1
|
Xia X, Shimogawa MM, Wang H, Liu S, Wijono A, Langousis G, Kassem AM, Wohlschlegel JA, Hill KL, Zhou ZH. Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms. Science 2025; 387:eadr3314. [PMID: 40080582 DOI: 10.1126/science.adr3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
The flagellum of Trypanosoma brucei drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of T. brucei flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michelle M Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Samuel Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Angeline Wijono
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ahmad M Kassem
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ma D, Sun C, Manne R, Guo T, Bosc C, Barry J, Magliery T, Andrieux A, Li H, Gu C. A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory. Mol Psychiatry 2023; 28:3994-4010. [PMID: 37833406 PMCID: PMC10905646 DOI: 10.1038/s41380-023-02286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chao Sun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- MCDB graduate program, The Ohio State University, Columbus, OH, USA
| | - Rahul Manne
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tianqi Guo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Joshua Barry
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Houzhi Li
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- MCDB graduate program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
4
|
Abstract
Cilia are cell-surface organelles with cytoskeletons formed by different microtubule types. These microtubules are decorated inside and out by proteins that alter microtubule stability and elasticity and allow cilia to beat. Mutations in these proteins are associated with human ciliopathies such as primary ciliary dyskinesia. Here, we used cryo-EM to reveal the structures of two distinct types of human ciliary microtubule: the doublet microtubules of respiratory tract cilia and the distal singlet microtubules of the sperm tail. Among the microtubule-binding proteins identified is SPACA9, which we show is capable of forming both spirals and striations within human ciliary microtubules. The ability to resolve human ciliary microtubule composition improves our understanding of ciliary complexes and the potential causes of human ciliopathies. The cilium-centrosome complex contains triplet, doublet, and singlet microtubules. The lumenal surfaces of each microtubule within this diverse array are decorated by microtubule inner proteins (MIPs). Here, we used single-particle cryo-electron microscopy methods to build atomic models of two types of human ciliary microtubule: the doublet microtubules of multiciliated respiratory cells and the distal singlet microtubules of monoflagellated human spermatozoa. We discover that SPACA9 is a polyspecific MIP capable of binding both microtubule types. SPACA9 forms intralumenal striations in the B tubule of respiratory doublet microtubules and noncontinuous spirals in sperm singlet microtubules. By acquiring new and reanalyzing previous cryo-electron tomography data, we show that SPACA9-like intralumenal striations are common features of different microtubule types in animal cilia. Our structures provide detailed references to help rationalize ciliopathy-causing mutations and position cryo-EM as a tool for the analysis of samples obtained directly from ciliopathy patients.
Collapse
|
5
|
Wang X, Fu Y, Beatty WL, Ma M, Brown A, Sibley LD, Zhang R. Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nat Commun 2021; 12:3065. [PMID: 34031406 PMCID: PMC8144581 DOI: 10.1038/s41467-021-23351-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
In living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from Toxoplasma gondii, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of β-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.
Collapse
Affiliation(s)
- Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
7
|
Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, Denarier E, Bacia M, Schoehn G, Mohrbach H, Kulić I, Andrieux A, Arnal I, Delphin C. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. SCIENCE ADVANCES 2020; 6:eaaz4344. [PMID: 32270043 PMCID: PMC7112752 DOI: 10.1126/sciadv.aaz4344] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/09/2020] [Indexed: 06/01/2023]
Abstract
Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.
