1
|
Khalili Yazdi A, Namjoshi S, Hackett J, Ghonaim N, Shilton BH. Characterization of a polypeptide-binding site in the DEAD Motor of the SecA ATPase. FEBS Lett 2017; 591:3378-3390. [DOI: 10.1002/1873-3468.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sarita Namjoshi
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Jesse Hackett
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Nour Ghonaim
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Brian H. Shilton
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
2
|
Yazdi AK, Vezina GC, Shilton BH. An alternate mode of oligomerization for E. coli SecA. Sci Rep 2017; 7:11747. [PMID: 28924213 PMCID: PMC5603524 DOI: 10.1038/s41598-017-11648-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
SecA is the ATPase of preprotein translocase. SecA is a dimer in solution and changes in its oligomeric state may function in preprotein translocation. The SecA-N68 construct, in which the C-terminal helical domains of SecA are deleted, was used to investigate the mechanism of SecA oligomerization. SecA-N68 is in equilibrium between monomers, dimers, and tetramers. Subunit interactions in the SecA-N68 tetramer are mediated entirely by unstructured regions at its N- and C-termini: when the termini are deleted to yield SecA-N68∆NC, the construct is completely monomeric. This monomeric construct yielded crystals diffracting to 2.6 Å that were used to solve the structure of SecA-N68, including the "preprotein crosslinking domain" (PPXD) that was missing from previous E. coli SecA structures. The SecA-N68 structure was combined with small angle X-ray scattering (SAXS) data to construct a model of the SecA-N68 tetramer that is consistent with the essential roles of the extreme N- and C-termini in oligomerization. This mode of oligomerization, which depends on binding of the extreme N-terminus to the DEAD motor domains, NBD1 and NBD2, was used to model a novel parallel and flexible SecA solution dimer that agrees well with SAXS data.
Collapse
Affiliation(s)
- Aliakbar Khalili Yazdi
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Grant C Vezina
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
3
|
Zhang Q, Li Y, Olson R, Mukerji I, Oliver D. Conserved SecA Signal Peptide-Binding Site Revealed by Engineered Protein Chimeras and Förster Resonance Energy Transfer. Biochemistry 2016; 55:1291-300. [PMID: 26854513 DOI: 10.1021/acs.biochem.5b01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Signal peptides are critical for the initiation of protein transport in bacteria by virtue of their recognition by the SecA ATPase motor protein followed by their transfer to the lateral gate region of the SecYEG protein-conducting channel complex. In this study, we have constructed and validated the use of signal peptide-attached SecA chimeras for conducting structural and functional studies on the initial step of SecA signal peptide interaction. We utilized this system to map the location and orientation of the bound alkaline phosphatase and KRRLamB signal peptides to a peptide-binding groove adjacent to the two-helix finger subdomain of SecA. These results support the existence of a single conserved SecA signal peptide-binding site that positions the signal peptide parallel to the two-helix finger subdomain of SecA, and they are also consistent with the proposed role of this subdomain in the transfer of the bound signal peptide from SecA into the protein-conducting channel of SecYEG protein. In addition, our work highlights the utility of this system to conveniently engineer and study the interaction of SecA with any signal peptide of interest as well as its potential use for X-ray crystallographic studies given issues with exogenous signal peptide solubility.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Yan Li
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Donald Oliver
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Gouridis G, Karamanou S, Sardis MF, Schärer MA, Capitani G, Economou A. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 2014; 52:655-66. [PMID: 24332176 DOI: 10.1016/j.molcel.2013.10.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/15/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
Most secretory preproteins exit bacterial cells through the protein translocase, comprising the SecYEG channel and the dimeric peripheral ATPase motor SecA. Energetic coupling to work remains elusive. We now demonstrate that translocation is driven by unusually dynamic quaternary changes in SecA. The dimer occupies several successive states with distinct protomer arrangements. SecA docks on SecYEG as a dimer and becomes functionally asymmetric. Docking occurs via only one protomer. The second protomer allosterically regulates downstream steps. Binding of one preprotein signal peptide to the SecYEG-docked SecA protomer elongates the SecA dimer and triggers the translocase holoenzyme to obtain a lower activation energy conformation. ATP hydrolysis monomerizes the triggered SecA dimer, causing mature chain trapping and processive translocation. This is a unique example of one protein exploiting quaternary dynamics to become a substrate receptor, a "loading clamp," and a "processive motor." This mechanism has widespread implications on protein translocases, chaperones, and motors.
