1
|
Kuroshli Z, Novin MG, Nazarian H, Abdollahifar MA, Zademodarres S, Pirani M, Jahvani FA, Fathabady FF, Mofarahe ZS. The Efficacy of Vitamin D Supplement in the Expression and Protein Levels of Endometrial Decidualization Factors in Women with Recurrent Implantation Failure. Reprod Sci 2024; 31:675-686. [PMID: 37816991 DOI: 10.1007/s43032-023-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Recurrent implantation failure (RIF) is a challenging situation for infertility specialists, and its treatment is introduced as a difficult case in the field of assisted reproductive technology (ART). Vitamin D (VD) is one of the supplements that have been suggested to improve the implantation process. In the present study, the effect of VD on the expression and protein levels of VD receptor (VDR), progesterone receptor (PR), prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP-1), and homeobox protein A10 (HOXA10) in the endometrial cells of unknown RIF women with and without VD deficiency were assessed by qRT-PCR and immunohistochemistry. Twelve women with unknown RIF and VD deficiency (≤ 20 ng/ml) and twelve women with unknown RIF without VD deficiency (≥ 30 ng/ml) from 2021 to 2022 were identified. Endometrial specimens were collected in the mid-luteal stage before treatment or pregnancy. In the group with VD deficiency, oral medication of VD 50,000 units was prescribed for 2 to 3 months and their serum levels of VD were re-measured, then an endometrial biopsy at the same stage of the menstrual cycle was performed. The expression and protein levels of VDR, PR, PRL, IGFBP1, and HOXA10 in RIF patients with VD deficiency were lower than the RIF patients without VD deficiency (P value < 0.05). Our findings suggest that VD can play a key role in the pregnancy process, especially during embryo implantation and decidualization of the endometrial cells.IRCT registration number: IRCT20220528055006N1, Registration date: 2022-10-15, Registration timing: retrospective.
Collapse
Affiliation(s)
- Zahra Kuroshli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zademodarres
- Clinical Research Development Center, Mahdiyeh Education Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Arab Jahvani
- Research and Clinical Centre for Infertility, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lin YW, Weng XF, Huang BL, Guo HP, Xu YW, Peng YH. IGFBP-1 in cancer: expression, molecular mechanisms, and potential clinical implications. Am J Transl Res 2021; 13:813-832. [PMID: 33841624 PMCID: PMC8014352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1) belongs to the insulin-like growth factor (IGF) system, which plays an indispensable role in normal growth and development, and in the pathophysiology of various tumors. IGFBP-1 has been shown to be associated with the risk of various tumors, and has a vital function in regulating tumor behaviors such as proliferation, migration, invasion and adhesion through different molecular mechanisms. The biological actions of IGFBP-1 in cancer are found to be related to its phosphorylation state, and the IGF-dependent and -independent mechanisms. In this review, we provided an overview of IGFBP-1 in normal physiology, and its aberrantly expression and the underlying molecular mechanisms in a range of common tumors, as well as discussed the potential clinical implications of IGFBP-1 as diagnostic or prognostic biomarkers in cancer.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical CollegeShantou 515041, People’s Republic of China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Kusama K, Tamura K, Bai H, Sakurai T, Nishi H, Isaka K, Imakawa K, Yoshie M. Exchange protein directly activated by cAMP (EPAC) promotes transcriptional activation of the decidual prolactin gene via CCAAT/enhancer-binding protein in human endometrial stromal cells. Reprod Fertil Dev 2019; 30:1454-1461. [PMID: 29735004 DOI: 10.1071/rd17483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Protein kinase A (PKA) signalling accompanies elevated intracellular cAMP levels during endometrial stromal cell (ESC) decidualisation. Exchange protein directly activated by cAMP (EPAC), an alternate mediator of cAMP signalling, promotes PKA analogue-induced decidualisation; however, the precise mechanism by which EPAC and PKA co-operatively stimulate decidualisation has not been characterised. To examine the role of CCAAT/enhancer-binding protein (C/EBP) in EPAC- and PKA-mediated decidualisation of primary human ESCs, a reporter plasmid containing the 332bp region upstream from the transcription initiation site of the decidual prolactin (dPRL) gene was generated and the promoter activity was evaluated using a luciferase assay. The dPRL promoter activity was increased by treatment of transfected ESCs with the PKA-selective cAMP analogue N6-phenyl-cAMP (Phe) and enhanced further by co-treatment with the EPAC-selective cAMP analogue 8-(4-chlorophenyltio)-2'-O-methyl cAMP (CPT). Treatment with forskolin, an adenylyl cyclase activator, had a similar effect on reporter activity. Site-directed mutagenesis of the C/EBPβ- and/or C/EBPδ-binding site in the dPRL promoter abolished Phe/CPT-mediated elevation of the reporter activity. EPAC2 knockdown markedly reduced Phe-stimulated C/EBPβ and C/EBPδ mRNA levels, as well as forkhead box O1 (FOXO1) protein levels. These results suggest that EPAC signalling enhances PKA-mediated dPRL expression in ESCs by acting on C/EBP response elements in the promoter region of the gene.
Collapse
Affiliation(s)
- Kazuya Kusama
- Animal Resource Science Centre, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiro Tamura
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido, 060-8589, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynaecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynaecology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Centre, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mikihiro Yoshie
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| |
Collapse
|
4
|
Yalley A, Schill D, Hatta M, Johnson N, Cirillo LA. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes. J Biol Chem 2016; 291:8848-61. [PMID: 26929406 DOI: 10.1074/jbc.m115.677583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/04/2023] Open
Abstract
FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.
Collapse
Affiliation(s)
- Akua Yalley
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniel Schill
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mitsutoki Hatta
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicole Johnson
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lisa Ann Cirillo
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
5
|
Yoshie M, Kusama K, Tamura K. Molecular Mechanisms of Human Endometrial Decidualization Activated by Cyclic Adenosine Monophosphate Signaling Pathways. ACTA ACUST UNITED AC 2015. [DOI: 10.1274/jmor.32.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Vasquez YM, Mazur EC, Li X, Kommagani R, Jiang L, Chen R, Lanz RB, Kovanci E, Gibbons WE, DeMayo FJ. FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol Endocrinol 2015; 29:421-33. [PMID: 25584414 DOI: 10.1210/me.2014-1292] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The forkhead box O1A (FOXO1) is an early-induced target of the protein kinase A pathway during the decidualization of human endometrial stromal cells (HESCs). In this study we identified the cistrome and transcriptome of FOXO1 and its role as a transcriptional regulator of the progesterone receptor (PR). Direct targets of FOXO1 were identified by integrating RNA sequencing with chromatin immunoprecipitation followed by deep sequencing. Gene ontology analysis demonstrated that FOXO1 regulates a subset of genes in decidualization such as those involved in cancer, p53 signaling, focal adhesions, and Wnt signaling. An overlap of the FOXO1 and PR chromatin immunoprecipitation followed by deep sequencing intervals revealed the co-occupancy of FOXO1 in more than 75% of PR binding intervals. Among these intervals were highly enriched motifs for the interferon regulatory factor member 4 (IRF4). IRF4 was determined to be a genomic target of both FOXO1 and PR and also to be differentially regulated in HESCs treated with small interfering RNA targeting FOXO1 or PR prior to decidualization stimulus. Ablation of FOXO1 was found to abolish binding of PR to the shared binding interval downstream of the IRF4 gene. Finally, small interfering RNA-mediated ablation of IRF4 was shown to compromise morphological transformation of decidualized HESCs and to attenuate the expression of the decidual markers IGFBP1, PRL, and WNT4. These results provide the first evidence that FOXO1 is functionally required for the binding of PR to genomic targets. Most notably, FOXO1 and PR are required for the regulation of IRF4, a novel transcriptional regulator of decidualization in HESCs.
