1
|
Sale WS, Christensen ST. Peter Satir (1936-2022), cell biology pioneer and mentor. J Cell Sci 2022; 135:285814. [PMID: 36484464 DOI: 10.1242/jcs.260826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
2
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
3
|
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci 2015; 128:3543-9. [PMID: 26290382 DOI: 10.1242/jcs.173559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRβ promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRβ and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.
Collapse
Affiliation(s)
- Brian S Nielsen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Raj R Malinda
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Fabian M Schmid
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Stine F Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Lotte B Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| |
Collapse
|
4
|
Nygaard MB, Almstrup K, Lindbæk L, Christensen ST, Svingen T. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells. Sci Rep 2015; 5:10364. [PMID: 25992706 PMCID: PMC4438617 DOI: 10.1038/srep10364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/09/2015] [Indexed: 12/04/2022] Open
Abstract
Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about the formation and function of primary cilia in the mammalian testis. Here, we characterized primary cilia in adult human testis and report a constitutive expression of cilia in peritubular myoid cells and a dynamic expression of cilia in differentiating Leydig cells. Primary cilia are generally absent from cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components of Hedgehog signalling, including Smoothened, Patched-1, and GLI2, which are involved in regulating Leydig cell differentiation. Stimulation of Hedgehog signalling increases the localization of Smoothened to the cilium, which is followed by transactivation of the Hedgehog target genes, Gli1 and Ptch1. Our findings provide new information on the spatiotemporal formation of primary cilia in the testis and show that primary cilia in immature Leydig cells mediate Hedgehog signalling.
Collapse
Affiliation(s)
- Marie Berg Nygaard
- 1] University Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark [2] Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kristian Almstrup
- University Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - Louise Lindbæk
- Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | | | - Terje Svingen
- 1] University Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark [2] Department of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg DK-2860, Denmark
| |
Collapse
|
5
|
Abstract
The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke-central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation.
Collapse
Affiliation(s)
- Peter Satir
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Thomas Heuser
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Winfield S Sale
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| |
Collapse
|
6
|
Satir BH, Wyroba E, Liu L, Lethan M, Satir P, Christensen ST. Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus. Cell Biol Int 2014; 39:136-45. [PMID: 25044011 DOI: 10.1002/cbin.10337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 11/08/2022]
Abstract
Parafusin (PFUS), a 63 kDa protein first discovered in the eukaryote Paramecium and known for its role in apicomplexan exocytosis, provides a model for the common origin of cellular systems employing scaffold proteins for targeting and signaling. PFUS is closely related to eubacterial rather than archeal phosphoglucomutases (PGM) - as we proved by comparison of their 88 sequences - but has no PGM activity. Immunofluorescence microscopy analysis with a PFUS-specific peptide antibody showed presence of this protein around the base region of primary cilia in a variety of mammalian cell types, including mouse embryonic (MEFs) and human foreskin fibroblasts (hFFs), human carcinoma stem cells (NT-2 cells), and human retinal pigment epithelial (RPE) cells. Further, PFUS localized to the nucleus of fibroblasts, and prominently to nucleoli of MEFs. Localization studies were confirmed by Western blot analysis, showing that the PFUS antibody specifically recognizes a single protein of ca. 63 kDa in both cytoplasmic and nuclear fractions. Finally, immunofluorescence microscopy analysis showed that PFUS localized to nuclei and cilia in Paramecium. These results support the suggestion that PFUS plays a role in signaling between nucleus and cilia, and that the cilium and the nucleus both evolved around the time of eukaryotic emergence. We hypothesize that near the beginnings of eukaryotic cell evolution, scaffold proteins such as PFUS arose as peripheral membrane protein identifiers for cytoplasmic membrane trafficking and were employed similarly during the subsequent evolution of exocytic, nuclear transport, and ciliogenic mechanisms.