Collapse
Affiliation(s)
- Camille Cuveillier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Julie Delaroche
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maxime Seggio
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Hervé Mohrbach
- Laboratoire de Chimie et Physique Théorique, UMR 7019, Université de Lorraine
| | - Igor Kulić
- Institut Charles Sandron, CNRS-UdS, 67034 Strasbourg, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| |
Collapse
|
8
|
Clark JA, Chuckowree JA, Dyer MS, Dickson TC, Blizzard CA. Epothilone D alters normal growth, viability and microtubule dependent intracellular functions of cortical neurons in vitro. Sci Rep 2020; 10:918. [PMID: 31969604 PMCID: PMC6976590 DOI: 10.1038/s41598-020-57718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Brain penetrant microtubule stabilising agents (MSAs) are being increasingly validated as potential therapeutic strategies for neurodegenerative diseases and traumatic injuries of the nervous system. MSAs are historically used to treat malignancies to great effect. However, this treatment strategy can also cause adverse off-target impacts, such as the generation of debilitating neuropathy and axonal loss. Understanding of the effects that individual MSAs have on neurons of the central nervous system is still incomplete. Previous research has revealed that aberrant microtubule stabilisation can perturb many neuronal functions, such as neuronal polarity, neurite outgrowth, microtubule dependant transport and overall neuronal viability. In the current study, we evaluate the dose dependant impact of epothilone D, a brain penetrant MSA, on both immature and relatively mature mouse cortical neurons in vitro. We show that epothilone D reduces the viability, growth and complexity of immature cortical neurons in a dose dependant manner. Furthermore, in relatively mature cortical neurons, we demonstrate that while cellularly lethal doses of epothilone D cause cellular demise, low sub lethal doses can also affect mitochondrial transport over time. Our results reveal an underappreciated mitochondrial disruption over a wide range of epothilone D doses and reiterate the importance of understanding the dosage, timing and intended outcome of MSAs, with particular emphasis on brain penetrant MSAs being considered to target neurons in disease and trauma.
Collapse
Affiliation(s)
- J A Clark
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - J A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - M S Dyer
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - T C Dickson
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - C A Blizzard
- Menzies Institute for Medical Research, University of Tasmania 17 Liverpool Street Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
9
|
Chang Q, Yang H, Wang M, Wei H, Hu F. Role of Microtubule-Associated Protein in Autism Spectrum Disorder. Neurosci Bull 2018; 34:1119-1126. [PMID: 29936584 PMCID: PMC6246838 DOI: 10.1007/s12264-018-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and communication, along with repetitive and restrictive patterns of behaviors or interests. Normal brain development is crucial to behavior and cognition in adulthood. Abnormal brain development, such as synaptic and myelin dysfunction, is involved in the pathogenesis of ASD. Microtubules and microtubule-associated proteins (MAPs) are important in regulating the processes of brain development, including neuron production and synaptic formation, as well as myelination. Increasing evidence suggests that the level of MAPs are changed in autistic patients and mouse models of ASD. Here, we discuss the roles of MAPs.
Collapse
Affiliation(s)
- Qiaoqiao Chang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
10
|
A key function for microtubule-associated-protein 6 in activity-dependent stabilisation of actin filaments in dendritic spines. Nat Commun 2018; 9:3775. [PMID: 30224655 PMCID: PMC6141585 DOI: 10.1038/s41467-018-05869-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines. We find that in MAP6-deficient cortical and hippocampal neurons, maintenance of mature spines is impaired, and can be restored by expressing a stretch of the MAP6 sequence called Mc modules. Mc modules directly bind actin filaments and mediate activity-dependent stabilisation of F-actin in dendritic spines, a key event of synaptic plasticity. In vitro, Mc modules enhance actin filament nucleation and promote the formation of stable, highly ordered filament bundles. Activity-induced phosphorylation of MAP6 likely controls its transfer to the spine cytoskeleton. These results provide a molecular explanation for the role of MAP6 in cognition, enlightening the connection between cytoskeletal dysfunction, synaptic impairment and neuropsychiatric illnesses. Microtubule-associated protein 6 (MAP6) is known to be important for synaptic plasticity and cognition, supposedly via interaction with microtubules. Here, the authors found that MAP6 is crucial for the stabilisation of enlarged synapses through its association with a different cytoskeletal element, actin.
Collapse
|
11
|
Brocard J, Dufour F, Gory-Fauré S, Arnoult C, Bosc C, Denarier E, Peris L, Saoudi Y, De Waard M, Andrieux A. MAP6 interacts with Tctex1 and Ca v 2.2/N-type calcium channels to regulate calcium signalling in neurons. Eur J Neurosci 2017; 46:2754-2767. [PMID: 29094416 PMCID: PMC5765474 DOI: 10.1111/ejn.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
Abstract
MAP6 proteins were first described as microtubule‐stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 – a dynein light chain with multiple non‐microtubule‐related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav2.2/N‐type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C‐terminus of Cav2.2/N‐type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.