Collapse
Affiliation(s)
- Yasmin M Vasquez
- Departments of Molecular and Cellular Biology (Y.M.V., X.L., R.K., R.B.L., F.J.D.) and Molecular and Human Genetics (L.J., R.C.), Baylor College of Medicine, and Division of Reproductive Endocrinology and Infertility (E.C.M., E.K., W.E.G.), Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kusama K, Yoshie M, Tamura K, Nakayama T, Nishi H, Isaka K, Tachikawa E. The role of exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the decidualization of human endometrial stromal cells. Endocrinology 2014; 155:240-8. [PMID: 24169561 DOI: 10.1210/en.2013-1478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decidualization of human endometrial stromal cells (ESCs) accompanied by the production of prolactin (PRL) and IGF-binding protein (IGFBP) 1 and rounded-cell morphology is indispensable for the establishment and maintenance of pregnancy. Protein kinase A (PKA)-mediated cAMP signaling is known to be crucial for decidualization. We previously reported that activation of a cAMP mediator, called Exchange protein directly activated by cAMP (EPAC) promotes cAMP analog- or ovarian steroid-induced decidualization in cultured human ESCs. In addition, small interfering RNA-mediated knock-down of the EPAC subtypes, EPAC1 or EPAC2, or knock-down of Rap1, a downstream factor of EPAC signaling, blocked functional and morphological decidualization of ESCs. However, factors downstream of EPAC2 other than Rap1 have not been determined. The present study was undertaken to identify additional downstream targets of EPAC2 associated with decidualization. Using proteomic analysis, we identified calreticulin (CRT) as a potential target of EPAC2. Knock-down of CRT expression in cultured ESCs significantly inhibited PKA-selective cAMP analog- or PKA-selective cAMP analog plus EPAC-selective cAMP analog-induced PRL and IGFBP1 expression. Furthermore, CRT knock-down suppressed the ovarian steroid-stimulated PRL and IGFBP1 expression and morphological differentiation, and silencing of EPAC2 or CRT significantly increased senescence-associated β-galactosidase activity with enhanced p21 expression and decreased p53 expression. These results suggest that EPAC2 and CRT are associated with cellular senescence in ESCs. In conclusion, we demonstrate here that EPAC2-mediated CRT expression is essential for the functional and morphological differentiation of ESCs into decidual cells. Furthermore, both EPAC2 and CRT might prevent ESCs from undergoing abnormal cellular senescence during decidualization.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine and Neural Pharmacology (K.K., M.Y., K.T., T.N., E.T.), Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; and Department of Obstetrics and Gynecology (H.N., K.I.), Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Tamura I, Sato S, Okada M, Tanabe M, Lee L, Maekawa R, Asada H, Yamagata Y, Tamura H, Sugino N. Importance of C/EBPβ binding and histone acetylation status in the promoter regions for induction of IGFBP-1, PRL, and Mn-SOD by cAMP in human endometrial stromal cells. Endocrinology 2014; 155:275-86. [PMID: 24248464 DOI: 10.1210/en.2013-1569] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dynamic changes of gene expressions occur in human endometrial stromal cells (ESCs) during decidualization. CCAAT/enhancer-binding proteinβ (C/EBPβ) regulates the expression of a number of decidualization-related genes. In addition to transcription factors, it is important to know the role of epigenetic mechanisms, such as histone modifications in the regulation of decidualization-related genes. This study investigated the molecular and epigenetic mechanisms by which cAMP up-regulates the expression of IGF-binding protein-1 (IGFBP-1), prolactin (PRL), and manganese superoxide dismutase (Mn-SOD) in ESC. ESCs isolated from proliferative phase endometrium were incubated with cAMP to induce decidualization. IGFBP-1, PRL, and Mn-SOD mRNA expressions were determined by real-time RT-PCR. The C/EBPβ binding and histone modification status (acetylation of histone-H3 lysine-27 [H3K27ac]) in the promoter were examined by chromatin immunoprecipitation assay. Knockdowns of C/EBPβ were performed using the small interfering RNA method. cAMP induced mRNA expressions of IGFBP-1 and PRL accompanied by the increases in both C/EBPβ binding activities and H3K27ac levels in the promoters. The stimulatory effects of cAMP on mRNA levels and H3K27ac levels were completely abolished by C/EBPβ knockdown. cAMP increased Mn-SOD mRNA levels and C/EBPβ binding activities in the enhancer region. C/EBPβ knockdown inhibited Mn-SOD mRNA levels. The H3K27ac levels in the enhancer were high before cAMP stimulus but were not further increased by cAMP and were not inhibited by C/EBPβ knockdown. These results show that C/EBPβ regulates the expression of IGFBP-1 and PRL by altering the histone acetylation status of their promoters but differently regulates Mn-SOD gene expression in human ESC during decidualization.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu J, Kawai Y, Arinze IJ. Dual role of C/EBPα as an activator and repressor of Gαi2 gene transcription. Genes Cells 2013; 18:1082-94. [PMID: 24580717 DOI: 10.1111/gtc.12102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/25/2013] [Indexed: 11/27/2022]
Abstract
The G-protein Gαi2 mediates signaling in a variety of processes. Induced expression of Gαi2 by butyrate and various transcription factors has been established, but transcriptional suppression has not previously been explored. Using HepG2 and K562 cells in culture, we show here that whereas both C/EBPα and C/EBPβ induced transcription from the Gαi2 gene promoter, C/EBPα, but not C/EBPβ, inhibited butyrate-induced Gαi2 expression. Because the transcriptional effect of butyrate on this gene promoter is largely mediated by the transcription factor Sp1, we investigated whether C/EBPα influenced Sp1-induced Gαi2 gene transcription. Binding of C/EBPα to a C/EBP response element in Gαi2 gene promoter inhibited Sp1-induced promoter activity. ChIP analysis showed decreased butyrate-induced recruitment of Sp1 to the Gαi2 gene promoter in response to C/EBPα treatment. Incubating cells with acetate or transfecting them with expression plasmid for either the acetyltransferase p300 or CREB-binding protein (CBP) reversed the antagonistic effect of C/EBPα on Sp1-dependent gene transcription, suggesting that the mechanistic basis for the antagonism is related to the squelching of co-activator acetyltransferase(s) by C/EBPα or the acetylation of Sp1 and/or C/EBPα. This work reveals that C/EBPα plays a dual role as an activator and as a repressor of Gαi2 gene transcription.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, 37208-3599, USA
| | | | | |
Collapse
|
10
|
Kusama K, Yoshie M, Tamura K, Kodaka Y, Hirata A, Sakurai T, Bai H, Imakawa K, Nishi H, Isaka K, Nagai T, Nagao T, Tachikawa E. Regulation of decidualization in human endometrial stromal cells through exchange protein directly activated by cyclic AMP (Epac). Placenta 2013; 34:212-21. [PMID: 23352189 DOI: 10.1016/j.placenta.2012.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Human endometrial stromal cells (ESCs) undergo differentiation during the decidualization process. Decidualization is characterized by their enhanced production of IGF binding protein-1 (IGFBP-1), prolactin (PRL), and the forkhead transcriptional factor FOXO1, and transformation into more rounded cells, during the secretory phase of the menstrual cycle and subsequent pregnancy. Protein kinase A (PKA)-mediated cAMP signaling is crucial for this process. The present study was undertaken to examine the involvement of a mediator of cAMP signaling, exchange protein directly activated by cAMP (Epac), in decidualization of cultured ESCs. RESULTS Treatment of ESCs with the Epac-selective cAMP analog 8-CPT-2-OMe-cAMP (CPT) had no effect on IGFBP-1, PRL, and FOXO1 mRNA expression. However, CPT potentiated IGFBP-1 and PRL expression stimulated by the PKA-selective cAMP analog N(6)-Phe-cAMP (Phe) and activated Rap1, a downstream regulator of Epac signaling. Knock-down of Epac1, Epac2, or Rap1 significantly inhibited the Phe- or Phe/CPT-induced increase in IGFBP-1 and PRL expression, as well as Rap1 activation. Furthermore, CPT enhanced IGFBP-1 and PRL expression and the morphological differentiation induced by ovarian steroids, whereas Epac1, Epac2, or Rap1 knock-down suppressed these events. CONCLUSION These data provide evidence for the involvement of the Epac/Rap1 signaling pathway in cAMP-mediated decidualization of human ESCs.
