1
|
Isola M, Maxia C, Murtas D, Ekström J, Isola R, Loy F. Prostate-specific antigen: An unfamiliar protein in the human salivary glands. J Anat 2024; 244:873-881. [PMID: 38111134 PMCID: PMC11021670 DOI: 10.1111/joa.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVES The presence of prostate-specific antigen (PSA) in saliva and salivary glands has been reported. Nevertheless, its release pathway in these glands remains to be elucidated. Here, we showed PSA subcellular distribution focusing on its plausible route in human salivary parenchyma. MATERIALS AND METHODS Sections of parotid and submandibular glands were subjected to the immunohistochemical demonstration of PSA by the streptavidin-biotin method revealed by alkaline phosphatase. Moreover, ultrathin sections were collected on nickel grids and processed for immunocytochemical analysis, to visualize the intracellular distribution pattern of PSA through the observation by transmission electron microscopy. RESULTS By immunohistochemistry, in both parotid and submandibular glands PSA expression was detected in serous secretory acini and striated ducts. By immunocytochemistry, immunoreactivity was retrieved in the cytoplasmic compartment of acinar and ductal cells, often associated with small cytoplasmic vesicles. PSA labeling appeared also on rough endoplasmic reticulum and in the acini's lumen. A negligible PSA labeling appeared in most of the secretory granules of both glands. CONCLUSIONS Our findings clearly support that human parotid and submandibular glands are involved in PSA secretion. Moreover, based on the immunoreactivity pattern, its release in oral cavity would probably occur by minor regulated secretory or constitutive-like secretory pathways.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Cristina Maxia
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Daniela Murtas
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Division of Pharmacology, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGöteborgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| |
Collapse
|
2
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
3
|
Priya Aarthy A, Sen S, Srinivasan M, Muthukumar S, Madhanraj P, Akbarsha MA, Archunan G. Ectopic pregnancy: search for biomarker in salivary proteome. Sci Rep 2023; 13:16828. [PMID: 37803047 PMCID: PMC10558548 DOI: 10.1038/s41598-023-43791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ectopic pregnancy (EP) is associated with high maternal morbidity and mortality. Ultrasonography is the only dependable diagnostic tool for confirming an ectopic pregnancy. In view of inadequate early detection methods, women suffer from a high-life risk due to the severity of EP. Early detection of EP using pathological/molecular markers will possibly improve clinical diagnosis and patient management. Salivary proteins contain potential biomarkers for diagnosing and detecting various physiological and/or pathological conditions. Therefore, the present investigation was designed to explore the salivary proteome with special reference to EP. Gel-based protein separation was performed on saliva, followed by identification of proteins using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Totally, 326 proteins were identified in the salivary samples, among which 101 were found to be specific for ruptured ectopic pregnancy (EPR). Reactome analysis revealed innate immune system, neutrophil degranulation, cell surface interactions at the vascular wall, and FCERI-mediated NF-kB activation as the major pathways to which the salivary proteins identified during EPR are associated. Glutathione-S-transferase omega-1 (GSTO1) is specific for EPR and has been reported as a candidate biomarker in the serum of EPR patients. Therefore, saliva would be a potential source of diagnostic non-invasive protein biomarker(s) for EP. Intensive investigation on the salivary proteins specific to EP can potentially lead to setting up of a panel of candidate biomarkers and developing a non-invasive protein-based diagnostic kit.
Collapse
Affiliation(s)
- Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India.