Collapse
Affiliation(s)
- Jacques Brocard
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Fabrice Dufour
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Sylvie Gory-Fauré
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- U1209, INSERM, Grenoble, France.,UMR 5309, CNRS, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bosc
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| | - Leticia Peris
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Yasmina Saoudi
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Michel De Waard
- U1087, INSERM, Nantes, France.,UMR 6291, CNRS, Nantes, France.,Université Nantes, Nantes, France
| | - Annie Andrieux
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| |
Collapse
|
12
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
13
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
14
|
Dacheux D, Roger B, Bosc C, Landrein N, Roche E, Chansel L, Trian T, Andrieux A, Papaxanthos-Roche A, Marthan R, Robinson DR, Bonhivers M. Human FAM154A (SAXO1) is a microtubule-stabilizing protein specific to cilia and related structures. J Cell Sci 2015; 128:1294-307. [PMID: 25673876 DOI: 10.1242/jcs.155143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cilia and flagella are microtubule-based organelles present at the surface of most cells, ranging from protozoa to vertebrates, in which these structures are implicated in processes from morphogenesis to cell motility. In vertebrate neurons, microtubule-associated MAP6 proteins stabilize cold-resistant microtubules through their Mn and Mc modules, and play a role in synaptic plasticity. Although centrioles, cilia and flagella have cold-stable microtubules, MAP6 proteins have not been identified in these organelles, suggesting that additional proteins support this role in these structures. Here, we characterize human FAM154A (hereafter referred to as hSAXO1) as the first human member of a widely conserved family of MAP6-related proteins specific to centrioles and cilium microtubules. Our data demonstrate that hSAXO1 binds specifically to centriole and cilium microtubules. We identify, in vivo and in vitro, hSAXO1 Mn modules as responsible for microtubule binding and stabilization as well as being necessary for ciliary localization. Finally, overexpression and knockdown studies show that hSAXO1 modulates axoneme length. Taken together, our findings suggest a fine regulation of hSAXO1 localization and important roles in cilium biogenesis and function.
Collapse
Affiliation(s)
- Denis Dacheux
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Benoit Roger
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Christophe Bosc
- INSERM, Centre de Recherche U836, F-38000, Grenoble, France University Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000, Grenoble, France
| | - Nicolas Landrein
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Emmanuel Roche
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Lucie Chansel
- CHU de Bordeaux, Centre Aliénor d'Aquitaine, Laboratoire de Biologie de la Reproduction, F-33000 Bordeaux, France
| | - Thomas Trian
- University Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | - Annie Andrieux
- INSERM, Centre de Recherche U836, F-38000, Grenoble, France University Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000, Grenoble, France CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, GPC, F-38000 Grenoble, France
| | - Aline Papaxanthos-Roche
- CHU de Bordeaux, Centre Aliénor d'Aquitaine, Laboratoire de Biologie de la Reproduction, F-33000 Bordeaux, France
| | - Roger Marthan
- University Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | - Derrick R Robinson
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Mélanie Bonhivers
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| |
Collapse
|
15
|
Gory-Fauré S, Windscheid V, Brocard J, Montessuit S, Tsutsumi R, Denarier E, Fukata Y, Bosc C, Delaroche J, Collomb N, Fukata M, Martinou JC, Pernet-Gallay K, Andrieux A. Non-microtubular localizations of microtubule-associated protein 6 (MAP6). PLoS One 2014; 9:e114905. [PMID: 25526643 PMCID: PMC4272302 DOI: 10.1371/journal.pone.0114905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/11/2014] [Indexed: 01/29/2023] Open
Abstract
MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin. Here, we use heterologous systems to investigate several biochemical properties of MAP6 proteins. We demonstrate that the three N-terminal cysteines of MAP6d1 are palmitoylated by a subset of DHHC-type palmitoylating enzymes. Analysis of the subcellular localization of palmitoylated MAP6d1, including electron microscopic analysis, reveals possible localization to the Golgi and the plasma membrane but no association with the endoplasmic reticulum. Moreover, we observed localization of MAP6d1 to mitochondria, which requires the N-terminus of the protein but does not require palmitoylation. We show that endogenous MAP6d1 localized at mitochondria in mature mice neurons as well as at the outer membrane and in the intermembrane space of purified mouse mitochondria. Last, we found that MAP6d1 can multimerize via a microtubule-binding module. Interestingly, most of these properties of MAP6d1 are shared by MAP6-N. Together, these results describe several properties of MAP6 proteins, including their intercellular localization and multimerization activity, which may be relevant to neuronal differentiation and synaptic functions.
