1
|
Development of a novel monoclonal antibody that binds to most HLA-A allomorphs in a conformation-dependent yet peptide-promiscuous fashion. Immunogenetics 2020; 72:143-153. [PMID: 31970435 DOI: 10.1007/s00251-020-01154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Specificity analyses of peptide binding to human leukocyte antigen (HLA)-A molecules have been hampered due to a lack of proper monoclonal antibodies (mAbs) for certain allomorphs, such as the prevalent HLA-A1 for Caucasians and HLA-A11 for Asians. We developed a mAb that recognizes a conformational epitope common to most HLA-A allomorphs. The mAb, named A-1, does not discriminate peptides by amino acid sequences, making it suitable for measuring peptide binding. A stabilization assay using TAP-deficient cell lines and A-1 was developed to investigate the specificity of peptide binding to HLA-A molecules. Regarding the evolution of HLA-A genes, the A-1 epitope has been conserved among most HLA-A allomorphs but was lost when the HLA-A gene diversified into the HLA-A*32, HLA-A*31, and HLA-A*33 lineages together with HLA-A*29 after bifurcating from the HLA-A*25 and HLA-A*26 branchs. The establishment of A-1 is expected to help researchers investigate the peptide repertoire and develop computational tools to identify cognate peptides. Since no HLA-A locus-specific mAb has been available, A-1 will also be useful for analyzing the locus-specific regulation of the HLA gene expression.
Collapse
|
2
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
3
|
The transcription factor CUTL1 is associated with proliferation and prognosis in malignant melanoma. Melanoma Res 2014; 24:198-206. [PMID: 24686420 DOI: 10.1097/cmr.0000000000000064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transcription factor CUTL1 (CCAAT displacement protein 1) has been reported to participate in the proliferation of diverse types of cancer. In the present study, we investigated the potential involvement of CUTL1 in the proliferation of malignant melanoma. We found that CUTL1 expression was upregulated in malignant melanoma tissues and cell lines, and CUTL1 expression was selected as a prognostic predictor for malignant melanoma patients by both univariate and multivariate analysis. Knockdown of CUTL1 by short hairpin RNA significantly reduced the colony-forming ability of malignant melanoma cells in vitro and reduced tumor growth in vivo, whereas forced overexpression of CUTL1 produced the opposite results. Consistently, cell cycle progression was impaired upon downregulation of CUTL1 and enhanced when CUTL1 was upregulated. Additional experiments suggested that CUTL1 may regulate the proliferation of malignant melanoma by modulating the expression of cell cycle-related proteins.
Collapse
|
4
|
Stinski MF, Isomura H. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 2008; 197:223-231. [PMID: 18097687 DOI: 10.1007/s00430-007-0069-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The cytomegalovirus (CMV) major immediate early (MIE) enhancer-containing promoter regulates the expression of the downstream MIE genes, which have critical roles in reactivation from latency and acute infection. The enhancer consists of binding sites for cellular transcription factors that are repeated multiple times. The primate and nonprimate CMV enhancers can substitute for one another. The enhancers are not functionally equivalent, but they do have overlapping activities. The CMV MIE enhancers are located between divergent promoters where the leftward genes are critical and essential for reactivation from latency and acute infection and the rightward gene is nonessential. The rightward transcription unit is controlled by an enhancer for murine CMV. In contrast, human CMV has a set of repressor elements that prevents enhancer effects on the rightward viral promoter. The human CMV enhancer that controls the leftward transcription unit has a distal component that is nonessential at high multiplicity of infection (MOI), but has a significant impact on the MIE gene expression at low MOI. The proximal enhancer influences directly the level of transcription of the MIE genes and contains an essential Sp-1 site. The MIE promoter has a site adjacent to the transcription start site that is essential at the earliest stage of infection. The MIE enhancer-containing promoter responds to signal transduction events and to cellular differentiation. The role of the CMV MIE enhancer-containing promoter in acute infection and reactivation from latency are reviewed.