Collapse
Affiliation(s)
- Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | | | - Guido Capitani
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Maki JL, Krishnan B, Gierasch LM. Using a low denaturant model to explore the conformational features of translocation-active SecA. Biochemistry 2012; 51:1369-79. [PMID: 22304380 DOI: 10.1021/bi201793e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SecA molecular nanomachine in bacteria uses energy from ATP hydrolysis to drive post-translational secretion of preproteins through the SecYEG translocon. Cytosolic SecA exists in a dimeric, "closed" state with relatively low ATPase activity. After binding to the translocon, SecA undergoes major conformational rearrangement, leading to a state that is structurally more "open", has elevated ATPase activity, and is active in translocation. The structural details underlying this conformational change in SecA remain incompletely defined. Most SecA crystal structures report on the cytosolic form; only one structure sheds light on a form of SecA that has engaged the translocon. We have used mild destabilization of SecA to trigger conformational changes that mimic those in translocation-active SecA and thus study its structural changes in a simplified, soluble system. Results from circular dichroism, tryptophan fluorescence, and limited proteolysis demonstrate that the SecA conformational reorganization involves disruption of several domain-domain interfaces, partial unfolding of the second nucleotide binding fold (NBF) II, partial dissociation of the helical scaffold domain (HSD) from NBF I and II, and restructuring of the 30 kDa C-terminal region. These changes account for the observed high translocation SecA ATPase activity because they lead to the release of an inhibitory C-terminal segment (called intramolecular regulator of ATPase 1, or IRA1) and of constraints on NBF II (or IRA2) that allow it to stimulate ATPase activity. The observed conformational changes thus position SecA for productive interaction with the SecYEG translocon and for transfer of segments of its passenger protein across the translocon.
Collapse
Affiliation(s)
- Jenny L Maki
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
6
|
Tang Y, Pan X, Chen Y, Tai PC, Sui SF. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PLoS One 2011; 6:e16498. [PMID: 21304597 PMCID: PMC3029384 DOI: 10.1371/journal.pone.0016498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/20/2010] [Indexed: 12/01/2022] Open
Abstract
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xijiang Pan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Phang C. Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Tang Y, Pan X, Tai PC, Sui S. Electron microscopic visualization of asymmetric precursor translocation intermediates: SecA functions as a dimer. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1049-56. [PMID: 21104364 DOI: 10.1007/s11427-010-4061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/22/2010] [Indexed: 11/27/2022]
Abstract
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I(31)) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I(31) structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.
Collapse
Affiliation(s)
- Ying Tang
- State-Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
8
|
Auclair SM, Moses JP, Musial-Siwek M, Kendall DA, Oliver DB, Mukerji I. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Förster resonance energy transfer. Biochemistry 2010; 49:782-92. [PMID: 20025247 DOI: 10.1021/bi901446r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.
Collapse
Affiliation(s)
- Sarah M Auclair
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | |
Collapse
|
9
|
Nithianantham S, Shilton BH. Analysis of the isolated SecA DEAD motor suggests a mechanism for chemical-mechanical coupling. J Mol Biol 2008; 383:380-9. [PMID: 18761349 DOI: 10.1016/j.jmb.2008.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 11/18/2022]
Abstract
The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.