Collapse
Affiliation(s)
- Sylvie Gory-Fauré
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- * E-mail: (SGF); (AA)
| | - Vanessa Windscheid
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Jacques Brocard
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Ryouhei Tsutsumi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Eric Denarier
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- Commissariat à l'énergie atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Groupe Physiopathologie du Cytosquelette, Grenoble, France
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Christophe Bosc
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Julie Delaroche
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Nora Collomb
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Karin Pernet-Gallay
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Annie Andrieux
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- Commissariat à l'énergie atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Groupe Physiopathologie du Cytosquelette, Grenoble, France
- * E-mail: (SGF); (AA)
| |
Collapse
|
16
|
Lefèvre J, Savarin P, Gans P, Hamon L, Clément MJ, David MO, Bosc C, Andrieux A, Curmi PA. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. J Biol Chem 2013; 288:24910-22. [PMID: 23831686 DOI: 10.1074/jbc.m113.457267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90-177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90-177) to microtubules with a 1:1 MAP6(90-177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90-177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP6(90-177) binding and that the binding mode of MAP6(90-177) to microtubules and Ca(2+)-calmodulin involves a common stretch of amino acid residues on the MAP6(90-177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin.
Collapse
Affiliation(s)
- Julien Lefèvre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université Evry-Val d'Essonne, Evry 91025, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Delphin C, Bouvier D, Seggio M, Couriol E, Saoudi Y, Denarier E, Bosc C, Valiron O, Bisbal M, Arnal I, Andrieux A. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization. J Biol Chem 2012; 287:35127-35138. [PMID: 22904321 DOI: 10.1074/jbc.m112.398339] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.
Collapse
Affiliation(s)
- Christian Delphin
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France.
| | - Denis Bouvier
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France
| | - Maxime Seggio
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Emilie Couriol
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Yasmina Saoudi
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Eric Denarier
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Christophe Bosc
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Odile Valiron
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Mariano Bisbal
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Isabelle Arnal
- Team 13 Dynamic and Structural Regulation of Cytoskeleton, Institut National de la Santé et de la Recherche Médicale, U836-GIN, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Annie Andrieux
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| |
Collapse
|
18
|
Vinflunine: a new vision that may translate into antiangiogenic and antimetastatic activity. Anticancer Drugs 2012; 23:1-11. [PMID: 22027536 DOI: 10.1097/cad.0b013e32834d237b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microtubules and tubulin are major dynamic and structural cellular components that play a key role in several cell functions, including division, signalling and intracellular trafficking. Normal epithelial cells have a highly structured, rigid cytoskeletal network that is compatible with cell motility. Thus, tubulin and microtubules are compelling cellular targets for chemotherapy. In fact, among anticancer agents, those that target microtubules constitute one of the most effective classes of chemotherapeutics in cancer. The list of compounds that target either tubulin or microtubules is extensive and consists of chemically unique compounds that bind to the tubulin dimers and destabilize microtubules (Vinca alkaloids) and those that bind to the microtubule polymer and stabilize microtubules (taxanes). Tumour-induced angiogenesis, the formation of new capillaries from existing blood vessels, and epithelial-mesenchymal transition are two steps that are critical for both tumour growth and metastatic spread. Three possible mechanisms of action are described with vinflunine, the new-generation Vinca alkaloid to arrive in clinical practice are as follows: it acts against tubulin and microtubules, disrupts newly formed blood vessels and seems to be able to reduce the metastatic process as shown in preclinical studies. These findings support the hypothesis that vinflunine, by blocking microtubule functions that contribute to cell shape, polarization, migration and other processes, might be responsible not only for tumour-cytostatic but also for specific antiangiogenic or antiepithelial-mesenchymal transition effects.
Collapse
|
19
|
Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS One 2012; 7:e31344. [PMID: 22355359 PMCID: PMC3280300 DOI: 10.1371/journal.pone.0031344] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022] Open
Abstract
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.