Collapse
Affiliation(s)
- Mark F Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
5
|
Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 2008; 412:84-94. [PMID: 18313863 DOI: 10.1016/j.gene.2008.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023]
Abstract
Cux (Cut homeobox) genes are present in all metazoans. Early reports described many phenotypes caused by cut mutations in Drosophila melanogaster. In vertebrates, CUX1 was originally characterized as the CCAAT-displacement protein (CDP). Another line of investigation revealed the presence of CUX1 within a multi-protein complex called the histone nuclear factor D (HiNF-D). Recent studies led to the identification of several CUX1 isoforms with distinct DNA binding and transcriptional properties. While the CCAAT-displacement activity was implicated in the transcriptional repression of several genes, some CUX1 isoforms were found to participate in the transcriptional activation of some genes. The expression and activity of CUX1 was shown to be regulated through the cell cycle and to be a target of TGF-beta signaling. Mechanisms of regulation include alternative transcription initiation, proteolytic processing, phosphorylation and acetylation. Cell-based assays have established a role for CUX1 in the control of cell cycle progression, cell motility and invasion. In the mouse, gene inactivation as well as over-expression in transgenic mice has revealed phenotypes in multiple organs and cell types. While some phenotypes could be explained by the presumed functions of CUX1 in the affected cells, other phenotypes invoked non-cell-autonomous effects that suggest regulatory functions with an impact on cell-cell interactions. The implication of CUX1 in cancer was suggested first from its over-expression in primary tumors and cancer cell lines and was later confirmed in mouse models.
Collapse
|
6
|
Lee J, Klase Z, Gao X, Caldwell JS, Stinski MF, Kashanchi F, Chao SH. Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes. Virology 2007; 366:117-25. [PMID: 17512569 DOI: 10.1016/j.virol.2007.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/19/2007] [Accepted: 04/20/2007] [Indexed: 01/19/2023]
Abstract
An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J. Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding protein and a repressor of the UL127 promoter, while SATB1 has no effect on UL127 expression. Since CDP is known as a transcription repressor and a nuclear matrix-associated region binding protein, CDP may have a role in the regulation of human CMV transcription.
Collapse
Affiliation(s)
- Jialing Lee
- Expression Engineering Group, Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | | | | | | | |
Collapse
|
7
|
Sønder SUS, Mikkelsen M, Rieneck K, Hedegaard CJ, Bendtzen K. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br J Pharmacol 2007; 148:46-53. [PMID: 16520746 PMCID: PMC1617047 DOI: 10.1038/sj.bjp.0706700] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7alpha-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR.
Collapse
Affiliation(s)
- Søren Ulrik Salling Sønder
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Marianne Mikkelsen
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Klaus Rieneck
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Chris Juul Hedegaard
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Klaus Bendtzen
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Author for correspondence:
| |
Collapse
|
8
|
Chen S, Unterbrink A, Kadapakkam S, Dong J, Gu TT, Dickson J, Chuang HH, MacDougall M. Regulation of the Cell Type-specific dentin sialophosphoprotein gene expression in mouse odontoblasts by a novel transcription repressor and an activator CCAAT-binding factor. J Biol Chem 2004; 279:42182-91. [PMID: 15292199 DOI: 10.1074/jbc.m402476200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) with a highly restricted expression pattern in tooth and bone. Mutations of the DSPP gene are associated with dentin genetic diseases. Regulation of tissue-specific DSPP expression has not been described. To define the molecular basis of this cell-specific expression, we characterized the promoter responsible for the cell-specific expression of the DSPP gene in odontoblasts. Within this region, DNase I footprinting and electrophoretic mobility shift assays delineated one element that contains an