Collapse
Affiliation(s)
- K Kusama
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tamura I, Asada H, Maekawa R, Tanabe M, Lee L, Taketani T, Yamagata Y, Tamura H, Sugino N. Induction of IGFBP-1 expression by cAMP is associated with histone acetylation status of the promoter region in human endometrial stromal cells. Endocrinology 2012; 153:5612-21. [PMID: 23011923 DOI: 10.1210/en.2012-1420] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many genes are up- or down-regulated in human endometrial stromal cells (ESCs) undergoing decidualization. IGF-binding protein-1 (IGFBP-1) and prolactin (PRL) are preferentially expressed during decidualization and are recognized as specific markers of decidualization. This study investigated the involvement of epigenetic mechanisms in the regulation of IGFBP-1 and PRL induction by decidualization in ESCs. ESCs isolated from the proliferative phase endometrium were incubated with cAMP to induce decidualization. Human dermal fibroblasts (HDFs) were used as a nonendometrial control. cAMP induced the expressions of both genes in ESCs but induced the expression of only PRL in HDFs. Histone acetylation levels of the IGFBP-1 promoter region evaluated by chromatin immunoprecipitation assay were higher in ESCs than in HDFs. The IGFBP-1 promoter regions in the two cell types showed similar levels of DNA hypomethylation. The histone acetylation levels and DNA methylation status of the PRL promoter and enhancer regions were similar in the two cell types. cAMP had no significant effects on the histone acetylation levels and DNA methylation status of the IGFBP-1 promoter and the PRL promoter and enhancer regions in ESCs. Cotreatment of HDF with cAMP and histone deacetylase inhibitors induced IGFBP-1 expression, which was accompanied by an increased histone acetylation level and recruitment of CCAAT/enhancer-binding protein-β to the promoter region. These results show that, during decidualization in ESCs, high histone acetylation status of the promoter regions of IGFBP-1 and PRL is associated with the induction of the IGFBP-1 and PRL genes by making the promoter regions accessible to transcriptional factors.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi, Ube, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang K, Li L, Qi Y, Zhu X, Gan B, DePinho RA, Averitt T, Guo S. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 2012; 153:631-46. [PMID: 22147007 PMCID: PMC5393302 DOI: 10.1210/en.2011-1527] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dysregulation of blood glucose and triglycerides are the major characteristics of type 2 diabetes mellitus. We sought to identify the mechanisms regulating blood glucose and lipid homeostasis. Cell-based studies established that the Foxo forkhead transcription factors Forkhead box O (Foxo)-1, Foxo3, and Foxo4 are inactivated by insulin via a phosphatidylinositol 3-kinase/Akt-dependent pathway, but the role of Foxo transcription factors in the liver in regulating nutrient metabolism is incompletely understood. In this study, we used the Cre/LoxP genetic approach to delete the Foxo1, Foxo3, and Foxo4 genes individually or a combination of two or all in the liver of lean or db/db mice and assessed the role of Foxo inactivation in regulating glucose and lipid homeostasis in vivo. In the lean mice or db/db mice, hepatic deletion of Foxo1, rather than Foxo3 or Foxo4, caused a modest reduction in blood glucose concentrations and barely affected lipid homeostasis. Combined deletion of Foxo1 and Foxo3 decreased blood glucose levels, elevated serum triglyceride and cholesterol concentrations, and increased hepatic lipid secretion and caused hepatosteatosis. Analysis of the liver transcripts established a prominent role of Foxo1 in regulating gene expression of gluconeogenic enzymes and Foxo3 in the expression of lipogenic enzymes. Our findings indicate that Foxo1 and Foxo3 inactivation serves as a potential mechanism by which insulin reduces hepatic glucose production and increases hepatic lipid synthesis and secretion in healthy and diabetic states.
Collapse
Affiliation(s)
- Kebin Zhang
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Attia RR, Sharma P, Janssen RC, Friedman JE, Deng X, Lee JS, Elam MB, Cook GA, Park EA. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by CCAAT/enhancer-binding protein beta (C/EBPbeta). J Biol Chem 2011; 286:23799-807. [PMID: 21586575 DOI: 10.1074/jbc.m111.246389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conversion of pyruvate to acetyl-CoA in mitochondria is catalyzed by the pyruvate dehydrogenase complex (PDC). Activity of PDC is inhibited by phosphorylation via the pyruvate dehydrogenase kinases (PDKs). Here, we examined the regulation of Pdk4 gene expression by the CCAAT/enhancer-binding protein β (C/EBPβ). C/EBPβ modulates the expression of multiple hepatic genes including those involved in metabolism, development, and inflammation. We found that C/EBPβ induced Pdk4 gene expression and decreased PDC activity. This transcriptional induction was mediated through two C/EBPβ binding sites in the Pdk4 promoter. C/EBPβ participates in the hormonal regulation of gluconeogenic genes. Previously, we reported that Pdk4 was induced by thyroid hormone (T(3)). Therefore, we investigated the role of C/EBPβ in the T(3) regulation of Pdk4. T(3) increased C/EBPβ abundance in primary rat hepatocytes. Knockdown of C/EBPβ with siRNA diminished the T(3) induction of the Pdk4 and carnitine palmitoyltransferase (Cpt1a) genes. CPT1a is an initiating step in the mitochondrial oxidation of long chain fatty acids. Our results indicate that C/EBPβ stimulates Pdk4 expression and participates in the T(3) induction of the Cpt1a and Pdk4 genes.