Collapse
Affiliation(s)
- Denis Dacheux
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Magali Thonnus
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Guillaume Gilbert
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Derrick R. Robinson
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
20
|
He L, Hou Z, Qi RZ. Calmodulin Binding and Cdk5 Phosphorylation of p35 Regulate Its Effect on Microtubules. J Biol Chem 2008; 283:13252-60. [DOI: 10.1074/jbc.m706937200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Makarov AA, Tsvetkov PO, Villard C, Esquieu D, Pourroy B, Fahy J, Braguer D, Peyrot V, Lafitte D. Vinflunine, a novel microtubule inhibitor, suppresses calmodulin interaction with the microtubule-associated protein STOP. Biochemistry 2007; 46:14899-906. [PMID: 18052208 DOI: 10.1021/bi701803s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinca alkaloids vinblastine and vincristine and some of their derivatives such as vinorelbine are widely used in therapy of leukemia and several solid tumors. Their action is associated with alterations of the mitotic spindle functions that prevent the cell cycle progression and lead to mitotic block. A number of studies show that some Vinca alkaloids inhibit CaM-target interaction. The newest microtubule inhibitor, vinflunine (Javlor), currently in clinical trials, is remarkably more active than vinblastine against a number of tumors. Moreover, vinflunine is significantly less toxic than other Vinca alkaloids. The high antitumor activity of this molecule is not well understood since it binds to tubulin with an overall affinity several-fold lower than that of vinblastine or vincristine. In this study, we examined the interaction of Ca2+-CaM with vinflunine, vinblastine, and stable tubule only polypeptide (STOP) by using a combination of thermodynamic and mass spectrometric approaches. We characterized the influence of Vinca alkaloids on Ca2+-CaM-STOP complex formation. Our results revealed different binding modes to Ca2+-CaM for vinflunine and vinblastine, highlighting that adding fluorine atoms on the cleavamine moiety of the Vinca alkaloid molecule is critical for the localization of the drug on calmodulin. We demonstrate that vinflunine is a better inhibitor for STOP binding to calmodulin than vinblastine. We suggest that vinflunine action on calmodulin can have an effect on microtubule dynamics. These data may contribute to a better understanding of the superior antitumor efficiency and lower toxicity of vinflunine.
Collapse
Affiliation(s)
- Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hilpert K, Winkler DFH, Hancock REW. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnol Genet Eng Rev 2007; 24:31-106. [DOI: 10.1080/02648725.2007.10648093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Gory-Fauré S, Windscheid V, Bosc C, Peris L, Proietto D, Franck R, Denarier E, Job D, Andrieux A. STOP-like Protein 21 Is a Novel Member of the STOP Family, Revealing a Golgi Localization of STOP Proteins. J Biol Chem 2006; 281:28387-96. [PMID: 16837464 DOI: 10.1074/jbc.m603380200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal microtubules are stabilized by two calmodulin-regulated microtubule-associated proteins, E-STOP and N-STOP, which when suppressed in mice induce severe synaptic and behavioral deficits. Here we show that mature neurons also contain a 21-kDa STOP-like protein, SL21, which shares calmodulin-binding and microtubule-stabilizing homology domains with STOP proteins. Accordingly, in different biochemical or cellular assays, SL21 has calmodulin binding and microtubule stabilizing activity. However, in cultured hippocampal neurons, SL21 antibodies principally stain the somatic Golgi and punctate Golgi material in neurites. In cycling cells, transfected SL21 decorates microtubules when expressed at high levels but is otherwise principally visible at the Golgi. The Golgi targeting of SL21 depends on the presence of cysteine residues located within the SL21 N-terminal domain, suggesting that Golgi targeting may require SL21 palmitoylation. Accordingly we find that SL21 is palmitoylated in vivo. N-STOP and E-STOP, which contain the Golgi targeting sequences present in SL21, also display distinct Golgi staining when expressed at low level in cycling cells. Thus neuronal proteins of the STOP family have the capacity to associate with Golgi material, which could be important for STOP synaptic functions.