inverted CCAAT-binding factor site and a protein-DNA binding site using nuclear extracts from odontoblasts. A series of competitive electrophoretic mobility shift assay analyses showed that the protein-DNA binding core sequence, ACCCCCA, is a novel site sufficient for protein binding. These two protein-DNA binding sequences are conserved at the same proximal position in the mouse, rat, and human DSPP gene promoters and are ubiquitously present in the promoters of other tooth/bone genes. Mutations of the CCAAT-binding factor binding site resulted in a 5-fold decrease in promoter activity, whereas abolishment of the novel protein-DNA binding site increased promoter activity by about 4.6-fold. In contrast to DSPP, expression levels of the novel protein were significantly reduced during odontoblastic differentiation and dentin mineralization. The novel protein was shown to have a molecular mass of 72 kDa. This study shows that expression of the cell type-specific DSPP gene is mediated by the combination of inhibitory and activating mechanisms.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Pediatric Dentistry, Dental School, UNiversity of Texas, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
10
|
Johnson DR. Locus-specific constitutive and cytokine-induced HLA class I gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1894-902. [PMID: 12574356 DOI: 10.4049/jimmunol.170.4.1894] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine induction of the MHC class I genes increases the nascent molecules available for binding potentially antigenic peptides. The human H chain loci, HLA-A, -B, and -C, encode highly homologous and polymorphic mRNAs. Here, these transcripts were resolved and measured by competitive PCR of cDNA using locus-specific primers. Endothelial cells expressed many HLA-A and -B, but fewer HLA-C, transcripts. In contrast, HeLa cells expressed many HLA-A and -C, but fewer HLA-B, transcripts. The inflammatory cytokines TNF-alpha, IFN-beta, and IFN-gamma induced HLA-B strongly, but HLA-A and -C weakly in both cell types. Combined treatment with IFNs and TNF further increased HLA-A and -B, but not HLA-C transcripts. The constitutive and inducible activities of transfected promoters correlated well with mRNA levels. The weak IFN response of the HLA-A2 promoter was not due to variations in the IFN consensus sequence, the site alpha, or a 3-bp insertion between them. The HLA-Cw6 promoter was less TNF responsive due to a variant kappaB enhancer, which also reduced the IFN responses. The NF-kappaB subunit RelA strongly activated the HLA-A2 and -B7 promoters but only weakly activated the HLA-Cw6 promoter due to the variant kappaB. Cotransfecting NF-kappaB1 with RelA further increased activity of the HLA-A2 and -B7, but not HLA-Cw6, promoters. All three promoters were activated by MHC class II trans-activator, but not CREB-binding protein, whereas IFN regulatory factor-1 and -2 weakly activated the HLA-B7 and -Cw6, but not HLA-A2, promoters. These studies illustrate common and locus-specific mechanisms that may be targeted to modulate immune reactions.
Collapse
Affiliation(s)
- David R Johnson
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Howard TD, Postma DS, Hawkins GA, Koppelman GH, Zheng SL, Wysong AKS, Xu J, Meyers DA, Bleecker ER. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J Allergy Clin Immunol 2002; 110:743-51. [PMID: 12417883 DOI: 10.1067/mai.2002.128723] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several genomic regions have been identified that might contain genes contributing to the development of asthma and atopy. These include chromosome 2q33, where we have observed evidence for linkage for variation in total serum IgE levels in a Dutch asthma population. Two candidate genes, CTLA4 and CD28, important homeostatic regulators of T-cell activation and subsequent IgE production, map within this candidate region. OBJECTIVE We sought to fine-map the chromosome 2q33 region and evaluate CTLA4 and CD28 as candidate genes for the regulation of total serum IgE levels and related phenotypes. METHODS The coding regions of CTLA4 and CD28 were resequenced in 96 individuals; 4 novel SNPs in CTLA4 and 10 in CD28 were identified. Polymorphisms in both genes were analyzed in 200 asthmatic probands and their spouses (n = 201). RESULTS Subsequent fine- mapping in this