Collapse
Affiliation(s)
- Ramy R Attia
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
[Progress of transcription factor CCAAT enhancer binding protein β]. YI CHUAN = HEREDITAS 2011; 33:198-206. [PMID: 21402526 DOI: 10.3724/sp.j.1005.2011.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CCAAT enhancer binding protein β (C/EBP β) belongs to CCAAT enhancer binding protein (C/EBP) family, which is a subfamily of basic leucine zipper (bZIP) protein family. C/EBP family plays important roles in many processes such as cell differentiation, metabolism, and development. In this paper, the structure, expression regulation, and function of C/EBP β were reviewed.
Collapse
|
15
|
Annaba F, Ma K, Kumar P, Dudeja AK, Kineman RD, Shneider BL, Saksena S, Gill RK, Alrefai WA. Ileal apical Na+-dependent bile acid transporter ASBT is upregulated in rats with diabetes mellitus induced by low doses of streptozotocin. Am J Physiol Gastrointest Liver Physiol 2010; 299:G898-906. [PMID: 20651004 PMCID: PMC2957331 DOI: 10.1152/ajpgi.00139.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased intestinal bile acid absorption and expansion of the bile acid pool has been implicated in the hypercholesterolemia associated with diabetes mellitus. However, the molecular basis of the increase in bile acid absorption in diabetes mellitus is not fully understood. The ileal apical Na(+)-dependent bile acid transporter (ASBT) is primarily responsible for active reabsorption of the majority of bile acids. Current studies were designed to investigate the modulation of ASBT function and expression in streptozotocin (STZ)-induced diabetes mellitus in rats and to examine the effect of insulin on rat ASBT promoter by insulin. Diabetes mellitus was induced in Sprague-Dawley rats by intraperitoneal injection of low doses of STZ (20 mg/kg body wt) on five consecutive days. Human insulin (10 U/day) was given to a group of diabetic rats for 3 days before euthanasia. RNA and protein were extracted from mucosa isolated from the small intestine and ASBT expression was assessed by real-time quantitative RT-PCR and Western blotting. Our data showed that ASBT mRNA and protein expression were significantly elevated in diabetic rats. Insulin treatment of diabetic rats reversed the increase in ASBT protein expression to control levels. Consistently, ileal Na(+)-dependent [(3)H]taurocholic uptake in isolated intestinal epithelial cells was significantly increased in diabetic rats. In vitro studies utilizing intestinal epithelial Caco-2 cells demonstrated that ASBT expression and promoter activity were significantly decreased by insulin. These studies demonstrated that insulin directly influences ASBT expression and promoter activity and that ASBT function and expression are increased in rats with STZ-induced diabetes mellitus. The increase in ASBT expression may contribute to disturbances in cholesterol homeostasis associated with diabetes mellitus.
Collapse
Affiliation(s)
- Fadi Annaba
- 1Section of Digestive Diseases and Nutrition,
| | - Ke Ma
- 1Section of Digestive Diseases and Nutrition,
| | | | | | - Rhonda D. Kineman
- 2Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago and ,3Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| | - Benjamin L. Shneider
- 4Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | - Waddah A. Alrefai
- 1Section of Digestive Diseases and Nutrition, ,3Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| |
Collapse
|
16
|
Dimova EY, Samoylenko A, Kietzmann T. FOXO4 induces human plasminogen activator inhibitor-1 gene expression via an indirect mechanism by modulating HIF-1alpha and CREB levels. Antioxid Redox Signal 2010; 13:413-24. [PMID: 20136501 DOI: 10.1089/ars.2009.2999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasminogen activator inhibitor-1 (PAI-1) expression can be enhanced by hypoxia and various stimuli associated with oxidative stress. Among the FOXO transcription factors, FOXO4 appears to be crucial in the response against oxidative stress. Therefore, it was the aim of this study to investigate the role of peroxide-induced oxidative stress and FOXO4 on PAI-1 expression under normoxia and hypoxia. Treatment of cells with hydrogen peroxide increased PAI-1 mRNA, protein, and promoter activity, and knocking down FOXO4 abolished the peroxide-dependent PAI-1 induction. PAI-1 promoter reporter gene assays revealed that the peroxide and FOXO4-dependent induction was mediated through the HIF-1 and CREB-binding HRE within the PAI-1 promoter. Western blot analyses then indicated that peroxide and FOXO4 downregulated HIF-1alpha levels, whereas CREB levels were increased. Chromatin immunoprecipitations showed that FOXO4 did not bind the PAI-1 promoter, whereas CREB binding was enhanced on FOXO4 overexpression. In addition, knockdown of CREB abolished the FOXO4-mediated PAI-1 induction. Together, these findings provide the first evidence that oxidative stress and FOXO4 induce PAI-1 expression through an indirect mechanism involving modulation of HIF-1alpha and CREB protein levels and that enhanced CREB binding to the PAI-1 promoter is critical for the PAI-1 induction under oxidative stress.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Department of Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany.
| | | | | |
Collapse
|
17
|
Ganjam GK, Dimova EY, Unterman TG, Kietzmann T. FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 2009; 284:30783-97. [PMID: 19740748 PMCID: PMC2781477 DOI: 10.1074/jbc.m109.045260] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/02/2009] [Indexed: 12/11/2022] Open
Abstract
Resveratrol, a polyphenol derived from grapes, exerts important effects on glucose and lipid metabolism, yet detailed mechanisms mediating these effects remain unknown. The liver plays a central role in energy homeostasis, and glucokinase (GK) is a key enzyme involved in glucose utilization. Resveratrol activates SIRT1 (sirtuin 1), which promotes deacetylation of the forkhead transcription factor FoxO1. Previously, we reported that FoxO1 can suppress and that HNF-4 can stimulate GK expression in the liver. Here, we examined the role of FoxO1 and HNF-4 in mediating resveratrol effects on liver GK expression. Resveratrol suppressed hepatic GK expression in vivo and in isolated hepatocytes, and knocking down FoxO1 with shRNAs disrupted this effect. Reporter gene, gel shift, supershift assay, and chromatin immunoprecipitation studies show that FoxO1 binds to the GK promoter and that the interplay between FoxO1 and HNF-4 within the GK promoter is essential for mediating the effects of resveratrol. Resveratrol promotes deacetylation of FoxO1 and enhances its recruitment to the FoxO-binding element. Conversely, resveratrol suppresses recruitment of HNF-4 to its binding site, and knockdown of FoxO1 blocks this effect of resveratrol. Coprecipitation and chromatin immunoprecipitation studies show that resveratrol enhances interaction between FoxO1 and HNF-4, reduces binding of HNF-4 to its own site, and promotes its recruitment to the FoxO site in a FoxO1-dependent manner. These results provide the first evidence that resveratrol represses GK expression via FoxO1 and that the interaction between FoxO1 and HNF-4 contributes to these effects of resveratrol.