- Department of Obstetrics and Gynecology, Saveetha Medical College and Hospital, Deemed University, Chennai, India.
| | - Sangeetha Sen
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India
| | - Mahalingam Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Subramanian Muthukumar
- Deparment of Biotechnology, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pakirisamy Madhanraj
- Department of Microbiology, Marudupandiyar College, Thanjavur, Tamil Nadu, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, India
- Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Marudupandiyar College, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
4
|
Fujita-Yoshigaki J, Yokoyama M, Katsumata-Kato O. Switching of cargo sorting from the constitutive to regulated secretory pathway by the addition of cystatin D sequence in salivary acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319:G74-G86. [PMID: 32538138 DOI: 10.1152/ajpgi.00103.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism for segregation of cargo proteins into the regulated and constitutive secretory pathways in exocrine cells remains to be elucidated. We examined the transport of HaloTag proteins fused with full-length cystatin D (fCst5-Halo) or only its signal peptide (ssCst5-Halo) in parotid acinar cells. Although both fusion proteins were observed to be colocalized with amylase in the secretory granules, the coefficients for overlapping and correlation of fCst5-Halo with amylase were higher than those of ssCst5-Halo. The secretion of both the proteins was enhanced by the addition of the β-adrenergic receptor agonist isoproterenol as well as endogenous amylase. In contrast, unstimulated secretion of ssCst5-Halo without isoproterenol was significantly higher than that of fCst5-Halo and amylase. Simulation analysis using a mathematical model revealed that a large proportion of ssCst5-Halo was secreted through the constitutive pathway, whereas fCst5-Halo was transported into the secretory granules more efficiently. Precipitation of fCst5-Halo from cell lysates was increased at a low pH, which may mimic the milieu of the trans-Golgi networks. These data suggest that the addition of a full-length sequence of cystatin D facilitates efficient selective transport into the regulated pathway by aggregation at low pH in the trans-Golgi network.NEW & NOTEWORTHY The mechanism underlying the segregation of cargo proteins to the regulated and constitutive secretory pathways in exocrine cells remains to be solved. We analyzed unstimulated secretion in salivary acinar cells by performing double-labeling experiments using HaloTag technology and computer simulation. It revealed that the majority of HaloTag with only signal peptide sequence was secreted through the constitutive pathway and that the addition of a full-length cystatin D sequence changed its sorting to the regulated pathway.
Collapse
Affiliation(s)
- Junko Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
5
|
Isola M, Ekström J, Isola R, Loy F. Melatonin release by exocytosis in the rat parotid gland. J Anat 2019; 234:338-345. [PMID: 30536666 PMCID: PMC6365479 DOI: 10.1111/joa.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
- Institute of Neuroscience and PhysiologyDepartment of PharmacologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| |
Collapse
|
6
|
Saibaba G, Rajesh D, Muthukumar S, Sathiyanarayanan G, Padmanabhan P, Akbarsha MA, Gulyás B, Archunan G. Proteomic analysis of human saliva: An approach to find the marker protein for ovulation. Reprod Biol 2016; 16:287-294. [DOI: 10.1016/j.repbio.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022]
|
7
|
Gluck C, Min S, Oyelakin A, Smalley K, Sinha S, Romano RA. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation. BMC Genomics 2016; 17:923. [PMID: 27852218 PMCID: PMC5112738 DOI: 10.1186/s12864-016-3228-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. Results To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Conclusions Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Sangwon Min
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Kirsten Smalley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
8
|
Elmongy H, Abdel-Rehim M. Saliva as an alternative specimen to plasma for drug bioanalysis: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Isola M, Lilliu MA. Melatonin localization in human salivary glands. J Oral Pathol Med 2015; 45:510-5. [PMID: 26694219 DOI: 10.1111/jop.12409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating melatonin is believed to reach body fluids by crossing passively the cell membranes, but alternative ways for melatonin transport also are hypothesized. This investigation was carried out to furnish ultrastructural evidences for melatonin transport by salivary gland cells in order to indicate plausible routes by which circulating melatonin can reach saliva. METHODS Bioptic samples of parotid, submandibular and labial glands were processed for the electron microscopy and treated to demonstrate melatonin reactivity by the immunogold staining method. RESULTS AND CONCLUSIONS The preferential sites of melatonin reactivity were the granules and vesicles of serous cells. Our results suggested that the acinar cells are able to store melatonin and that the hormone can be released into saliva through granule and vesicle exocytosis. The quantitative evaluation of labelling showed that the parotid gland is the most involved in the release of melatonin in saliva.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
10
|
Park S, Ahuja M, Kim MS, Brailoiu GC, Jha A, Zeng M, Baydyuk M, Wu LG, Wassif CA, Porter FD, Zerfas PM, Eckhaus MA, Brailoiu E, Shin DM, Muallem S. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 2015; 17:266-78. [PMID: 26682800 DOI: 10.15252/embr.201541542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Collapse
Affiliation(s)
- Soonhong Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Korea
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Mei Zeng
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Maryna Baydyuk
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christopher A Wassif
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
|
12
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
13
|
Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion. PLoS One 2015; 10:e0125596. [PMID: 25951179 PMCID: PMC4423933 DOI: 10.1371/journal.pone.0125596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/16/2015] [Indexed: 01/24/2023] Open
Abstract
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.