region has resulted in an increased log of the odds (lod) score (1.96 to 3.16) for total serum IgE levels. For CTLA4, the +49 A/G single nucleotide polymorphism (SNP) in exon 1 and the 3 ' untranslated region microsatellite were significantly associated with total serum IgE levels (P =.0005 and.006, respectively). For the combined +49 A/G and 3 'untranslated region genotypes, individuals homozygous for the risk allele for both polymorphisms (AA and 86/86) had the highest total serum IgE values (87.1 IU/mL), whereas those individuals with the GG and XX/XX genotypes (anything but the 86-bp allele) had the lowest IgE values (29.3 IU/mL). Significant association was also observed for the CTLA4 -1147 C/T SNP with bronchial hyperresponsiveness (BHR) and asthma (P =.008 and.012, respectively), but not for allergy-related phenotypes. Promoter luciferase assays examining the -1147 polymorphism suggested that the T allele, which was associated with increased BHR susceptibility, was expressed at half the level of the C allele. Individuals with the risk genotypes for both BHR (-1147 CT or TT) and elevated IgE levels (+49 AA) were 4.5 times more likely to have asthma than individuals with both nonrisk genotypes (P =.0009). No significant associations were observed for SNPs in CD28. CONCLUSION These data suggest that the costimulatory pathway, specifically CTLA4, is important in the development of atopy and asthma.
Collapse
Affiliation(s)
- Timothy D Howard
- Center for Human Genomics, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Boudreau F, Rings EHHM, Swain GP, Sinclair AM, Suh ER, Silberg DG, Scheuermann RH, Traber PG. A novel colonic repressor element regulates intestinal gene expression by interacting with Cux/CDP. Mol Cell Biol 2002; 22:5467-78. [PMID: 12101240 PMCID: PMC133930 DOI: 10.1128/mcb.22.15.5467-5478.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Revised: 03/11/2002] [Accepted: 04/24/2002] [Indexed: 01/19/2023] Open
Abstract
Intestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development. We define this element as CRESIP (colon-repressive element of the SI promoter). Cux/CDP interacts with SI and represses SI promoter activity in a CRESIP-dependent manner. Cux/CDP homozygous mutant mice displayed increased expression of SI mRNA during early postnatal development. Our results demonstrate that an intestinal gene can be repressed in the distal gut and identify Cux/CDP as a regulator of this repression during development.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- COS Cells
- Caco-2 Cells
- Colon/cytology
- Colon/growth & development
- Colon/metabolism
- DNA-Binding Proteins/metabolism
- GATA4 Transcription Factor
- Gene Expression Regulation, Developmental/physiology
- Homeodomain Proteins
- Humans
- In Situ Hybridization
- Intestinal Mucosa/metabolism
- Intestine, Small/cytology
- Intestine, Small/growth & development
- Intestine, Small/metabolism
- Intestines/cytology
- Intestines/growth & development
- Mice
- Mice, Knockout
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/physiology
- Repressor Proteins/metabolism
- Sucrase-Isomaltase Complex/biosynthesis
- Sucrase-Isomaltase Complex/genetics
- Transcription Factors/metabolism
- Transgenes
Collapse
Affiliation(s)
- François Boudreau
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ruiz-Cabello F, Cabrera T, Lopez-Nevot MA, Garrido F. Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Semin Cancer Biol 2002; 12:15-24. [PMID: 11926407 DOI: 10.1006/scbi.2001.0406] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of tumor-associated antigens has suggested new possibilities for cancer therapy. However, multiple mechanisms may contribute to the ability of tumor to escape antitumor immune responses. Tumor antigen heterogeneity, modulation of HLA expression and immune suppressive mechanisms may occur at any time during tumor cell progression, and can affect the outcome of therapeutic immune intervention. In particular, the appearance of altered HLA class I phenotypes during tumor development may have important biological and medical implications due to the role of these molecules in T and NK cell functions. Exhaustive tumor tissue studies are necessary before deciding whether a particular patient is suitable for inclusion in T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain.
| | | | | | | |
Collapse
|