Collapse
Affiliation(s)
- Goutham Kumar Ganjam
- From the Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
- the Department of Nutrient Physiology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, D-35043 Marburg, Germany
| | - Elitsa Y. Dimova
- From the Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
- the Department of Biochemistry, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Terry G. Unterman
- the Departments of Medicine and Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612, and
- the **Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Thomas Kietzmann
- From the Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
- the Department of Biochemistry, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
18
|
van der Kaay D, Deal C, de Kort S, Willemsen R, Leunissen R, Ester W, Paquette J, van Doorn J, Hokken-Koelega A. Insulin-like growth factor-binding protein-1: serum levels, promoter polymorphism, and associations with components of the metabolic syndrome in short subjects born small for gestational age. J Clin Endocrinol Metab 2009; 94:1386-92. [PMID: 19158202 DOI: 10.1210/jc.2008-1430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT IGF binding protein (IGFBP)-1 is the only acute regulator of IGF-I bioavailability. Its production is suppressed by insulin, and low levels are associated with hyperinsulinemia and cardiovascular disease risk in adults. Data on IGFBP-1 levels in short, small for gestational age (SGA) subjects are scarce, and associations with IGFBP1 promoter single nucleotide polymorphisms have not been established. OBJECTIVE The aim of the study was to determine IGFBP-1 levels in short SGA subjects compared with those in controls, to assess genotype frequency of the -575 G/A single nucleotide polymorphism, and to determine its impact on IGFBP-1 levels. SUBJECTS A total of 272 short subjects born SGA and 330 subjects with normal stature (245 children, 85 young adults) participated in the study. OUTCOME MEASURES We measured fasting levels of IGFBP-1, IGF-I, insulin and lipid parameters, and body composition. RESULTS IGFBP-1 sd score (SDS) was comparable to controls in lean, short, SGA children but significantly lower in short SGA adults with normal fat mass (P < 0.001). IGFBP-1 SDS correlated significantly with insulin levels, systolic blood pressure SDS, and various lipid parameters. Baseline IGFBP-1 SDS was lowest in SGA children with -575 GG genotype and significantly higher in SGA children with one or two copies of the A allele. In response to a given insulin level, children with the AA genotype had a significantly higher IGFBP-1 SDS compared to children with the GG genotype. CONCLUSION Normal IGFBP-1 levels in lean, short, SGA children may reflect a normal metabolic state, despite reported hyperinsulinemia. IGFBP-1 is modulated by polymorphic variability and seems to be an additional player in the complex interaction between the IGF-IGFBP axis, glucose homeostasis, and lipid metabolism.
Collapse
Affiliation(s)
- Daniëlle van der Kaay
- Department of Pediatrics, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Chakravarty K, Cassuto H, Reshef L, Hanson RW. Factors That Control the Tissue-Specific Transcription of the Gene for Phosphoenolpyruvate Carboxykinase-C. Crit Rev Biochem Mol Biol 2008; 40:129-54. [PMID: 15917397 DOI: 10.1080/10409230590935479] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription of the gene for PEPCK-C occurs in a number of mammalian tissues, with highest expression occurring in the liver, kidney cortex, and white and brown adipose tissue. Several hormones and other factors, including glucagon, epinephrine, insulin, glucocorticoids and metabolic acidosis, control this process in three responsive tissues, liver, adipose tissue, and kidney cortex. Expression of the gene in these three tissues in regulated in a different manner, responding to the specific physiological role of the tissue. The PEPCK-C gene promoter has been extensively studied and a number of regulatory regions identified that bind key transcription factors and render the gene responsive to hormonal and dietary stimuli. This review will focus on the control of transcription for the gene, with special emphasis on our current understanding of the transcription factors that are involved in the response of PEPCK-C gene in specific tissues. We have also reviewed the biological function of PEPCK-C in each of the tissues discussed in this review, in order to place the control of PEPCK-C gene transcription in the appropriate physiological context. Because of its extraordinary importance in mammalian metabolism and its broad pattern of tissue-specific expression, the PEPCK-C gene has become a model for studying the biological basis of the control of gene transcription.
Collapse
Affiliation(s)
- Kaushik Chakravarty
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | | | | | |
Collapse
|
21
|
Maruyama T, Yoshimura Y. Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J 2008; 55:795-810. [PMID: 18580040 DOI: 10.1507/endocrj.k08e-067] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human endometrium undergoes cyclical changes including proliferation, differentiation, tissue breakdown, and shedding (menstruation) throughout a woman's reproductive life. The postovulatory rise in ovarian progesterone induces profound remodeling and differentiation of the estradiol-primed endometrium. This change, termed decidualization, is crucial for embryo implantation and maintenance of the pregnancy. To date, activation and crosstalk of cAMP- and progesterone-mediated signaling pathways have emerged as key cellular events to drive integrated changes at both the transcriptome and the proteome levels. This results in the induction and maintenance of the decidual phenotype and function. Our recent series of studies highlights the critical role of SRC kinase activation (v-src sarcoma viral oncogene homolog) and STAT5 (signal transducer and activator of transcription 5) phosphorylation in decidualization. After separation of the functional layer of the differentiated endometrium that follows progesterone withdrawal, i.e., menstruation, the basal layer of the endometrium, under the influence of estradiol, regrows and initiates a unique form of angiogenesis and regenerates a new functional layer. The molecular and cellular mechanisms for this process remain elusive, mainly because of difficulties in reproducing menstrual tissue breakdown, shedding, and subsequent tissue regeneration in vitro. We have recently developed a "humanized" mouse model in which a functional human endometrium is reconstituted. It may be used as an in vivo experimental tool for the study of endometrial angiogenesis and regeneration. This model may also be used to identify and test new therapeutic strategies for endometriosis, endometrial cancer, implantation failure, and infertility related to endometrial dysfunction.
Collapse
Affiliation(s)
- Tetsuo Maruyama
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Yokyo, Japan
| | | |
Collapse
|
22
|
Schweizer-Groyer G, Fallot G, Cadepond F, Girard C, Groyer A. The cAMP-responsive unit of the human insulin-like growth factor-binding protein-1 coinstitutes a functional insulin-response element. Ann N Y Acad Sci 2007; 1091:296-309. [PMID: 17341623 DOI: 10.1196/annals.1378.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) is one of the genes involved in glucose homeostasis. In vivo, its level is increased by counter-regulatory hormones (glucocorticoids and glucagon via its second messenger cAMP) and decreased by insulin, these variations being primarily correlated with IGFBP-1 gene transcription. Previous reports described a functional insulin response element (IRE), immediately 5'- to the glucocorticoid response element (GRE). This IRE has been shown to mediate partial inhibition (1) of basal IGFBP-1 promoter activity and (2) of glucocorticoid-induced stimulation of gene transcription by insulin. In this work, using human HepG2 hepatoma cells as a model system, we showed: (1) that insulin inhibited both basal and cAMP-induced hIGFBP-1 promoter (nt-1 to -341) activity; (2) that in the absence of insulin, forkhead box class O (FOXO) transcription factors enhance constitutive hIGFBP-1 promoter activity without interfering with the stimulatory effect of cAMP; (3) that PI-3' kinase signaling is involved in the inhibition of constitutive and cAMP-induced promoter activities by insulin; (4) that wild-type FOXO-1 mediates the inhibitory effect of insulin on the promoter, although FOXO-1(Ala3), a nonphosphorylatable mutant of FOXO-1, does not; (5) that the cAMP-responsive unit (CRU), that includes a putative IRE (nt-265 to -282) and a cAMP responsive element (CRE; nt-258 to -263), is sufficient per se to mediate both cAMP stimulation of a heterologous promoter, and inhibition of both basal and cAMP-induced promoter activities by insulin; and (6) that the inhibitory effects of insulin on the isolated CRU are mediated by the FOXOs. This study is the first evidence for the occurrence of a second IRE within hIGFBP-1 promoter sequences, IRE(CRU), located 5'- to the CRE.