Collapse
|
14
|
Masedunskas A, Sramkova M, Weigert R. Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents. BIOARCHITECTURE 2014; 1:225-229. [PMID: 22754613 PMCID: PMC3384574 DOI: 10.4161/bioa.18405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In exocrine organs such as the salivary glands, fluids and proteins are secreted into ductal structures by distinct mechanisms that are tightly coupled. In the acinar cells, the major secretory units of the salivary glands, fluids are secreted into the acinar canaliculi through paracellular and intracellular transport, whereas proteins are stored in large granules that undergo exocytosis and fuse with the apical plasma membranes releasing their content into the canaliculi. Both secretory processes elicit a remodeling of the apical plasma membrane that has not been fully addressed in in vitro or ex vivo models. Recently, we have studied regulated exocytosis in the salivary glands of live rodents, focusing on the role that actin and myosin plays in this process. We observed that during exocytosis both secretory granules and canaliculi are subjected to the hydrostatic pressure generated by fluid secretion. Furthermore, the absorption of the membranes of the secretory granules contributes to the expansion and deformation of the canaliculi. Here we suggest that the homeostasis of the apical plasma membranes during exocytosis is maintained by various strategies that include: (1) membrane retrieval via compensatory endocytosis, (2) increase of the surface area via membrane folds and (3) recruitment of a functional actomyosin complex. Our observations underscore the important relationship between tissue architecture and cellular response, and highlight the potential of investigating biological processes in vivo by using intravital microscopy.
Collapse
|
15
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
16
|
Amado F, Lobo MJC, Domingues P, Duarte JA, Vitorino R. Salivary peptidomics. Expert Rev Proteomics 2014; 7:709-21. [DOI: 10.1586/epr.10.48] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Messenger SW, Thomas DDH, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G439-52. [PMID: 23868405 PMCID: PMC3761242 DOI: 10.1152/ajpgi.00143.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/31/2023]
Abstract
Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.
Collapse
Affiliation(s)
- Scott W Messenger
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706.
| | | | | | | | | | | |
Collapse
|
18
|
Isola M, Lantini MS, Solinas P, Diana M, Isola R, Loy F, Cossu M. Diabetes affects statherin expression in human labial glands. Oral Dis 2011; 17:685-9. [DOI: 10.1111/j.1601-0825.2011.01824.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Miozza V, Borda E, Sterin-Borda L, Busch L. Experimental periodontitis induces a cAMP-dependent increase in amylase activity in parotid glands from male rats. Inflammation 2010; 32:357-63. [PMID: 19669869 DOI: 10.1007/s10753-009-9142-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
It is known that subjects with periodontitis show enhanced amylase concentration in saliva. Our purpose was to analyze the release of amylase in parotid glands from rats with experimental periodontitis and controls. We present evidence that periodontitis induces an increase in resting amylase activity and release without changes in isoproterenol-induced amylase secretion. Changes in amylase were reverted by the inhibition of the adenylyl cyclase by SQ 22536, the cyclooxygenase type 1 by FR 122047 and by blocking the vasoactive intestinal peptide (VIP) receptor with VIP 6-28. Parotid glands from rats with periodontitis showed an increase in cAMP levels that was also reverted in the presence of SQ 22536, FR 122047 and VIP 6-28. We concluded that both PGE(2) and VIP are produced in parotid glands from rats with periodontitis and, by activating their own receptors in acinar cells, induce cAMP accumulation leading to an increase in amylase basal secretion.
