagged RAR and untagged RXR in Escherichia coli, followed by combined purification on a Ni(2+) affinity column using excess RXR extract, and finally a gel filtration chromatography step to isolate a pure heterodimer. The purified heterodimer preparation bound 9-cisRA at a level of 0.85-0.95 mol of binding sites per mole of protein monomer. Titration of a 26 kDa fluorescent labeled fragment of the SRC-1 coactivator protein with the purified heterodimer in the presence of the agonist 9-cisRA yielded a binding affinity near 300 nM, whereas no binding was observed in the absence of agonist. Binding of the purified heterodimer to a DR5 target was identical in the absence of ligand and in the presence of 9-cisRA. Competition by unlabeled specific and nonspecific DNA allowed us to demonstrate that the binding curve was bimodal. The first phase of binding was highly specific and of high affinity. This phase also exhibited a high degree of cooperativity in the binding profile. Nonspecific DNA efficiently competes for the second phase. Thus, the first phase of binding likely corresponds to the formation of the specific heterodimer complex in which heterodimerization is energetically coupled to DNA binding. While agonist binding had no effect on the apparent affinity of the heterodimer for DR5, a series of antagonists significantly destabilized the heterodimer-DR5 complex, either through a direct decrease in the affinity of the protein for the DNA or through destabilization of the heterodimer itself. Impeding the interaction between the heterodimer and DNA appears as an additional mechanism of antagonist action of varying efficiency, depending upon the chemical structure of the antagonist.
Collapse
|
22
|
Farooqui M, Franco PJ, Thompson J, Kagechika H, Chandraratna RAS, Banaszak L, Wei LN. Effects of retinoid ligands on RIP140: molecular interaction with retinoid receptors and biological activity. Biochemistry 2003; 42:971-9. [PMID: 12549917 DOI: 10.1021/bi020497k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor interacting protein 140 (RIP140) interacts with retinoic acid receptor (RAR) and retinoid X receptor (RXR) constitutively, but hormone binding enhances this interaction. The ligand-independent interaction is mediated by the amino and central regions of RIP140 which contain a total of nine copies of the LXXLL motif, whereas the agonist-induced interaction is mediated by its carboxyl terminus which contains a novel motif (1063-1076, LTKTNPILYYMLQK). The ligand-independent interaction could be enhanced slightly by agonists, whereas the ligand-dependent interaction was strictly agonist dependent for both RAR and RXR. In the context of heterodimers, ligand occupancy of RXR played a more dominant role for both molecular interaction and biological activity of RIP140. Competition and mutation studies demonstrated an essential role for (1067)Asn and (1073)Met for a ligand-dependent interaction. A model was proposed to address the constitutive and agonist-dependent interaction of RIP140 with RAR/RXR.
Collapse
Affiliation(s)
- Mariya Farooqui
- Department of Pharmacology and Biochemistry, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Barsony J, Prufer K. Vitamin D receptor and retinoid X receptor interactions in motion. VITAMINS AND HORMONES 2003; 65:345-76. [PMID: 12481554 DOI: 10.1016/s0083-6729(02)65071-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D receptor (VDR) and retinoid X receptor (RXR) are members of the nuclear receptor superfamily and they bind target DNA sequences as heterodimers to regulate transcription. This article surveys the latest findings regarding the roles of dimerizing RXR in VDR function and emphasizes potential areas for future developments. We first highlight the importance of dimerization with RXR for both the ligand-independent (hair growth) and ligand-dependent functions of VDR (calcium homeostasis, bone development and mineralization, control of cell growth and differentiation). Emerging information regarding the regulatory control of dimerization based on biochemical, structural, and genetic studies is then presented. Finally, the main focus of this article is a new dynamic perspective of dimerization functions, based on recent research with fluorescent protein chimeras in living cells by microscopy. These studies revealed that both VDR and RXR constantly shuttle between the cytoplasm and the nucleus and between subnuclear compartments, and showed the transient nature of receptor--DNA and receptor--coregulator interactions. Because RXR dimerizes with most of the nuclear receptors, regulation of receptor dynamics by RXR has a broad significance.