Collapse
Affiliation(s)
- Birgit Hegner Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Bronx, NY, 10461, USA
| | | | | | | | | | | |
Collapse
|
7
|
Clement C, Ajbro K, Koefoed K, Vestergaard M, Veland I, Henriques de Jesus M, Pedersen L, Benmerah A, Andersen C, Larsen L, Christensen S. TGF-β Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium. Cell Rep 2013; 3:1806-14. [DOI: 10.1016/j.celrep.2013.05.020] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/21/2013] [Accepted: 05/13/2013] [Indexed: 12/28/2022] Open
|
8
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
9
|
Jensen PL, Beck HC, Petersen J, Hreinsson J, Wånggren K, Laursen SB, Sørensen PD, Christensen ST, Andersen CY. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells. Stem Cells Dev 2013; 22:1126-35. [DOI: 10.1089/scd.2012.0239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pernille Linnert Jensen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
- ORIGIO a/s, Maaloev, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Odense, Denmark
| | - Jørgen Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Julius Hreinsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kjell Wånggren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | - Søren Tvorup Christensen
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Early-stage apoptosis is associated with DNA-damage-independent ATM phosphorylation and chromatin decondensation in NIH3T3 fibroblasts. Cell Biol Int 2013; 32:107-13. [DOI: 10.1016/j.cellbi.2007.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 08/09/2007] [Accepted: 08/27/2007] [Indexed: 01/21/2023]
|
11
|
Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, Pedersen SF, Christensen ST. PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci 2012; 126:953-65. [PMID: 23264740 DOI: 10.1242/jcs.116426] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In fibroblasts, platelet-derived growth factor receptor alpha (PDGFRα) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 pathways leading to the activation of the Na(+)/H(+) exchanger, NHE1, cytoplasmic alkalinization and actin nucleation at the lamellipodium that supports directional cell migration. We here show that AKT and MEK1/2-ERK1/2-p90(RSK) inhibition reduced PDGF-AA-induced cell migration by distinct mechanisms: AKT inhibition reduced NHE1 activity by blocking the translocation of NHE1 to the cell membrane. MEK1/2 inhibition did not affect NHE1 activity but influenced NHE1 localization, causing NHE1 to localize discontinuously in patches along the plasma membrane, rather than preferentially at the lamellipodium. We also provide direct evidence of NHE1 translocation through the cytoplasm to the leading edge. In conclusion, signals initiated at the primary cilium through the PDGFRαα cascade reorganize the cytoskeleton to regulate cell migration differentially through the AKT and the MEK1/2-ERK1/2-p90(RSK) pathways. The AKT pathway is necessary for initiation of NHE1 translocation, presumably in vesicles, to the leading edge and for its activation. In contrast, the MEK1/2-ERK1/2-p90(RSK) pathway controls the spatial organization of NHE1 translocation and incorporation, and therefore specifies the direction of the leading edge formation.
Collapse
Affiliation(s)
- Ditte L Clement
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB, Christensen ST. Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia 2012; 1:15. [PMID: 23351307 PMCID: PMC3555760 DOI: 10.1186/2046-2530-1-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
Background Ovarian cancer is the fourth leading cause of cancer-related deaths among women in Denmark, largely due to the advanced stage at diagnosis in most patients. Approximately 90% of ovarian cancers originate from the single-layered ovarian surface epithelium (OSE). Defects in the primary cilium, a solitary sensory organelle in most cells types including OSE, were recently implicated in tumorigenesis, mainly due to deregulation of ciliary signaling pathways such as Hedgehog (Hh) signaling. However, a possible link between primary cilia and epithelial ovarian cancer has not previously been investigated. Methods The presence of primary cilia was analyzed in sections of fixed human ovarian tissue as well as in cultures of normal human ovarian surface epithelium (OSE) cells and two human OSE-derived cancer cell lines. We also used immunofluorescence microscopy, western blotting, RT-PCR and siRNA to investigate ciliary signaling pathways in these cells. Results We show that ovarian cancer cells display significantly reduced numbers of primary cilia. The reduction in ciliation frequency in these cells was not due to a failure to enter growth arrest, and correlated with persistent centrosomal localization of aurora A kinase (AURA). Further, we demonstrate that ovarian cancer cells have deregulated Hh signaling and platelet-derived growth factor receptor alpha (PDGFRα) expression and that promotion of ciliary formation/stability by AURA siRNA depletion decreases Hh signaling in ovarian cancer cells. Lastly, we show that the tumor suppressor protein and negative regulator of AURA, checkpoint with forkhead-associated and ring finger domains (CHFR), localizes to the centrosome/primary cilium axis. Conclusions Our results suggest that primary cilia play a role in maintaining OSE homeostasis and that the low frequency of primary cilia in cancer OSE cells may result in part from over-expression of AURA, leading to aberrant Hh signaling and ovarian tumorigenesis.