Collapse
Affiliation(s)
- Valeria Miozza
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, Marcelo T de Alvear 2142 (1122AAH), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Isola M, Cossu M, Massa D, Casti A, Solinas P, Lantini MS. Electron microscopic immunogold localization of statherin in human minor salivary glands. J Anat 2010; 216:572-6. [PMID: 20345857 DOI: 10.1111/j.1469-7580.2010.01217.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study, which supplements a recent article on the localization of statherin in human major salivary glands, we investigated the intracellular distribution of this peptide in minor salivary glands by immunogold cytochemistry at the electron microscopy level. In the lingual serous glands of von Ebner, gold particles were found in serous granules of all secreting cells, indicating that statherin is released through granule exocytosis. In buccal and labial glands, mostly composed of mucous tubuli, statherin reactivity was detected in the serous element, which represents only a small population of the glandular parenchyma. In these serous cells, however, statherin labeling was absent in secretory granules and restricted to small cytoplasmic vesicles near or partially fused with granules. Vesicle labeling could be related to the occurrence of an alternative secretory pathway for statherin in buccal and labial glands.
Collapse
Affiliation(s)
- Michela Isola
- Department of Cytomorphology, University of Cagliari, Monserrato (CA), Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Nashida T, Yoshie S, Imai A, Shimomura H. Transferrin secretory pathways in rat parotid acinar cells. Arch Biochem Biophys 2009; 487:131-8. [DOI: 10.1016/j.abb.2009.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 11/16/2022]
|
22
|
Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 2009; 8:1304-14. [PMID: 19199708 PMCID: PMC2693447 DOI: 10.1021/pr800658c] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human ductal saliva contributes over a thousand unique proteins to whole oral fluids. The mechanism by which most of these proteins are secreted by salivary glands remains to be determined. The present study used a mass spectrometry-based, shotgun proteomics approach to explore the possibility that a subset of the proteins found in saliva are derived from exosomes, membrane-bound vesicles of endosomal origin within multivesicular endosomes. Using MudPIT (multidimensional protein identification technology) mass spectrometry, we catalogued 491 proteins in the exosome fraction of human parotid saliva. Many of these proteins were previously observed in ductal saliva from parotid glands (265 proteins). Furthermore, 72 of the proteins in parotid exosomes overlap with those previously identified as urinary exosome proteins, proteins which are also frequently associated with exosomes from other tissues and cell types. Gene Ontology (GO) and KEGG pathway analyses found that cytosolic proteins comprise the largest category of proteins in parotid exosomes (43%), involved in such processes as phosphatidylinositol signaling system, calcium signaling pathway, inositol metabolism, protein export, and signal transduction, among others; whereas the integral plasma membrane proteins and associated/peripheral plasma membrane proteins (26%) were associated with extracellular matrix-receptor interaction, epithelial cell signaling, T-cell and B-cell receptor signaling, cytokine receptor interaction, and antigen processing and presentation, among other biological functions. In addition, these putative saliva exosomal proteins were linked to specific diseases (e.g., neurodegenerative disorders, prion disease, cancers, type I and II diabetes). Consequently, parotid glands secrete exosomes that reflect the metabolic and functional status of the gland and may also carry informative protein markers useful in the diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- Mireya Gonzalez-Begne