Collapse
|
23
|
Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 2007; 84:713-24. [PMID: 16998535 DOI: 10.1139/y05-152] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.
Collapse
Affiliation(s)
- Catherine Mounier
- BioMed, Department of Biological Science, University of Quebec in Montreal, 141 President Kennedy, Montreal, QC H2X 3Y7, Canada
| | | |
Collapse
|
24
|
Pedersen TÅ, Bereshchenko O, Garcia-Silva S, Ermakova O, Kurz E, Mandrup S, Porse BT, Nerlov C. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J 2007; 26:1081-93. [PMID: 17290224 PMCID: PMC1852842 DOI: 10.1038/sj.emboj.7601563] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 12/20/2006] [Indexed: 01/04/2023] Open
Abstract
The C/EBPalpha transcription factor regulates hepatic nitrogen, glucose, lipid and iron metabolism. However, how it is able to independently control these processes is not known. Here, we use mouse knock-in mutagenesis to identify C/EBPalpha domains that specifically regulate hepatic gluconeogenesis and lipogenesis. In vivo deletion of a proline-histidine rich domain (PHR), dephosphorylated at S193 by insulin signaling, dysregulated genes involved in the generation of acetyl-CoA and NADPH for triglyceride synthesis and led to increased hepatic lipogenesis. These promoters bound SREBP-1 as well as C/EBPalpha, and the PHR was required for C/EBPalpha-SREBP transcriptional synergy. In contrast, the highly conserved C/EBPalpha CR4 domain was found to undergo liver-specific dephosphorylation of residues T222 and T226 upon fasting, and alanine mutation of these residues upregulated the hepatic expression of the gluconeogenic G6Pase and PEPCK mRNAs, but not PGC-1alpha, leading to glucose intolerance. Our results show that pathway-specific metabolic regulation can be achieved through a single transcription factor containing context-sensitive regulatory domains, and indicate C/EBPalpha phosphorylation as a PGC-1alpha-independent mechanism for regulating hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Thomas Å Pedersen
- EMBL Mouse Biology Unit, Monterotondo, Italy
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | | - Elke Kurz
- EMBL Mouse Biology Unit, Monterotondo, Italy
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bo T Porse
- Laboratory of Gene Therapy Research, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Claus Nerlov
- EMBL Mouse Biology Unit, Monterotondo, Italy
- Mouse Biology Unit, EMBL, via Ramarini 32, 00016 Monterotondo, Italy. Tel.: +39 06 9009 1218; Fax: +39 06 9009 1272; E-mail:
| |
Collapse
|
25
|
Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O'Brien RM. Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol 2006; 20:2831-47. [PMID: 16840535 DOI: 10.1210/me.2006-0085] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin inhibits transcription of the genes encoding the glucose-6-phosphatase catalytic subunit (G6Pase), phosphoenolpyruvate carboxykinase, and IGF binding protein-1 through insulin response sequences (IRSs) that share the same core sequence, T(G/A)TTTT(G/T). The transcription factors FOXO1a and FOXO3a have been shown to bind these elements, but there are conflicting reports as to whether this binding correlates with the action of insulin on gene transcription. Some researchers concluded, from overexpression experiments using FOXO1a, that binding correlated with the insulin response, whereas others concluded, mainly from gel retardation competition experiments using FOXO3a, that it did not. We show here that, although these factors can differentially activate gene transcription in a context-dependent manner, these conflicting data are not explained by a difference in FOXO1a and FOXO3a binding specificity. Instead, we find that gel retardation competition and binding experiments give different results; the latter reveal a correlation between FOXO1a/3a binding and the inhibition of basal G6Pase gene transcription by insulin. In addition, these data show that the binding of FOXO1a/3a to two adjacent IRSs in the G6Pase promoter is cooperative and that promoter context alters the specific IRS base requirements for FOXO1a-stimulated fusion gene expression. Surprisingly, an analysis of insulin action mediated through the G6Pase and IGF binding protein-1 IRSs in the context of a heterologous thymidine kinase promoter reveals that signaling through the latter does not support the accepted model for insulin-stimulated FOXO nuclear exclusion.
Collapse
Affiliation(s)
- Hiroshi Onuma
- Department of Molecular Physiology and Biophysics, 761 Preston Research Building, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
26
|
Ghosh AK, Bhattacharyya S, Mori Y, Varga J. Inhibition of collagen gene expression by interferon-gamma: novel role of the CCAAT/enhancer binding protein beta (C/EBPbeta). J Cell Physiol 2006; 207:251-60. [PMID: 16331681 DOI: 10.1002/jcp.20559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
By inhibiting collagen synthesis, interferon-gamma (IFN-gamma) plays a key role in maintaining connective tissue homeostasis, but the mechanisms are not well-understood. In addition to intracellular signaling through the canonical JAK-STAT transduction pathway, IFN-gamma was recently shown to regulate gene expression via the CCAAT/enhancer-binding protein beta (C/EBPbeta) as well. Because C/EBPbeta is a crucial mediator of immune and inflammatory responses, and has been implicated in regulation of collagen synthesis by tumor necrosis factor-alpha, we examined its role in the inhibitory effects of IFN-gamma. The results demonstrated that IFN-gamma caused increased C/EBPbeta expression in dermal fibroblasts and enhanced its binding to cognate DNA sequences in the alpha2(I) procollagen gene (COL1A2) promoter in vitro and in vivo. Disruption of C/EBP binding by deletion or site-directed mutagenesis abrogated the inhibition of collagen promoter activity in transient transfection assays, as did cotransfection with dominant negative C/EBPbeta, indicating a functional role of cellular C/EBPbeta in mediating the IFN-gamma response. Rapid phosphorylation of the ERK1/2 MAP kinases induced by IFN-gamma was accompanied by phosphorylation and nuclear translocation of cellular C/EBPbeta, and pretreatment of fibroblasts with ERK1/2 kinase inhibitor blocked C/EBPbeta phosphorylation, as well as inhibition of COL1A2 promoter activity, elicited by IFN-gamma. These results provide compelling evidence for a novel C/EBPbeta-dependent IFN-gamma signaling pathway responsible for inhibition of collagen gene transcription. Taken together with recent reports, the findings indicate that intracellular pathways mediating negative regulation of collagen synthesis in response to distinct inflammatory signals that converge on C/EBPbeta.