Collapse
Affiliation(s)
- Sylvie Gory-Fauré
- INSERM U366, Département Recherche et Dynamique Cellulaire/Cytosquelette, Commissariat à l'Energie Atomique Grenoble, 17 rue des Martyrs, 38054 Grenoble, cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baratier J, Peris L, Brocard J, Gory-Fauré S, Dufour F, Bosc C, Fourest-Lieuvin A, Blanchoin L, Salin P, Job D, Andrieux A. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J Biol Chem 2006; 281:19561-9. [PMID: 16651267 DOI: 10.1074/jbc.m509602200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity.
Collapse
Affiliation(s)
- Julie Baratier
- Laboratoire du Cytosquelette, INSERM U366, DRDC/CS, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hultschig C, Hecht HJ, Frank R. Systematic delineation of a calmodulin peptide interaction. J Mol Biol 2004; 343:559-68. [PMID: 15465045 DOI: 10.1016/j.jmb.2004.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 08/05/2004] [Indexed: 11/18/2022]
Abstract
We present a comprehensive profile of amino acid side-chain constraints in a calmodulin (CaM) peptide complex. These data were obtained from the analysis of calmodulin binding to an array of all single substitution analogues as well as N- and C-terminal truncations of the skMLCK derived M13 peptide ligand. The experimentally derived binding data were evaluated with respect to the known 3D-structure of the CaM/M13 complex. Besides an almost perfect agreement between the measured affinities and the structural data, the unexpected high-affine Asn5Ala variant of the M13(*) peptide described by Montigiani et al. could be verified. In contrast to other reports our data clearly support the postulate of the minor and major hydrophobic anchors of this calcium dependent interaction.
Collapse
Affiliation(s)
- Claus Hultschig
- Department of Chemical Biology of the German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
26
|
Galiano MR, Bosc C, Schweitzer A, Andrieux A, Job D, Hallak ME. Astrocytes and oligodendrocytes express different STOP protein isoforms. J Neurosci Res 2004; 78:329-37. [PMID: 15389836 DOI: 10.1002/jnr.20260] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many cell types contain subpopulations of microtubules that resist depolymerizing conditions, such as exposure to cold or to the drug nocodazole. This stabilization is due mainly to polymer association with STOP proteins. In mouse, neurons express two major variants of these proteins, N-STOP and E-STOP (120 kDa and 79 kDa, respectively), whereas fibroblasts express F-STOP (42 kDa) and two minor variants of 48 and 89 kDa. N- and E-STOP induce microtubule resistance to both cold and nocodazole exposure, whereas F-STOP confers microtubule stability only to the cold. Here, we investigated the expression of STOP proteins in oligodendrocytes and astrocytes in culture. We found that STOP proteins were expressed in precursor cells, in immature and mature oligodendrocytes, and in astrocytes. We found that oligodendrocytes express a major STOP variant of 89 kDa, which we called O-STOP, and two minor variants of 42 and 48 kDa. The STOP variants expressed by oligodendrocytes induce microtubule resistance to the cold and to nocodazole. For astrocytes, we found the expression of two STOP variants of 42 and 48 kDa and a new STOP isoform of 60 kDa, which we called A-STOP. The STOP variants expressed by astrocytes induce microtubule resistance to the cold but not to nocodazole, as fibroblast variants. In conclusion, astrocytes and oligodendrocytes express different isoforms of STOP protein, which show different microtubule-stabilizing capacities.
Collapse
Affiliation(s)
- M R Galiano
- Department Química Biológica, Facultad Ciencias Químicas, Haya de la Torre S/N, 5000 Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Decca MB, Galiano MR, Barra HS, Hallak ME. Re-examination of the post-translational arginylated protein of 125-kD initially identified as N-STOP. Neurochem Res 2004; 29:413-8. [PMID: 15002739 DOI: 10.1023/b:nere.0000013746.82642.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Post-translational modification of proteins is a complex mechanism by which cells regulate protein activities. One post-translational modification is the incorporation of arginine into the NH2-terminus of proteins. It has been hypothesized that in rat brain extracts, one of the proteins modified by this reaction is the microtubule-associated protein Neuronal Stable Tubule Only Polypeptide (N-STOP). This was inferred from its electrophoretic mobility (125 kD) and because it was immunoprecipitated with a monoclonal antibody against the N-STOP. However, this hypothesis is not supported by our recent results. Herein, we found that rat N-STOP interacts with Ca(2+)-calmodulin, whereas the 125-kD [14C]-arginylated protein does not. The 125-kD [14C]-arginylated protein from rat brain is separated from the N-STOP by two-dimensional electrophoresis, and it is not recognized by a STOP monoclonal antibody. Mouse brain contains N-STOP, which migrates as a protein of 116 kD and could not be labeled by the post-translational incorporation of [14C]-arginine. The 125-kD [14C]-arginylated protein appears in wild-type as well as in STOP knock out mice. Based on these results, we conclude that the 125-kD arginylated protein is different from N-STOP.