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - Bingwen Lu
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| | - Fred K. Hagen
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - Arthur R. Hand
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - James E. Melvin
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
| | - John R. Yates
- Center for Oral Biology, University of Rochester Medical Center; Rochester, New York 14642
- Department of Chemical Physiology, The Scripps Research Institute; 10550 North Torrey Pines Road, SR-11, La Jolla, CA 92037
| |
Collapse
|
23
|
Samuni Y, Cawley NX, Zheng C, Cotrim AP, Loh YP, Baum BJ. Sorting behavior of a transgenic erythropoietin-growth hormone fusion protein in murine salivary glands. Hum Gene Ther 2008; 19:279-86. [PMID: 18303958 DOI: 10.1089/hum.2007.0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salivary glands are useful gene transfer target sites for the production of therapeutic proteins, and can secrete proteins into both saliva and the bloodstream. The mechanisms involved in this differential protein sorting are not well understood, although it is believed, at least in part, to be based on the amino acid sequence of the encoded protein. We hypothesized that a transgenic protein, human erythropoietin (hEpo), normally sorted from murine salivary glands into the bloodstream, could be redirected into saliva by fusing it with human growth hormone (hGH). After transfection, the hEpo-hGH fusion protein was expressed and glycosylated in both HEK 293 and A5 cells. When packaged in an adenovirus serotype 5 vector and delivered to murine submandibular cells in vivo via retroductal cannulation, the hEpo-hGH fusion protein was also expressed, albeit at approximately 26% of the levels of hEpo expression. Importantly, in multiple experiments with different cohorts of mice, the hEpo-hGH fusion protein was sorted more frequently into saliva, versus the bloodstream, than was the hEpo protein (p < 0.001). These studies show it is possible to redirect the secretion of a transgenic constitutive pathway protein from salivary gland cells after gene transfer in vivo, a finding that may facilitate developing novel treatments for certain upper gastrointestinal tract disorders.
Collapse
Affiliation(s)
- Yuval Samuni
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
24
|
Saegusa C, Kanno E, Itohara S, Fukuda M. Expression of Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in amylase secretion. Arch Biochem Biophys 2008; 475:87-92. [PMID: 18477466 DOI: 10.1016/j.abb.2008.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/18/2008] [Indexed: 12/16/2022]
Abstract
Slp1 is a putative Rab27 effector protein and implicated in intracellular membrane transport; however, the precise tissue distribution and function of Slp1 protein remain largely unknown. In this study we investigated the tissue distribution of Slp1 in mice and found that Slp1 is abundantly expressed in the pancreas, especially in the apical region of pancreatic acinar cells. Slp1 interacted with Rab27B in vivo and both proteins were co-localized on zymogen granules. Morphological analysis of fasted Slp1 knockout mice showed an increased number of zymogen granules in the pancreatic acinar cells, indicating that Slp1 is part of the machinery of amylase secretion by the exocrine pancreas.