Collapse
Affiliation(s)
- Dorte L Egeberg
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Nielsen ME, Rasmussen IA, Kristensen SG, Christensen ST, Møllgård K, Wreford Andersen E, Byskov AG, Yding Andersen C. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum Reprod 2010; 17:63-70. [PMID: 20843821 DOI: 10.1093/molehr/gaq073] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24 women). Expressions of androgen receptor (AR) mRNA levels in granulosa cells, and of androstenedione and testosterone in follicular fluid, were correlated to the expression of the FSH receptor (FSHR), LH receptor (LHR), CYP19 and anti-Müllerian Hormone-receptor II (AMHRII) mRNA in the granulosa cells and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular fluid levels of androgen and FSHR expression. This suggests that follicular sensitivity towards FSH stimulation may be augmented by stimulation of androgens via the AR.
Collapse
Affiliation(s)
- M E Nielsen
- The Fertility Clinic, Odense University Hospital, Odense , Denmark
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiu PCN, Liao S, Lam KKW, Tang F, Ho JCM, Ho PC, O WS, Yao YQ, Yeung WSB. Adrenomedullin regulates sperm motility and oviductal ciliary beat via cyclic adenosine 5'-monophosphate/protein kinase A and nitric oxide. Endocrinology 2010; 151:3336-47. [PMID: 20444935 DOI: 10.1210/en.2010-0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cilium and flagellum beating are important in reproduction and defects in their motion are associated with ectopic pregnancy and infertility. Adrenomedullin (ADM) is a polypeptide present in the reproductive system. This report demonstrates a novel action of ADM in enhancing the flagellar/ciliary beating of human spermatozoa and rat oviductal ciliated cells. At the concentration found in the seminal plasma, it increases the progressive motility of spermatozoa. ADM binds to its classical receptor, calcitonin receptor-like receptor/receptor activity-modifying protein complex on spermatozoa. ADM treatment increases the protein kinase A activities, the cyclic adenosine monophosphate, and nitric oxide levels of spermatozoa and oviductal cells. Pharmacological activators and inhibitors confirmed that the ADM-induced flagella/ciliary beating was protein kinase A dependent. Whereas nitric oxide donors had no effect on sperm motility, they potentiated the motility-inducing action of protein kinase A activators, demonstrating for the first time the synergistic action of nitric oxide and protein kinase A signaling in flagellar/ciliary beating. The ADM-induced motility enhancement effect in spermatozoa also depended on the up-regulation of intracellular calcium, a known key regulator of sperm motility and ciliary beating. In conclusion, ADM is a common activator of flagellar/ciliary beating. The study provides a physiological basis on possible use of ADM as a fertility regulation drug.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Elam CA, Sale WS, Wirschell M. The regulation of dynein-driven microtubule sliding in Chlamydomonas flagella by axonemal kinases and phosphatases. Methods Cell Biol 2009; 92:133-51. [PMID: 20409803 DOI: 10.1016/s0091-679x(08)92009-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this chapter is to review the methodology and advances that have revealed conserved signaling proteins that are localized in the 9+2 ciliary axoneme for regulating motility. Diverse experimental systems have revealed that ciliary and eukaryotic flagellar motility is regulated by second messengers including calcium, pH, and cyclic nucleotides. In addition, recent advances in in vitro functional studies, taking advantage of isolated axonemes, pharmacological approaches, and biochemical analysis of axonemes have demonstrated that otherwise ubiquitous, conserved protein kinases and phosphatases are transported to and anchored in the axoneme. Here, we focus on the functional/pharmacological, genetic, and biochemical approaches in the model genetic system Chlamydomonas that have revealed highly conserved kinases, anchoring proteins (e.g., A-kinase anchoring proteins), and phosphatases that are physically located in the axoneme where they play a direct role in control of motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
17
|
Schneider L, Stock CM, Dieterich P, Jensen BH, Pedersen LB, Satir P, Schwab A, Christensen ST, Pedersen SF. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium. ACTA ACUST UNITED AC 2009; 185:163-76. [PMID: 19349585 PMCID: PMC2700519 DOI: 10.1083/jcb.200806019] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na+/H+ exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737orpk MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-α ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5′-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA–mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, and in Tg737orpk MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-α signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-α stimulation.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, University of Copenhagen, Copenhagen O, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nielsen SK, Møllgård K, Clement CA, Veland IR, Awan A, Yoder BK, Novak I, Christensen ST. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 2008; 237:2039-52. [PMID: 18629868 DOI: 10.1002/dvdy.21610] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary cilia of PANC-1 and CFPAC-1 cells, which may maintain high levels of nonstimulated Hh pathway activity. These findings indicate that primary cilia are involved in pancreatic development and postnatal tissue homeostasis.