Collapse
Affiliation(s)
- Stanley Nithianantham
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
10
|
Abstract
The information for correct localization of newly synthesized proteins in both prokaryotes and eukaryotes resides in self-contained, often transportable targeting sequences. Of these, signal sequences specify that a protein should be secreted from a cell or incorporated into the cytoplasmic membrane. A central puzzle is presented by the lack of primary structural homology among signal sequences, although they share common features in their sequences. Synthetic signal peptides have enabled a wide range of studies of how these "zipcodes" for protein secretion are decoded and used to target proteins to the protein machinery that facilitates their translocation across and integration into membranes. We review research on how the information in signal sequences enables their passenger proteins to be correctly and efficiently localized. Synthetic signal peptides have made possible binding and crosslinking studies to explore how selectivity is achieved in recognition by the signal sequence-binding receptors, signal recognition particle, or SRP, which functions in all organisms, and SecA, which functions in prokaryotes and some organelles of prokaryotic origins. While progress has been made, the absence of atomic resolution structures for complexes of signal peptides and their receptors has definitely left many questions to be answered in the future.
Collapse
Affiliation(s)
- Eugenia M. Clérico
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA
| | - Jenny L. Maki
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA
| |
Collapse
|
11
|
Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 2007; 131:756-69. [PMID: 18022369 PMCID: PMC2170882 DOI: 10.1016/j.cell.2007.09.039] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/30/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
Abstract
Recognition of signal sequences by cognate receptors controls the entry of virtually all proteins to export pathways. Despite its importance, this process remains poorly understood. Here, we present the solution structure of a signal peptide bound to SecA, the 204 kDa ATPase motor of the Sec translocase. Upon encounter, the signal peptide forms an alpha-helix that inserts into a flexible and elongated groove in SecA. The mode of binding is bimodal, with both hydrophobic and electrostatic interactions mediating recognition. The same groove is used by SecA to recognize a diverse set of signal sequences. Impairment of the signal-peptide binding to SecA results in significant translocation defects. The C-terminal tail of SecA occludes the groove and inhibits signal-peptide binding, but autoinhibition is relieved by the SecB chaperone. Finally, it is shown that SecA interconverts between two conformations in solution, suggesting a simple mechanism for polypeptide translocation.
Collapse
Affiliation(s)
- Ioannis Gelis
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Alexandre M.J.J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University 3584CH, Utrecht, The Netherlands
| | | | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology, FORTH, PO Box 1385, GR-71110, Iraklio, Crete, Greece
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, FORTH, PO Box 1385, GR-71110, Iraklio, Crete, Greece
- Department of Biology, University of Crete, PO Box 1527, GR-71110, Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, FORTH, PO Box 1385, GR-71110, Iraklio, Crete, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, FORTH, PO Box 1385, GR-71110, Iraklio, Crete, Greece
- Department of Biology, University of Crete, PO Box 1527, GR-71110, Iraklio, Crete, Greece
| | | |
Collapse
|
12
|
Abstract
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
13
|
Musial-Siwek M, Rusch SL, Kendall DA. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J Mol Biol 2006; 365:637-48. [PMID: 17084862 PMCID: PMC1851904 DOI: 10.1016/j.jmb.2006.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/02/2006] [Accepted: 10/08/2006] [Indexed: 11/26/2022]
Abstract
SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the signal peptide binding groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53 residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acid residues 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA.
Collapse
Affiliation(s)
| | | | - Debra A. Kendall
- *Corresponding author. Department of Molecular and Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3125, USA; Tel.: (860) 486-1891; Fax: (860) 486-4331; E-mail: ()
| |
Collapse
|
14
|
Shin JY, Kim M, Ahn T. Effects of signal peptide and adenylate on the oligomerization and membrane binding of soluble SecA. BMB Rep 2006; 39:319-28. [PMID: 16756762 DOI: 10.5483/bmbrep.2006.39.3.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.