Collapse
Affiliation(s)
- J Barsony
- Laboratory of Cell Biochemistry and Biology, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
24
|
Ross AC. Retinoid production and catabolism: role of diet in regulating retinol esterification and retinoic Acid oxidation. J Nutr 2003; 133:291S-296S. [PMID: 12514312 DOI: 10.1093/jn/133.1.291s] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retinoic acid (RA), a transcriptionally active metabolite of vitamin A (retinol), activates two families of nuclear retinoid receptors that have the potential to regulate the expression of a large number of genes. Although it may be presumed that the concentration of RA is closely regulated, the mechanisms underlying such regulation are not well understood. Our research has examined the expression and function of two enzymes, lecithin:retinol acyltransferase (LRAT) and a cytochrome P450, CYP26, in the liver and lung of rats and mice, over a wide range of vitamin A status or after treatment of vitamin A-deficient animals with exogenous RA. LRAT expression at both the mRNA and protein activity levels and CYP26 mRNA are regulated by dietary vitamin A in a steady-state model and are acutely regulated by RA in an acute repletion model. In the liver, the level of expression of LRAT and CYP26 is as follows: vitamin A deficient < vitamin A marginal < vitamin A adequate < vitamin A supplemented < RA treated. The regulation of LRAT shows strong tissue specificity (highly regulated in liver and lung but not in small intestine), whereas CYP26 is strongly regulated in the liver, lung, testis and intestine. RA may function as a signal of the body's vitamin A adequacy. The regulated expression of LRAT, CYP26 and other genes by RA may provide a sensitive response mechanism that overall serves to adjust the metabolism of vitamin A to maintain retinoid homeostasis and prevent retinoid excess.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
25
|
McElroy C, Manfredo A, Wendt A, Gollnick P, Foster M. TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility. J Mol Biol 2002; 323:463-73. [PMID: 12381302 DOI: 10.1016/s0022-2836(02)00940-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tryptophan biosynthesis genes of several Bacilli are controlled through terminator/anti-terminator transcriptional attenuation. This process is regulated by tryptophan-dependent binding of the trp RNA-binding attenuation protein (TRAP) to the leader region of the trp operon mRNA, precluding formation of the antiterminator RNA hairpin, and allowing formation of the less stable terminator hairpin. Crystal structures are available of TRAP in complex with tryptophan and in ternary complex with tryptophan and RNA. However, no structure of TRAP in the absence of tryptophan is available; thus, the mechanism of allostery remains unclear. We have used transverse relaxation optimized spectroscopy (TROSY)-based NMR experiments to study the mechanism of ligand-mediated allosteric regulation in the 90.6kDa 11-mer TRAP. By recording a series of two-dimensional 15N-edited TROSY NMR spectra of TRAP from the thermophile Bacillus stearothermophilus over an extended range of temperatures, we have found tryptophan binding to be temperature-dependent, in agreement with the previously observed temperature-dependent RNA binding. Triple-resonance TROSY-based NMR spectra recorded at 55 degrees C have allowed us to obtain backbone resonance assignments for uniformly 2H,13C,15N-labeled TRAP in the inactive form and in the active form (free and bound to tryptophan). On the basis of ligand-dependent differential line-broadening and chemical shift perturbations, coupled with the results of proteolytic sensitivity measurements, we infer that tryptophan-modulated protein flexibility (dynamics) plays a central role in TRAP function by altering its RNA-binding affinity. Furthermore, because the crystal structures show that the ligand is buried completely in the bound state, we speculate that such dynamic behavior may be important to enable rapid response to changes in intracellular tryptophan levels. Thus, we propose that allosteric control of TRAP is accomplished by ligand-altered protein dynamics.
Collapse
Affiliation(s)
- Craig McElroy
- Ohio State Biochemistry Program, Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Sacchetti P, Dwornik H, Formstecher P, Rachez C, Lefebvre P. Requirements for heterodimerization between the orphan nuclear receptor Nurr1 and retinoid X receptors. J Biol Chem 2002; 277:35088-96. [PMID: 12122012 DOI: 10.1074/jbc.m205816200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor nurr1 is a transcription factor involved in the development and maintenance of neurons synthesizing the neurotransmitter dopamine. Although the lack of nurr1 expression has dramatic consequences for these cells either in terms of differentiation or survival, the mechanisms by which nurr1 controls gene transcription still remain unclear. In the intent to understand better the modalities of action of this nuclear receptor, we have undertaken a systematic analysis of the transcriptional effects and DNA binding properties of nurr1 as a monomer or when forming dimers with the different isotypes of the retinoic X receptor (RXR). Here, we show that nurr1 acts as a gene activator independently of RXR and through an AF2-independent mechanism. In addition, heterodimerization with RXR is isotype-specific, involves multiple domains in the C-terminal region of nurr1, and requires RXR binding to DNA. RXR(alpha)-nurr1 and RXRgamma-nurr1 heterodimers bind direct repeat response elements and display no specific requirements with respect to half-site spacing. However, the retinoid responsiveness of DNA-bound heterodimers requires the reiteration of at least three nurr1 binding sites, thereby limiting retinoid-induced nurr1 transcriptional activity to specific direct response elements.