Collapse
Affiliation(s)
- María Belén Decca
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET), Departamento de Quimica Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000-Córdoba, Argentina
| | | | | | | |
Collapse
|
28
|
Abstract
Microtubules assembled from purified tubulin in vitro are labile, rapidly disassembling when exposed to a variety of depolymerizing conditions such as cold temperature. In contrast, in many cell types, microtubules seem to be unaffected when the cell is exposed to the cold. This resistance of microtubules to the cold has been intriguing because the earliest and by far most studied microtubule-associated proteins such as MAP2 and tau are devoid of microtubule cold stabilizing activity. Over the past several years, it has been shown that resistance of microtubules to the cold is largely due to polymer association with a class of microtubule-associated proteins called STOPs. STOPs are calmodulin-binding and calmodulin-regulated proteins which, in mammals, are encoded by a single gene but exhibit substantial cell specific variability due to mRNA splicing and alternative promoter use. STOP microtubule stabilizing activity has been ascribed to two classes of new bifunctional calmodulin- and microtubule-binding motifs, with distinct microtubule binding properties in vivo. STOPs seem to be restricted to vertebrates and are composed of a conserved domain split by the apparent insertion of variable sequences that are completely unrelated among species. Recently, STOP suppression in mice has been found to induce synaptic defects associated with neuroleptic-sensitive behavioral disorders. Thus, STOPs are important for synaptic plasticity. Additionally, STOP-deficient mice may yield a pertinent model for the study of neuroleptics in illnesses such as schizophrenia, currently thought to result from defects in synapse function.
Collapse
Affiliation(s)
- Christophe Bosc
- Laboratoire du Cytosquelette, INSERM U366, DRDC/CS, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
29
|
Letournel F, Bocquet A, Dubas F, Barthelaix A, Eyer J. Stable Tubule Only Polypeptides (STOP) Proteins Co-Aggregate with Spheroid Neurofilaments in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2003; 62:1211-9. [PMID: 14692697 DOI: 10.1093/jnen/62.12.1211] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major cytopathological hallmark of amyotrophic lateral sclerosis (ALS) is the presence of axonal spheroids containing abnormally accumulated neurofilaments. The mechanism of their formation, their contribution to the disease, and the possibility of other co-aggregated components are still enigmatic. Here we analyze the composition of such lesions with special reference to stable tubule only polypeptide (STOP), a protein responsible for microtubule cold stabilization. In normal human brain and spinal cord, the distribution of STOP proteins is uniform between the cytoplasm and neurites of neurons. However, all the neurofilament-rich spheroids present in the tissues of affected patients are intensely labeled with 3 different anti-STOP antibodies. Moreover, when neurofilaments and microtubules are isolated from spinal cord and brain, STOP proteins are systematically co-purified with neurofilaments. By SDS-PAGE analysis, no alteration of the migration profile of STOP proteins is observed in pathological samples. Other microtubular proteins, like tubulin or kinesin, are inconstantly present in spheroids, suggesting that a microtubule destabilizing process may be involved in the pathogenesis of ALS. These results indicate that the selective co-aggregation of neurofilament and STOP proteins represent a new cytopathological marker for spheroids.