Collapse
Affiliation(s)
- Ji Yeun Shin
- Department of Biochemistry, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
15
|
Keramisanou D, Biris N, Gelis I, Sianidis G, Karamanou S, Economou A, Kalodimos CG. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat Struct Mol Biol 2006; 13:594-602. [PMID: 16783375 DOI: 10.1038/nsmb1108] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 05/12/2006] [Indexed: 01/01/2023]
Abstract
SecA is a helicase-like motor that couples ATP hydrolysis with the translocation of extracytoplasmic protein substrates. As in most helicases, this process is thought to occur through nucleotide-regulated rigid-body movement of the motor domains. NMR, thermodynamic and biochemical data show that SecA uses a novel mechanism wherein conserved regions lining the nucleotide cleft undergo cycles of disorder-order transitions while switching among functional catalytic states. The transitions are regulated by interdomain interactions mediated by crucial 'arginine finger' residues located on helicase motifs. Furthermore, we show that the nucleotide cleft allosterically communicates with the preprotein substrate-binding domain and the regulatory, membrane-inserting C domain, thereby allowing for the coupling of the ATPase cycle to the translocation activity. The intrinsic plasticity and functional disorder-order folding transitions coupled to ligand binding seem to provide a precise control of the catalytic activation process and simple regulation of allosteric mechanisms.
Collapse
|
16
|
Papanikou E, Karamanou S, Baud C, Frank M, Sianidis G, Keramisanou D, Kalodimos CG, Kuhn A, Economou A. Identification of the Preprotein Binding Domain of SecA. J Biol Chem 2005; 280:43209-17. [PMID: 16243836 DOI: 10.1074/jbc.m509990200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not abrogate the basal enzymatic properties of SecA (nucleotide binding and hydrolysis), nor do they prevent SecA binding to the SecYEG protein conducting channel. However, SecA PBD mutants fail to load preproteins onto SecYEG, and their translocation ATPase activity does not become stimulated by preproteins. Bulb and Stem, the two sterically proximal PBD substructures, are physically separable and have distinct roles. Stem binds signal peptides, whereas the Bulb binds mature preprotein regions as short as 25 amino acids. Binding of signal or mature region peptides or full-length preproteins causes distinct conformational changes to PBD and to the DEAD motor. We propose that (a) PBD is a preprotein receptor and a physical bridge connecting bound preproteins to the DEAD motor, and (b) preproteins control the ATPase cycle via PBD.
Collapse
Affiliation(s)
- Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H., University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Musial-Siwek M, Rusch SL, Kendall DA. Probing the affinity of SecA for signal peptide in different environments. Biochemistry 2005; 44:13987-96. [PMID: 16229488 PMCID: PMC3094106 DOI: 10.1021/bi050882k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.
Collapse
Affiliation(s)
- Monika Musial-Siwek
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Sharyn L. Rusch
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
18
|
Chou YT, Gierasch LM. The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA. J Biol Chem 2005; 280:32753-60. [PMID: 16046390 DOI: 10.1074/jbc.m507532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-04510, USA
| | | |
Collapse
|
19
|
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:67-80. [PMID: 15546658 DOI: 10.1016/j.bbamcr.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Laboratory Unicellular, Organisms Group, Institute of Molecular Biology and Biotechnology, FO.R.T.H. and Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | |
Collapse
|
20
|
Zito CR, Antony E, Hunt JF, Oliver DB, Hingorani MM. Role of a conserved glutamate residue in the Escherichia coli SecA ATPase mechanism. J Biol Chem 2005; 280:14611-9. [PMID: 15710614 PMCID: PMC4684309 DOI: 10.1074/jbc.m414224200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli SecA uses ATP to drive the transport of proteins across cell membranes. Glutamate 210 in the "DEVD" Walker B motif of the SecA ATP-binding site has been proposed as the catalytic base for ATP hydrolysis (Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026). Consistent with this hypothesis, we find that mutation of glutamate 210 to aspartate results in a 90-fold reduction of the ATP hydrolysis rate compared with wild type SecA, 0.3 s(-1) versus 27 s(-1), respectively. SecA-E210D also releases ADP at a slower rate compared with wild type SecA, suggesting that in addition to serving as the catalytic base, glutamate 210 might aid turnover as well. Our results contradict an earlier report that proposed aspartate 133 as the catalytic base (Sato, K., Mori, H., Yoshida, M., and Mizushima, S. (1996) J. Biol. Chem. 271, 17439-17444). Re-evaluation of the SecA-D133N mutant used in that study confirms its loss of ATPase and membrane translocation activities, but surprisingly, the analogous SecA-D133A mutant retains full activity, revealing that this residue does not play a key role in catalysis.