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
27
|
Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, Massillon D, Hanson RW, Reshef L. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 2005; 280:33873-84. [PMID: 16100117 DOI: 10.1074/jbc.m504119200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatic transcriptional regulation by glucocorticoids of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C) gene is coordinated by interactions of specific transcription factors at the glucocorticoid regulatory unit (GRU). We propose an extended GRU that consists of four accessory sites, two proximal AF1 and AF2 sites and their distal counterpart dAF1 (-993) and a new site, dAF2 (-1365); together, these four sites form a palindrome. Sequencing and gel shift binding assays of hepatic nuclear proteins interacting with these sites indicated similarity of dAF1 and dAF2 sites to the GRU proximal AF1 and AF2 sites. Chromatin immunoprecipitation assays demonstrated that glucocorticoids enhanced the binding of FOXO1 and peroxisome proliferator-activated receptor-alpha to AF2 and dAF2 sites and not to dAF1 site but enhanced the binding of hepatic nuclear transcription factor-4alpha only to the dAF1 site. Insulin inhibited the binding of these factors to their respective sites but intensified the binding of phosphorylated FOXO1. Transient transfections in HepG2 human hepatoma cells showed that glucocorticoid receptor interacts with several non-steroid nuclear receptors, yielding a synergistic response of the PEPCK-C gene promoter to glucocorticoids. The synergistic stimulation by glucocorticoid receptor together with peroxisome proliferator-activated receptor-alpha or hepatic nuclear transcription factor-4alpha requires all four accessory sites, i.e. a mutation of each of these markedly affects the synergistic response. Mice with a targeted mutation of the dAF1 site confirmed this requirement. This mutation inhibited the full response of hepatic PEPCK-C gene to diabetes by reducing PEPCK-C mRNA level by 3.5-fold and the level of circulating glucose by 25%.
Collapse
Affiliation(s)
- Hanoch Cassuto
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
29
|
Vander Kooi BT, Streeper RS, Svitek CA, Oeser JK, Powell DR, O'Brien RM. The three insulin response sequences in the glucose-6-phosphatase catalytic subunit gene promoter are functionally distinct. J Biol Chem 2003; 278:11782-93. [PMID: 12556524 DOI: 10.1074/jbc.m212570200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucose-6-phosphatase catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. In HepG2 cells, the maximum repression of basal glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription by insulin requires two distinct promoter regions, designated A (located between -231 and -199) and B (located between -198 and -159), that together form an insulin response unit. Region A binds hepatocyte nuclear factor-1, which acts as an accessory factor to enhance the effect of insulin, mediated through region B, on G6Pase gene transcription. We have previously shown that region B binds the transcriptional activator FKHR (FOXO1a) in vitro. Chromatin immunoprecipitation assays demonstrate that FKHR also binds the G6Pase promoter in situ and that insulin inhibits this binding. Region B contains three insulin response sequences (IRSs), designated IRS 1, 2, and 3, that share the core sequence T(G/A)TTTT. However, detailed analyses reveal that these three G6Pase IRSs are functionally distinct. Thus, FKHR binds IRS 1 with high affinity and IRS 2 with low affinity but it does not bind IRS 3. Moreover, in the context of the G6Pase promoter, IRS 1 and 2, but not IRS 3, are required for the insulin response. Surprisingly, IRS 3, as well as IRS 1 and IRS 2, can each confer an inhibitory effect of insulin on the expression of a heterologous fusion gene, indicating that, in this context, a transcription factor other than FKHR, or its orthologs, can also mediate an insulin response through the T(G/A)TTTT motif.
Collapse
Affiliation(s)
- Beth T Vander Kooi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
30
|
Protein turnover, energy metabolism, aging, and caloric restriction. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-3124(03)14004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Le Lay S, Lefrère I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem 2002; 277:35625-34. [PMID: 12048207 DOI: 10.1074/jbc.m203913200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We evaluated the hypothesis of sterol-regulatory element-binding protein (SREBP)-1c being a general mediator of the transcriptional effects of insulin, with a focus on adipocytes, in which insulin profoundly influences specific gene expression. Using real time quantitative reverse transcriptase-PCR to monitor changes in the expression of about 50 genes that cover a wide range of adipocyte functions, we have compared the impact of insulin treatment with that of adenoviral overexpression of either dominant positive or dominant negative SREBP-1c mutants in 3T3-L1 adipocytes. As expected, insulin up-regulated, dominant positive stimulated, and dominant negative decreased previously characterized direct SREBP targets (FAS, SCD-1, and low density lipoprotein receptor). We also identified three novel SREBP-1c transcriptional targets in adipocytes, which were confirmed by run-on assays: plasminogen activator inhibitor 1, CCAAT/enhancer-binding protein delta (C/EBPdelta), and C/EBPbeta. Because most insulin-regulated genes were also modulated by SREBP-1c mutants, our data establish that 1) SREBP-1c is an important mediator of insulin transcriptional effects in adipocytes, and 2) C/EBPbeta is under the direct control of SREBP-1c, as demonstrated by the ability of SREBP-1c to activate the transcription from C/EBPbeta promoter through canonical SREBP binding sites. Thus, some of the effects of insulin and/or SREBP-1c in mature fat cells might require C/EBPbeta or C/EBPdelta as transcriptional relays.
Collapse
Affiliation(s)
- Soazig Le Lay
- INSERM Unité 465, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
32
|
Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK. Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2002; 277:32234-42. [PMID: 12070172 DOI: 10.1074/jbc.m204873200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormones regulate glucose homeostasis, in part, by controlling the expression of gluconeogenic enzymes, such as phosphoenolpyruvate carboxykinase (PEPCK). Insulin and glucocorticoids reciprocally regulate PEPCK expression primarily at the level of gene transcription. We demonstrate here that glucocorticoids promote, whereas insulin disrupts, the association of CREB-binding protein (CBP) and RNA polymerase II with the hepatic PEPCK gene promoter in vivo. We also show that accessory factors, such as CCAAT/enhancer-binding protein beta (C/EBP beta), can recruit CBP to drive transcription. Insulin increases protein levels of liver-enriched transcriptional inhibitory protein (LIP), an inhibitory form of C/EBP beta, in a phosphatidylinositol 3-kinase-dependent manner. LIP concomitantly replaces liver-enriched transcriptional activator protein on the PEPCK gene promoter, which can abrogate the recruitment of CBP and polymerase II, culminating in the repression of PEPCK expression and the attenuation of hepatocellular glucose production.
Collapse
Affiliation(s)
- David T Duong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
33
|
Christian M, Zhang X, Schneider-Merck T, Unterman TG, Gellersen B, White JO, Brosens JJ. Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal cells. J Biol Chem 2002; 277:20825-32. [PMID: 11893744 DOI: 10.1074/jbc.m201018200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decidual transformation of human endometrial stromal (ES) cells requires sustained activation of the protein kinase A (PKA) pathway. In a search for novel transcriptional mediators of this process, we used differential display PCR analysis of undifferentiated primary ES cells and cells stimulated with 8-bromo-cAMP (8-Br-cAMP). We now report on the role of forkhead homologue in rhabdomyosarcoma (FKHR), a recently described member of the forkhead/winged-helix transcription factor family, as a mediator of endometrial differentiation. Sustained 8-Br-cAMP stimulation resulted in the induction and nuclear accumulation of FKHR in differentiating ES cells. Immunohistochemical studies revealed that endometrial stromal expression of FKHR in vivo is confined to decidualizing cells during the late secretory phase of the cycle and coincides with the expression of CCAAT/enhancer-binding protein beta (C/EBPbeta). Reporter gene studies showed that FKHR potently enhances PKA-dependent activation of the tissue-specific decidual prolactin (dPRL) promoter, a major differentiation marker in human ES cells. Transcriptional augmentation by FKHR was effected through functional cooperation with C/EBPbeta and binding to a composite FKHR-C/EBPbeta response unit in the proximal promoter region. Furthermore, FKHR and C/EBPbeta were shown to interact directly in a glutathione S-transferase pull-down assay. These results provide the first evidence of regulated expression of FKHR and demonstrate that FKHR has an integral role in PKA-dependent endometrial differentiation through its ability to bind and functionally cooperate with C/EBPbeta.