Collapse
Affiliation(s)
- F Letournel
- Laboratoire Neurobiologie & Transgenese, Université D'Angers, Angers, France
| | | | | | | | | |
Collapse
|
30
|
Bouvier D, Vanhaverbeke C, Simorre JP, Arlaud GJ, Bally I, Forge V, Margolis RL, Gans P, Kleman JP. Unusual Ca(2+)-calmodulin binding interactions of the microtubule-associated protein F-STOP. Biochemistry 2003; 42:11484-93. [PMID: 14516200 DOI: 10.1021/bi034746w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
F-STOP is a microtubule-associated protein that stabilizes microtubules in a calmodulin (CaM)-dependent manner. All members of the stable tubule only polypeptide (STOP) family have a central domain that contains nearly identical multiple repeats, and a CaM binding motif is present in multiple copies within this domain. We present here an analysis of this CaM binding interaction and find that it is highly unusual in nature. For this work, we synthesized two model peptides of a single STOP central repeat motif and analyzed their binding to CaM by fluorescence, circular dichroism, infrared and NMR spectroscopy. Both peptides bind to CaM with an affinity of 4 microM, similar to that of the native protein. Results indicate that the peptides bind CaM in an atypical manner. Binding is highly dependent on the concentration of cations, indicating that it is to some extent electrostatic. Further, IR and CD analysis shows that, in contrast to typical CaM binding reactions, CaM does not change in helical structure on binding. NMR mapping confirms that CaM remains in extended conformation on binding a single STOP peptide. Binding of a single peptide to CaM occurs principally in the CaM C-terminal region, and the C-terminal domain of CaM effectively competes for STOP binding. Our results establish that CaM binds STOP in an unusual manner, involving mainly the C-terminus of CaM, thus leaving CaM potentially accessible for another binding partner at the N-terminus. This intriguing possibility could be of physiological importance in F-STOP mediated CaM regulation of microtubule dynamics or stability, specifically during mitosis where CaM and STOP colocalize.
Collapse
Affiliation(s)
- Denis Bouvier
- Laboratoire de Résonance Magnétique Nucléaire, Institut de Biologie Structurale J-P Ebel (UMR CNRS 5075), 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bonnet C, Denarier E, Bosc C, Lazereg S, Denoulet P, Larcher JC. Interaction of STOP with neuronal tubulin is independent of polyglutamylation. Biochem Biophys Res Commun 2002; 297:787-93. [PMID: 12359221 DOI: 10.1016/s0006-291x(02)02294-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotes, the coordinated progress of the various cellular tasks along with the assembly of adapted cytoskeletal networks requires a tight regulation of the interactions between microtubules and their associated proteins. Polyglutamylation is the major post-translational modification of neuronal tubulin. Due to its oligomeric structure, polyglutamylation can serve as a potentiometer to modulate binding of diverse MAPs. In addition, it can exert a differential mode of regulation towards distinct microtubule protein partners. To find out to what extent polyglutamylation is a general regulator, we have analyzed its ability to affect the binding of STOPs, the major factors that confer cold- and nocodazole-resistance to microtubules. We have shown by blot overlay experiments that binding of STOP does not depend on the length of the polyglutamyl chains carried by tubulins. And contrary to the other microtubule-associated proteins tested so far, STOP can bind quantitatively to any tubulin isoform whatever its degree of polyglutamylation.
Collapse
Affiliation(s)
- Crystel Bonnet
- Laboratoire de Biochimie Cellulaire-CNRS UMR 7098, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
32
|
Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002; 16:2350-64. [PMID: 12231625 PMCID: PMC187434 DOI: 10.1101/gad.223302] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurons contain abundant subsets of highly stable microtubules that resist depolymerizing conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. Previous work has indicated an important role of the microtubule-associated protein STOP in the induction of microtubule cold stability. Here, we developed STOP null mice. These mice were devoid of cold-stable microtubules. In contrast to our expectations, STOP-/- mice had no detectable defects in brain anatomy but showed synaptic defects, with depleted synaptic vesicle pools and impaired synaptic plasticity, associated with severe behavioral disorders. A survey of the effects of psychotropic drugs on STOP-/- mice behavior showed a remarkable and specific effect of long-term administration of neuroleptics in alleviating these disorders. This study demonstrates that STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally, STOP-/- mice may yield a pertinent model for study of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects.
Collapse
Affiliation(s)
- Annie Andrieux
- Laboratoire du Cytosquelette, INSERM U366, Département Réponse et Dynamique Cellulaire, CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|