Collapse
Affiliation(s)
- Christopher R. Zito
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459
| | - Edwin Antony
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459
| | | | - Donald B. Oliver
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459
| | - Manju M. Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459
- To whom correspondence should be addressed: Molecular Biology and Biochemistry Dept., Wesleyan University, 205 Hall-Atwater Laboratories, Middletown, CT 06459. Tel.: 860-685-2284; Fax: 860-685-2141;
| |
Collapse
|
21
|
Doyle SM, Bilsel O, Teschke CM. SecA folding kinetics: a large dimeric protein rapidly forms multiple native states. J Mol Biol 2004; 341:199-214. [PMID: 15312773 DOI: 10.1016/j.jmb.2004.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/01/2004] [Accepted: 06/01/2004] [Indexed: 11/25/2022]
Abstract
SecA, a 202 kDa dimeric protein, is the ATPase for the Sec-dependent translocase of precursor proteins in vivo. SecA must undergo conformational changes, which may involve dissociation into a monomer, as it translocates the precursor protein across the inner membrane. To better understand the dynamics of SecA in vivo, protein folding studies to probe the native, intermediate, and unfolded species of SecA in vitro have been done. SecA folds through a stable dimeric intermediate and dimerizes in the dead-time of a manual-mixing kinetic experiment ( approximately 5-7 seconds). Here, stopped-flow fluorescence and CD, as well as ultra-rapid continuous flow fluorescence techniques, were used to further probe the rapid folding kinetics of SecA. In the absence of urea, rapid, near diffusion-limited ( approximately 10(9)M(-1)s(-1)) SecA dimerization occurs following a rate-limiting unimolecular rearrangement of a rapidly formed intermediate. Multiple kinetic folding and unfolding phases were observed and SecA was shown to have multiple native and unfolded states. Using sequential-mixing stopped-flow experiments, SecA was determined to fold via parallel channels with sequential intermediates. These results confirm that SecA is a highly dynamic protein, consistent with the rapid, major conformational changes it must undergo in vivo.
Collapse
Affiliation(s)
- Shannon M Doyle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
22
|
Fak JJ, Itkin A, Ciobanu DD, Lin EC, Song XJ, Chou YT, Gierasch LM, Hunt JF. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry 2004; 43:7307-27. [PMID: 15182175 DOI: 10.1021/bi0357208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized the kinetic and thermodynamic consequences of adenine nucleotide interaction with the low-affinity and high-affinity nucleotide-binding sites in free SecA. ATP binds to the hydrolytically active high-affinity site approximately 3-fold more slowly than ADP when SecA is in its conformational ground state, suggesting that ATP binding probably occurs when the enzyme is in another conformational state during the productive ATPase/transport cycle. The steady-state ATP hydrolysis rate is equivalent to the rate of ADP release from the high-affinity site under a number of conditions, indicating that this process is the rate-limiting step in the ATPase cycle of the free enzyme. Because efficient protein translocation requires at least a 100-fold acceleration in the ATPase rate, the rate-limiting process of ADP release from the high-affinity site is likely to play a controlling role in the conformational reaction cycle of SecA. This release process involves a large enthalpy of activation, suggesting that it involves a protein conformational change, and two observations indicate that this conformational change is different from the well-characterized endothermic conformational transition believed to gate the binding of SecA to SecYEG. First, nucleotide binding to the low-affinity site strongly inhibits the endothermic transition but does not reduce the rate of ADP release. Second, removal of Mg(2+) from an allosteric binding site on SecA does not perturb the endothermic transition but produces a 10-fold acceleration in the rate of ADP release. These divergent effects suggest that a specialized conformational transition mediates the rate-limiting ADP-release process in SecA. Finally, ADP, 2'-O-(N-methylanthraniloyl)-adenosine-5'-diphosphate (MANT-ADP), and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) bind with similar affinities to the high-affinity site and also to the low-affinity site as inferred from their consistent effects in inhibiting the endothermic transition. In contrast, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) shows 100-fold weaker affinity than ADP for the high-affinity site and no detectable interaction with the low-affinity site at concentrations up to 1 mM, suggesting that this nonhydrolyzable analogue may not be a faithful mimic of ATP in its interactions with SecA.