Collapse
Affiliation(s)
- Sonja K Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Seetharam RN, Satir P. Coordination of outer arm dynein activity along axonemal doublet microtubules. ACTA ACUST UNITED AC 2008; 65:572-80. [DOI: 10.1002/cm.20285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Nielsen MB, Christensen ST, Hoffmann EK. Effects of osmotic stress on the activity of MAPKs and PDGFR-β-mediated signal transduction in NIH-3T3 fibroblasts. Am J Physiol Cell Physiol 2008; 294:C1046-55. [DOI: 10.1152/ajpcell.00134.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-β-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most likely via a pathway independent of PDGFR-β and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments, hypoosmolarity did not affect PDGF-BB-induced activation of PDGFR-β, whereas hyperosmolarity strongly inhibited ligand-dependent PDGFR-β activation as well as downstream mitogenic signal components of the receptor, including Akt and the MEK1/2-ERK1/2 pathway. Based on these results, we conclude that ligand-dependent activation of PDGFR-β and its downstream effectors Akt, MEK1/2, and ERK1/2 is strongly modulated (inhibited) by hyperosmotic cell shrinkage, whereas cell swelling does not seem to affect the activation of the receptor but rather to activate ERK1/2 via a different mechanism. It is thus likely that cell swelling via activation of ERK1/2 and cell shrinkage via activation of the p38 and JNK pathway and inhibition of the PDGFR signaling pathway may act as key players in the regulation of tissue homeostasis.
Collapse
|
21
|
Abstract
Cilia are membrane-bounded, centriole-derived projections from the cell surface that contain a microtubule cytoskeleton, the ciliary axoneme, surrounded by a ciliary membrane. Axonemes in multiciliated cells of mammalian epithelia are 9 + 2, possess dynein arms, and are motile. In contrast, single nonmotile 9 + 0 primary cilia are found on epithelial cells, such as those of the kidney tubule, but also on nonepithelial cells, such as chondrocytes, fibroblasts, and neurons. The ciliary membranes of all cilia contain specific receptors and ion channel proteins that initiate signaling pathways controlling motility and/or linking mechanical or chemical stimuli, including sonic hedgehog and growth factors, to intracellular transduction cascades regulating differentiation, migration, and cell growth during development and in adulthood. Unique motile 9 + 0 cilia, found during development at the embryonic node, determine left-right asymmetry of the body.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
22
|
Wilkes DE, Rajagopalan V, Chan CWC, Kniazeva E, Wiedeman AE, Asai DJ. Dynein light chain family in Tetrahymena thermophila. ACTA ACUST UNITED AC 2007; 64:82-96. [PMID: 17009324 DOI: 10.1002/cm.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dyneins are large protein complexes that produce directed movement on microtubules. In situ, dyneins comprise combinations of heavy, intermediate, light-intermediate, and light chains. The light chains regulate the locations and activities of dyneins but their functions are not completely understood. We have searched the recently sequenced Tetrahymena thermophila macronuclear genome to describe the entire family of dynein light chains expressed in this organism. We identified fourteen genes encoding putative dynein light chains and seven genes encoding light chain-like proteins. RNA-directed PCR revealed that all 21 genes were expressed. Quantitative real time reverse transcription PCR showed that many of these genes were upregulated after deciliation, indicating that these proteins are present in cilia. Using the nomenclature developed in Chlamydomonas, Tetrahymena expresses two isoforms each of LC2, LC4, LC7, and Tctex1, three isoforms of p28, and six LC8/LC8-like isoforms. Tetrahymena also expresses two LC3-like genes. No Tetrahymena orthologue was found for Chlamydomonas LC5 or LC6. This study provides a complete description of the different genes and isoforms of the dynein light chains that are expressed in Tetrahymena, a model organism in which the targeted manipulation of genes is straightforward.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biology, Harvey Mudd College, Claremont, California 91711-5990, USA