Collapse
Affiliation(s)
- Chika Saegusa
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
25
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
26
|
Unstimulated amylase secretion is proteoglycan-dependent in rat parotid acinar cells. Arch Biochem Biophys 2008; 469:165-73. [DOI: 10.1016/j.abb.2007.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/09/2007] [Accepted: 10/13/2007] [Indexed: 11/22/2022]
|
27
|
Carpenter GH, Osailan SM, Correia P, Paterson KP, Proctor GB. Rat salivary gland ligation causes reversible secretory hypofunction. Acta Physiol (Oxf) 2007; 189:241-9. [PMID: 17305704 PMCID: PMC1859985 DOI: 10.1111/j.1365-201x.2006.01662.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To determine the influence of inflammation on salivary secretion. Secretion by salivary glands involves interactions between nerves, blood vessels and salivary cells. The present study investigated the effects of inflammation on rat submandibular gland function following acute ductal obstruction. METHODS Under recovery anaesthesia a metal clip was placed on the main duct of the submandibular gland. After 24 h salivary secretion was evoked by nerve and methacholine stimulation. For recovery experiments the clip was removed after 24 h and the animal left to recover for 3 days when salivary function was again assessed. RESULTS By 24 h of obstruction an inflammatory infiltrate had developed within the obstructed gland and stimulated salivary flows were just 20% of the normal secretion, whilst protein secretion and ion reabsorption were also severely impaired. If ductal obstruction was removed after 24 h the salivary function returned to normal after 3 days of recovery. In vitro analysis of cells from 24-h ligated glands revealed normal changes in intracellular calcium (the main secondary messenger involved in fluid secretion) in response to methacholine stimulation. Protein secretion from isolated cells indicated some changes in particular to methacholine-induced protein secretion although a significant protein secretion was still seen in response to isoprenaline - the main stimulus for protein secretion. CONCLUSION This report demonstrates reversible salivary inhibition associated with an inflammatory infiltrate within the salivary gland.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research Unit, Floor 17, Guy's Tower, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
28
|
D'Amico F, Skarmoutsou E. Immunolocalization of E-cadherin and alphaE-catenin in rat parotid acinar cell under chronic stimulation of isoproterenol. Arch Oral Biol 2006; 52:161-7. [PMID: 17045953 DOI: 10.1016/j.archoralbio.2006.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 02/07/2023]
Abstract
E-cadherin and alphaE-catenin were localized in normal and chronically isoproterenol-treated acinar cells of rat parotid gland by means of immunogold labelling of Lowicryl embedded sections. Immunostaining of both experimental groups with polyclonal antibodies to E-cadherin and alphaE-catenin was mainly restricted to the areas of adherens junctions. Surprisingly, in isoproterenol-treated cell alphaE-catenin was also found on the secretory granules periphery and appeared to encircle a secretory vesicle. In isoproterenol-induced cell hyperproliferation, the maintened presence of adherens junctions components, such as E-cadherin and alphaE-catenin molecules, should be an essential prerequisite for tissue integrity. Our data suggest the presence of a correlation between the organization of actin and the localization of alphaE-catenin in the chronically isoproterenol-treated acinar cell of rat parotid gland.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical Sciences, University of Catania, Catania, Italy.
| | | |
Collapse
|
29
|
McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 2006; 11:249-68. [PMID: 17136613 DOI: 10.1007/s10911-006-9031-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Milk is a complex fluid composed of proteins, sugars, lipids and minerals, in addition to a wide variety of bioactive molecules including vitamins, trace elements and growth factors. The composition of these components reflects the integrated activities of distinct synthetic, secretion and transport processes found in mammary epithelial cells, and mirrors the differing nutritional and developmental requirements of mammalian neonates. Five general pathways have been described for secretion of milk components. With the exception of lipids, which are secreted a unique pathway, milk components are thought to be secreted by adaptations of pathways found in other secretory organs. However little is known about the molecular and cellular mechanisms that constitute these pathways or the physiological mechanisms by which they are regulated. Comparisons of current secretion and transport models in the mammary gland, exocrine pancreas and salivary gland indicate that significant differences exist between the mammary gland and other exocrine organs in how proteins and lipids are packaged and secreted, and how fluid is transported.
Collapse
Affiliation(s)
- James L McManaman
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center at Fitzsimons, Mail Stop 8309, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
30
|
Fujita-Yoshigaki J, Katsumata O, Matsuki M, Yoshigaki T, Furuyama S, Sugiya H. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells. Biochem Biophys Res Commun 2006; 344:283-92. [PMID: 16630574 DOI: 10.1016/j.bbrc.2006.03.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteins was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.