Collapse
Affiliation(s)
- John J Fak
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Vrontou E, Karamanou S, Baud C, Sianidis G, Economou A. Global co-ordination of protein translocation by the SecA IRA1 switch. J Biol Chem 2004; 279:22490-7. [PMID: 15007058 DOI: 10.1074/jbc.m401008200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Department of Biology, University of Crete, PO Box 1527, GR-71110 Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
24
|
Ding H, Mukerji I, Oliver D. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase. Biochemistry 2004; 42:13468-75. [PMID: 14621992 DOI: 10.1021/bi035099b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SecA ATPase motor is a central component of the eubacterial protein translocation machinery. It is comprised of N- and C-domain substructures, where the N-domain is comprised of two nucleotide-binding domains that flank a preprotein-binding domain (PPXD), while the C-domain binds phospholipids as well as SecB chaperone. Our recent crystal structure of Bacillus subtilis SecA protomer [Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026] along with experimental support for the correct dimer structure [Ding, H., Hunt, J. F., Mukerji, I., and Oliver, D. (2003) Biochemistry 42, 8729-8738] have now allowed us to study SecA structural dynamics during interaction with various translocation ligands and to relate these findings to current models of SecA-dependent protein translocation. In this paper, we utilized fluorescence resonance energy transfer methodology with genetically engineered SecA proteins containing unique pairs of tryptophan and fluorophore-labeled cysteine residues within the PPXD and C-domains of SecA to investigate the interaction of these two domains and their response to temperature, model membranes, and nucleotide. Consistent with the crystal structure of SecA, we found that the PPXD and C-domains are proximal to one another in the ground state. Increasing temperature or binding to model membranes promoted a loosening of PPXD and C-domain association, while ADP binding promoted a tighter association. A similar pattern of PPXD and C-domain association was obtained also for Escherichia coli SecA protein. Furthermore, a hyperactive Azi-PrlD SecA protein of E. coli had increased PPXD and C-domain separation, consistent with its activation in the ground state. Interestingly, PPXD and C-domain separation occurred prior to the onset of major temperature-induced conformational changes in both the PPXD and C-domains of SecA. Our results support a model in which PPXD and C-domain proximity is important for regulating the initial stages of SecA activation, and they serve also as a template for future structural studies aimed at elucidation of the chemomechanical cycle of SecA-dependent protein translocation.
Collapse
Affiliation(s)
- Haiyuan Ding
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
25
|
Koch HG, Moser M, Müller M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 2003; 146:55-94. [PMID: 12605305 DOI: 10.1007/s10254-002-0002-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The signal recognition particle (SRP) and its membrane-bound receptor represent a ubiquitous protein-targeting device utilized by organisms as different as bacteria and humans, archaea and plants. The unifying concept of SRP-dependent protein targeting is that SRP binds to signal sequences of newly synthesized proteins as they emerge from the ribosome. In eukaryotes this interaction arrests or retards translation elongation until SRP targets the ribosome-nascent chain complexes via the SRP receptor to the translocation channel. Such channels are present in the endoplasmic reticulum of eukaryotic cells, the thylakoids of chloroplasts, or the plasma membrane of prokaryotes. The minimal functional unit of SRP consists of a signal sequence-recognizing protein and a small RNA. The as yet most complex version is the mammalian SRP whose RNA, together with six proteinaceous subunits, undergo an intricate assembly process. The preferential substrates of SRP possess especially hydrophobic signal sequences. Interactions between SRP and its receptor, the ribosome, the signal sequence, and the target membrane are regulated by GTP hydrolysis. SRP-dependent protein targeting in bacteria and chloroplasts slightly deviate from the canonical mechanism found in eukaryotes. Pro- and eukaryotic cells harbour regulatory mechanisms to prevent a malfunction of the SRP pathway.