Collapse
Affiliation(s)
- Paola Sacchetti
- INSERM Unité 459, Faculté de Medecine Henri Warembourg, 1 Place de Verdun, Lille 59045, France
| | | | | | | | | |
Collapse
|
27
|
Aarnisalo P, Kim CH, Lee JW, Perlmann T. Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J Biol Chem 2002; 277:35118-23. [PMID: 12130634 DOI: 10.1074/jbc.m201707200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nurr1, an orphan nuclear receptor mainly expressed in the central nervous system, is essential for the development of the midbrain dopaminergic neurons. Nurr1 binds DNA as a monomer and exhibits constitutive transcriptional activity. Nurr1 can also regulate transcription as a heterodimer with the retinoid X receptor (RXR) and activate transcription in response to RXR ligands. However, the specific physiological roles of Nurr1 monomers and RXR-Nurr1 heterodimers remain to be elucidated. The aim of this study was to define structural requirements for RXR-Nurr1 heterodimerization. Several amino acid substitutions were introduced in both Nurr1 and RXR in the I-box, a region previously shown to be important for nuclear receptor dimerization. Single amino acid substitutions introduced in either Nurr1 or RXR abolished heterodimerization. Importantly, heterodimerization-deficient Nurr1 mutants exhibited normal activities as monomers. Thus, by introducing specific amino acid substitutions in Nurr1, monomeric and heterodimeric properties of Nurr1 can be distinguished. Interestingly, substitutions in the RXR I-box differentially affected heterodimerization with Nurr1, retinoic acid receptor, thyroid hormone receptor, and constitutive androstane receptor demonstrating that the dimerization interfaces in these different heterodimers are functionally unique. Furthermore, heterodimerization between RXR and Nurr1 had a profound influence on the constitutive activity of Nurr1, which was diminished as a result of RXR interaction. In conclusion, our data show unique structural and functional properties of RXR-Nurr1 heterodimers and also demonstrate that specific mutations in Nurr1 can abolish heterodimerization without affecting other essential functions.
Collapse
Affiliation(s)
- Piia Aarnisalo
- Ludwig Institute for Cancer Research, Karolinska Institute, Stockholm, Sweden SE 171 77
| | | | | | | |
Collapse
|
28
|
Benkoussa M, Brand C, Delmotte MH, Formstecher P, Lefebvre P. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol Cell Biol 2002; 22:4522-34. [PMID: 12052862 PMCID: PMC133906 DOI: 10.1128/mcb.22.13.4522-4534.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPK(ERK)) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters.
Collapse
Affiliation(s)
- Madjid Benkoussa
- INSERM U 459 and Ligue Nationale Contre le Cancer, Faculté de Médecine Henri Warembourg, 59045 Lille Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Kastner J, Solomon J, Fraser S. Modeling a hox gene network in silico using a stochastic simulation algorithm. Dev Biol 2002; 246:122-31. [PMID: 12027438 DOI: 10.1006/dbio.2002.0664] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amount of molecular information that has been gathered about Hox cis-regulatory mechanisms allows us to take the next important step: integrating the results and constructing a higher-level model for the interaction and regulation of the Hox genes. Here, we present the results of our investigation into a cis-regulatory network for the early Hox genes. Instead of using conventional differential equation approaches for analyzing the system, we have adopted the use of a stochastic simulation algorithm (SSA) to model the network. The model allows us to track in detail the behavior of each component of a biochemical pathway and to produce computerized movies of the time evolution of the system that is a result of the dynamic interplay of these various components. The simulation is able to reproduce key features of the wild-type pattern of gene expression, and in silico experiments yield results similar to their corresponding in vivo experiments. This analysis shows the utility of using stochastic methods to model biochemical networks. In addition, the model has suggested several intriguing new results that are currently being investigated in vivo.
Collapse
Affiliation(s)
- Jason Kastner
- Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena 91125, USA.
| | | | | |
Collapse
|
30
|
Lefebvre B, Brand C, Lefebvre P, Ozato K. Chromosomal integration of retinoic acid response elements prevents cooperative transcriptional activation by retinoic acid receptor and retinoid X receptor. Mol Cell Biol 2002; 22:1446-59. [PMID: 11839811 PMCID: PMC134698 DOI: 10.1128/mcb.22.5.1446-1459.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRAR beta 2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRAR beta promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|