Collapse
Affiliation(s)
- Mark Christian
- Institute of Reproductive and Developmental Biology, Wolfson & Weston Research Centre for Family Health, Imperial College Faculty of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B. Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 2002; 1:367-80. [PMID: 12067592 DOI: 10.1016/s1568-1637(02)00006-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genetic makeup of the organism appears to dictate the species-specific rate of aging and the maximum life-span potential. The genotype is converted to phenotype through transcriptional and translational regulation. A group of gene regulatory proteins (transcription factors) play critical roles in controlling the rates of transcription of specific genes by directly interacting with regulatory sequences at gene promoters. Here, we review the basic mechanism of transcriptional control and the role of a number of transcription factors whose level and/or activity alter with age. Among these age-dependent transcription factors, many are involved in the regulation of stress and inflammatory responses and are subjected to functional alterations by reactive oxygen species (ROSs). A progressive rise of oxidative stress, impaired ability to cope with stressful stimuli and prolongation of the inflammatory response are some of the hallmarks of the senescent phenotype. Results published to date are supportive of the concept that a species-specific program of the temporal regulation of genes with additional modulation by a number of epigenetic factors, mediates the age-dependent deterioration of physiological functions and development of the senescent phenotype.
Collapse
Affiliation(s)
- Arun K Roy
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Oeser JK, Neal DW, Cardin S, Cherrington AD, O'Brien RM. Selective tonic inhibition of G-6-Pase catalytic subunit, but not G-6-P transporter, gene expression by insulin in vivo. Am J Physiol Endocrinol Metab 2001; 281:E713-25. [PMID: 11551847 DOI: 10.1152/ajpendo.2001.281.4.e713] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo and in tissue culture cells in situ were compared. In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. In contrast, a 5-h period of hyperinsulinemia resulted in a suppression of both G-6-Pase catalytic subunit and G-6-P transporter gene expression. Similarly, insulin suppressed G-6-Pase catalytic subunit and G-6-P transporter gene expression in H4IIE hepatoma cells. However, the magnitude of the insulin effect was much greater on G-6-Pase catalytic subunit gene expression and was manifested more rapidly. Furthermore, cAMP stimulated G-6-Pase catalytic subunit expression in H4IIE cells and in primary hepatocytes but had no effect on G-6-P transporter expression. These results suggest that the relative control strengths of the G-6-Pase catalytic subunit and G-6-P transporter in the G-6-Pase reaction are likely to vary depending on the in vivo environment.
Collapse
Affiliation(s)
- L A Hornbuckle
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yeagley D, Guo S, Unterman T, Quinn PG. Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of forkhead and insulin response sequences. J Biol Chem 2001; 276:33705-10. [PMID: 11445561 DOI: 10.1074/jbc.m101215200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The insulin response sequence (IRS) of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, located within the glucocorticoid response unit, was first characterized by its ability to mediate insulin inhibition when inserted into a thymidine kinase promoter. The IRSs of the PEPCK and insulin-like growth factor binding protein-1 (IGFBP-1) promoters have been proposed to contribute to regulation by glucocorticoids and insulin. Forkhead (FKHR) recognizes IRS sequences, is phosphorylated in response to insulin, and mediates insulin inhibition of basal IGFBP-1 transcription in an IRS-dependent manner. Here, we investigate the contributions of FKHR and IRSs to insulin inhibition of basal and glucocorticoid-induced transcription of PEPCK and IGFBP-1. Expression of T/S/S, in which three putative protein kinase B (PKB) sites in FKHR are mutated, reduced insulin inhibition of basal expression of IGFBP-1 but not PEPCK. Mutation of the IGFBP-1 IRSs abolished insulin inhibition in the presence of T/S/S. Mutation of the PEPCK IRS had no effect on insulin inhibition in the presence of T/S/S, indicating that insulin inhibits PEPCK transcription independently of the IRS or of the putative PKB phosphorylation sites in FKHR. Mutations in the IRS or FKHR had no effect on insulin inhibition of glucocorticoid-induced transcription of either the PEPCK or IGFBP-1 gene. Thus, insulin uses gene- and activation-specific mechanisms to regulate the basal and glucocorticoid-induced activity of these genes.
Collapse
Affiliation(s)
- D Yeagley
- Department of Cellular and Molecular Physiology, The Pennsylvania Sate University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
37
|
Guo S, Cichy SB, He X, Yang Q, Ragland M, Ghosh AK, Johnson PF, Unterman TG. Insulin suppresses transactivation by CAAT/enhancer-binding proteins beta (C/EBPbeta). Signaling to p300/CREB-binding protein by protein kinase B disrupts interaction with the major activation domain of C/EBPbeta. J Biol Chem 2001; 276:8516-23. [PMID: 11116148 DOI: 10.1074/jbc.m008542200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAAT/enhancer-binding proteins (C/EBPs) play an important role in the regulation of gene expression in insulin-responsive tissues. We have found that a complex containing C/EBPbeta interacts with an insulin response sequence in the insulin-like growth factor-binding protein-1 (IGFBP-1) gene and that a C/EBP-binding site can mediate effects of insulin on promoter activity. Here, we examined mechanisms mediating this effect of insulin. The ability of insulin to suppress promoter activity via a C/EBP-binding site is blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor, but not by rapamycin, which blocks activation of p70(S6 kinase). Dominant negative phosphatidylinositol 3-kinase and protein kinase B (PKB) block the effect of insulin, while activated PKB suppresses promoter function via a C/EBP-binding site, mimicking the effect of insulin. Coexpression studies indicate that insulin and PKB suppress transactivation by C/EBPbeta, but not C/EBPalpha, and that N-terminal transactivation domains in C/EBPbeta are required. Studies with Gal4 fusion proteins reveal that insulin and PKB suppress transactivation by the major activation domain in C/EBPbeta (AD II), located between amino acids 31 and 83. Studies with E1A protein indicate that interaction with p300/CBP is required for transactivation by AD II and the effect of insulin and PKB. Based on a consensus sequence, we identified a PKB phosphorylation site (Ser(1834)) within the region of p300/CBP known to bind C/EBPbeta. Mammalian two-hybrid studies indicate that insulin and PKB disrupt interactions between this region of p300 and AD II and that Ser(1834) is critical for this effect. Signaling by PKB and phosphorylation of Ser(1834) may play an important role in modulating interactions between p300/CBP and transcription factors and mediate effects of insulin and related growth factors on gene expression.
Collapse
Affiliation(s)
- S Guo
- University of Illinois at Chicago College of Medicine and Veterans Affairs Chicago Health Care System, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|