Collapse
Affiliation(s)
- H-G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| | | | | |
Collapse
|
26
|
Benach J, Chou YT, Fak JJ, Itkin A, Nicolae DD, Smith PC, Wittrock G, Floyd DL, Golsaz CM, Gierasch LM, Hunt JF. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J Biol Chem 2003; 278:3628-38. [PMID: 12403785 DOI: 10.1074/jbc.m205992200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chou YT, Swain JF, Gierasch LM. Functionally significant mobile regions of Escherichia coli SecA ATPase identified by NMR. J Biol Chem 2002; 277:50985-90. [PMID: 12397065 DOI: 10.1074/jbc.m209237200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of the preprotein. SecA is proposed to undergo major conformational changes during translocation. These conformational changes are accompanied by major rearrangements of SecA structural domains. To understand the interdomain rearrangements, we have examined SecA by NMR and identified regions that display narrow resonances indicating high mobility. The mobile regions of SecA have been assigned to a sequence from the second of two domains with nucleotide-binding folds (NBF-II; residues 564-579) and to the extreme C-terminal segment of SecA (residues 864-901), both of which are essential for preprotein translocation activity. Interactions with ligands suggest that the mobile regions are involved in functionally critical regulatory steps in SecA.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-4510, USA
| | | | | |
Collapse
|
28
|
Khatib K, Belin D. A novel class of secA alleles that exert a signal-sequence-dependent effect on protein export in Escherichia coli. Genetics 2002; 162:1031-43. [PMID: 12454053 PMCID: PMC1462312 DOI: 10.1093/genetics/162.3.1031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The murine plasminogen activator inhibitor 2 (PAI2) signal sequence inefficiently promotes the export of E. coli alkaline phosphatase (AP). High-level expression of PAI2::AP chimeric proteins from the arabinose P(BAD) promoter is toxic and confers an Ara(S) phenotype. Most Ara(R) suppressors map to secA, as determined by sequencing 21 independent alleles. Mutations occur throughout the gene, including both nucleotide binding domains (NBDI and NBDII) and the putative signal sequence binding domain (SSBD). Using malE and phoA signal sequence mutants, we showed that the vast majority of these secA suppressors exhibit weak Sec phenotypes. Eight of these secA mutations were further characterized in detail. Phenotypically, these eight suppressors can be divided into three groups, each localized to one domain of SecA. Most mutations allow near-normal levels of wild-type preprotein export, but they enhance the secretion defect conferred by signal sequence mutations. Interestingly, one group exerts a selective effect on the export of PAI2::AP when compared to that of AP. In conclusion, this novel class of secA mutations, selected as suppressors of a toxic signal sequence, differs from the classical secA (prlD) mutations, selected as suppressors of defective signal sequences, although both types of mutations affect signal sequence recognition.
Collapse
Affiliation(s)
- Karim Khatib
- Department of Pathology, University of Geneva, Switzerland
| | | |
Collapse
|
29
|
Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, Oliver DB, Deisenhofer J. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 2002; 297:2018-26. [PMID: 12242434 DOI: 10.1126/science.1074424] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The SecA adenosine triphosphatase (ATPase) mediates extrusion of the amino termini of secreted proteins from the eubacterial cytosol based on cycles of reversible binding to the SecYEG translocon. We have determined the crystal structure of SecA with and without magnesium-adenosine diphosphate bound to the high-affinity ATPase site at 3.0 and 2.7 angstrom resolution, respectively. Candidate sites for preprotein binding are located on a surface containing the SecA epitopes exposed to the periplasm upon binding to SecYEG and are thus positioned to deliver preprotein to SecYEG. Comparisons with structurally related ATPases, including superfamily I and II ATP-dependent helicases, suggest that the interaction geometry of the tandem motor domains in SecA is modulated by nucleotide binding, which is shown by fluorescence anisotropy experiments to reverse an endothermic domain-dissociation reaction hypothesized to gate binding to SecYEG.