| | | | | | | | | | | |
Collapse
|
23
|
Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 2006; 71:444-52. [PMID: 15858826 DOI: 10.1002/mrd.20312] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high intensity in proximal invaginations of the epithelial folds. These observations are the first to demonstrate ciliary localization of TRP ion channels and their possible receptor function in the female reproductive organs. We suggest that polycystins 1 and 2 play an important role in granulosa cell differentiation and in development and maturation of ovarian follicles. In the oviduct both TRPV4 and polycystins could be important in relaying physiochemical changes in the oviduct upon ovulation.
Collapse
|
24
|
Ueyama S, Katsumaru H, Suzaki T, Nakaoka Y. Halteria grandinella: a rapid swimming ciliate with a high frequency of ciliary beating. ACTA ACUST UNITED AC 2005; 60:214-21. [PMID: 15754357 DOI: 10.1002/cm.20056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.
Collapse
Affiliation(s)
- Sumiko Ueyama
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Voss JW, Pedersen SF, Christensen ST, Lambert IH. Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts. ACTA ACUST UNITED AC 2005; 271:4646-58. [PMID: 15606752 DOI: 10.1111/j.1432-1033.2004.04420.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular level of the organic osmolyte taurine is a balance between active uptake and passive leak via a volume sensitive pathway. Here, we demonstrate that NIH3T3 mouse fibroblasts express a saturable, high affinity taurine transporter (TauT, Km = 18 microm), and that taurine uptake via TauT is a Na+- and Cl(-)-dependent process with an apparent 2.5 : 1 : 1 Na+/Cl-/taurine stoichiometry. Transport activity is reduced following acute administration of H2O2 or activators of protein kinases A or C. TauT transport activity, expression and nuclear localization are significantly increased upon serum starvation (24 h), exposure to tumour necrosis factor alpha (TNFalpha; 16 h), or hyperosmotic medium (24 h); conditions that are also associated with increased localization of TauT to the cytosolic network of microtubules. Conversely, transport activity, expression and nuclear localization of TauT are reduced in a reversible manner following long-term exposure (24 h) to high extracellular taurine concentration. In contrast to active taurine uptake, swelling-induced taurine release is significantly reduced following preincubation with TNFalpha (16 h) but unaffected by high extracellular taurine concentration (24 h). Thus, in NIH3T3 cells, (a) active taurine uptake reflects TauT expression; (b) TauT activity is modulated by multiple stimuli, both acutely, and at the level of TauT expression; (c) the subcellular localization of TauT is regulated; and (d) volume-sensitive taurine release is not mediated by TauT.
Collapse
Affiliation(s)
- Jesper W Voss
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Toba S, Gibson TM, Shiroguchi K, Toyoshima YY, Asai DJ. Properties of the full-length heavy chains of Tetrahymena ciliary outer arm dynein separated by urea treatment. ACTA ACUST UNITED AC 2004; 58:30-8. [PMID: 14983522 DOI: 10.1002/cm.10174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.