Collapse
Affiliation(s)
- John F Hunt
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Or E, Navon A, Rapoport T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J 2002; 21:4470-9. [PMID: 12198149 PMCID: PMC126201 DOI: 10.1093/emboj/cdf471] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ATPase SecA mediates post-translational translocation of precursor proteins through the SecYEG channel of the bacterial inner membrane. We show that SecA, up to now considered to be a stable dimer, is actually in equilibrium with a small fraction of monomers. In the presence of membranes containing acidic phospholipids or in certain detergents, SecA completely dissociates into monomers. A synthetic signal peptide also affects dissociation into monomers. In addition, conversion into the monomeric state can be achieved by mutating a small number of residues in a dimeric and fully functional SecA fragment. This monomeric SecA fragment still maintains strong binding to SecYEG in the membrane as well as significant in vitro translocation activity. Together, the data suggest that the SecA dimer dissociates during protein translocation. Since SecA contains all characteristic motifs of a certain class of monomeric helicases, and since mutations in residues shared with the helicases abolish its translocation activity, SecA may function in a similar manner.
Collapse
Affiliation(s)
| | | | - Tom Rapoport
- Department of Cell Biology, Harvard Medical School, HHMI, Boston, MA 02115, USA
Corresponding author e-mail:
| |
Collapse
|
31
|
Baud C, Karamanou S, Sianidis G, Vrontou E, Politou AS, Economou A. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J Biol Chem 2002; 277:13724-31. [PMID: 11825907 DOI: 10.1074/jbc.m200047200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, the preprotein translocase ATPase is built of an amino-terminal DEAD helicase motor domain bound to a regulatory C-domain. SecA recognizes mature and signal peptide preprotein regions. We now demonstrate that the amino-terminal 263 residues of the ATPase subdomain of the DEAD motor are necessary and sufficient for high affinity signal peptide binding. Binding is abrogated by deletion of residues 219-244 that lie within SSD, a novel substrate specificity element of the ATPase subdomain. SSD is essential for protein translocation, is unique to SecA, and is absent from other DEAD proteins. Signal peptide binding to the DEAD motor is controlled in trans by the C-terminal intramolecular regulator of ATPase (IRA1) switch. IRA1 mutations that activate the DEAD motor ATPase also enhance signal peptide affinity. This mechanism coordinates signal peptide binding with ATPase activation. Signal peptide binding causes widespread conformational changes to the ATPase subdomain and inhibits the DEAD motor ATPase. This involves an allosteric mechanism, since binding occurs at sites that are distinct from the catalytic ATPase determinants. Our data reveal the physical determinants and sophisticated intramolecular regulation that allow signal peptides to act as allosteric effectors of the SecA motor.
Collapse
Affiliation(s)
- Catherine Baud
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Department of Biology, University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | |
Collapse
|
32
|
Dempsey BR, Economou A, Dunn SD, Shilton BH. The ATPase domain of SecA can form a tetramer in solution. J Mol Biol 2002; 315:831-43. [PMID: 11812151 DOI: 10.1006/jmbi.2001.5279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preprotein translocase is a general and essential system for bacterial protein export, the minimal components of which are SecA and SecYEG. SecA is a peripheral ATPase that associates with nucleotide, preprotein, and the membrane integral SecYEG to form a translocation-competent complex. SecA can be separated into two domains: an N-terminal 68 kDa ATPase domain (N68) that binds preprotein and catalyzes ATP hydrolysis, and a 34 kDa C-terminal domain that regulates the ATPase activity of N68 and mediates dimerization. We have carried out gel filtration chromatography, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) to demonstrate that isolated N68 self-associates to form a tetramer in solution, indicating that removal of the C-terminal domain facilitates the formation of a higher-order SecA structure. The associative process is best modelled as a monomer-tetramer equilibrium, with a K(D) value of 63 microM(3) (where K(D)=[monomer](4)/[tetramer]) so that at moderate concentrations (10 microM and above), the tetramer is the major species in solution. Hydrodynamic properties of the N68 monomer indicate that it is almost globular in shape, but the N68 tetramer has a more ellipsoidal structure. Analysis of SAXS data indicates that the N68 tetramer is a flattened, bi-lobed structure with dimensions of approximately 13.5 nm x 9.0 nm x 6.5 nm, that appears to contain a central pore.
Collapse
Affiliation(s)
- Brian R Dempsey
- Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|