Collapse
Affiliation(s)
- Shiori Toba
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Gertsberg I, Hellman V, Fainshtein M, Weil S, Silberberg SD, Danilenko M, Priel Z. Intracellular Ca2+ regulates the phosphorylation and the dephosphorylation of ciliary proteins via the NO pathway. ACTA ACUST UNITED AC 2004; 124:527-40. [PMID: 15477378 PMCID: PMC2234008 DOI: 10.1085/jgp.200409153] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The phosphorylation profile of ciliary proteins under basal conditions and after stimulation by extracellular ATP was investigated in intact tissue and in isolated cilia from porcine airway epithelium using anti-phosphoserine and anti-phosphothreonine specific antibodies. In intact tissue, several polypeptides were serine phosphorylated in the absence of any treatment (control conditions). After stimulation by extracellular ATP, changes in the phosphorylation pattern were detected on seven ciliary polypeptides. Serine phosphorylation was enhanced for three polypeptides (27, 37, and 44 kD), while serine phosphorylation was reduced for four polypeptides (35, 69, 100, and 130 kD). Raising intracellular Ca2+ with ionomycin induced identical changes in the protein phosphorylation profile. Inhibition of the NO pathway by inhibiting either NO syntase (NOS), guanylyl cyclase (GC), or cGMP-dependent protein kinase (PKG) abolished the changes in phosphorylation induced by ATP. The presence of PKG within the axoneme was demonstrated using a specific antibody. In addition, in isolated permeabilized cilia, submicromolar concentrations of cGMP induced protein phosphorylation. Taken together, these results suggest that the axoneme is an integral part of the intracellular NO pathway. The surprising observation that ciliary activation is accompanied by sustained dephosphorylation of ciliary proteins via NO pathway was not detected in isolated cilia, suggesting that the protein phosphatases were either lost or deactivated during the isolation procedure. This work reveals that any pharmacological manipulation that abolished phosphorylation and dephosphorylation also abolished the enhancement of ciliary beating. Thus, part or all of the phosphorylated polypeptides are likely directly involved in axonemal regulation of ciliary beating.
Collapse
Affiliation(s)
- Irena Gertsberg
- Department of Chemistry, Faculty of Natural Science, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Deckman CM, Pennock DG. Dephosphorylation of inner arm 1 is associated with ciliary reversals in Tetrahymena thermophila. ACTA ACUST UNITED AC 2004; 57:73-83. [PMID: 14691947 DOI: 10.1002/cm.10158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many organisms, depolarizing stimuli cause an increase in intraciliary Ca2+, which results in reversal of ciliary beat direction and backward swimming. The mechanism by which an increase in intraciliary Ca2+ causes ciliary reversal is not known. Here we show that Tetrahymena cells treated with okadaic acid or cantharidin to inhibit protein phosphatases do not swim backwards in response to depolarizing stimuli. We also show that both okadaic acid and cantharidin inhibit backward swimming in reactivated, extracted cell models treated with Ca2+. In contrast, treatment of whole cells or extracted cell models with protein kinase inhibitors has no effect on backward swimming. These results suggest that a component of the axonemal machinery is dephosphorylated during ciliary reversal. The phosphorylation state of inner arm dynein 1 (I1) was determined before and after cells were exposed to depolarizing conditions that induce ciliary reversal. An I1 intermediate chain is phosphorylated in forward swimming cells but is dephosphorylated in cells treated with a depolarizing stimulus. Our results suggest that dephosphorylation of Tetrahymena inner arm dynein 1 may be an essential part of the mechanism of ciliary reversal in response to increased intraciliary Ca2+.
Collapse
|
29
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
30
|
|
31
|
Guerra C, Wada Y, Leick V, Bell A, Satir P. Cloning, localization, and axonemal function of Tetrahymena centrin. Mol Biol Cell 2003; 14:251-61. [PMID: 12529441 PMCID: PMC140242 DOI: 10.1091/mbc.e02-05-0298] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis.
Collapse
Affiliation(s)
- Charles Guerra
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
32
|
Kultgen PL, Byrd SK, Ostrowski LE, Milgram SL. Characterization of an A-kinase anchoring protein in human ciliary axonemes. Mol Biol Cell 2002; 13:4156-66. [PMID: 12475942 PMCID: PMC138623 DOI: 10.1091/mbc.e02-07-0391] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.
Collapse
Affiliation(s)
- Patricia L Kultgen
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|