Collapse
Affiliation(s)
- Junko Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
32
|
O'keefe SJD, Lee RB, Li J, Zhou W, Stoll B, Dang Q. Trypsin and splanchnic protein turnover during feeding and fasting in human subjects. Am J Physiol Gastrointest Liver Physiol 2006; 290:G213-21. [PMID: 16123201 DOI: 10.1152/ajpgi.00170.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Knowledge of the stimulatory effects of enteral and parenteral (intravenous) feeding on the synthesis and turnover of trypsin would help in the management of acute pancreatitis, because the disease is caused by the premature activation of trypsin. To investigate this, we labeled intravenous infusions with [1-(13)C]leucine and enterals with [(2)H]leucine and measured isotope enrichment of plasma, secreted trypsin, and duodenal mucosal proteins over 6 h by duodenal perfusion/aspiration and endoscopic biopsy. Thirty healthy volunteers were studied during fasting (n = 7), intravenous feeding (n = 6), or postpyloric enteral feeding [duodenal polymeric (n = 6), elemental duodenal (n = 6), and jejunal elemental (n = 5)]. All diets provided 1.5 g x kg(-1) x day(-1) protein and 40 kcal x kg(-1) x day(-1) energy. Results demonstrated that compared with fasting, enteral feeding increased the rate of appearance (71 +/- 4 vs. 91 +/- 5 min, P = 0.01) and secretion (546 +/- 80 vs. 219 +/- 37 U/h, P = 0.01) of newly labeled trypsin and expanded zymogen stores (1,660 +/- 237 vs. 749 +/- 133 units, P = 0.03). These differences persisted whether the feedings were polymeric or elemental, duodenal, or jejunal. In contrast, intravenous feeding had no effect on basal rates. Differential labeling of the plasma amino acid pool by enteral and intravenous isotope infusions suggested that 35% of absorbed amino acids were retained within the splanchnic bed during enteral feeding and that mucosal protein turnover increased from a fasting rate of 34 +/- 6 to 108 +/- 8%/day (P < 0.05) compared with no change after intravenous feeding. In conclusion, all common forms of enteral feeding stimulate the synthesis and secretion of pancreatic trypsin, and only parenteral nutrition avoids it.
Collapse
Affiliation(s)
- Stephen J D O'keefe
- Division of Gastroenterology, University of Pittsburgh Medical School, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y, Mizoguchi I, Takuma T. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 2005; 125:273-81. [PMID: 16195891 DOI: 10.1007/s00418-005-0068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 11/25/2022]
Abstract
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH-GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20 degrees C for 2 h and then released by warming up to 37 degrees C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH-GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.
Collapse
Affiliation(s)
- Yohei Oishi
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293 Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Grabner CP, Price SD, Lysakowski A, Fox AP. Mouse chromaffin cells have two populations of dense core vesicles. J Neurophysiol 2005; 94:2093-104. [PMID: 15944233 PMCID: PMC12058276 DOI: 10.1152/jn.00316.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The quantal hypothesis states that neurotransmitter is released in discrete packages, quanta, thought to represent the neurotransmitter content of individual vesicles. If true, then vesicle size should influence quantal size. Although chromaffin cells are generally thought to have a single population of secretory vesicles, our electron microscopy analysis suggested two populations as the size distribution was best described as the sum of two Gaussians. The average volume difference was fivefold. To test whether this difference in volume affected quantal size, neurotransmitter release from permeabilized cells exposed to 100 microM Ca2+ was measured with amperometry. Quantal content was bimodally distributed with both large and small events; the distribution of vesicle sizes predicted by amperometry was extremely similar to those measured with electron microscopy. In addition, each population of events exhibited distinct release kinetics. These results suggest that chromaffin cells have two populations of dense core vesicles (DCV) with unique secretory properties and which may represent two distinct synthetic pathways for DCV biogenesis or alternatively they may represent different stages of biosynthesis.
Collapse
Affiliation(s)
- Chad P Grabner
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, 947 E. 58 St., Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
35
|
O'Keefe SJD, Lee RB, Li J, Stevens S, Abou-Assi S, Zhou W. Trypsin secretion and turnover in patients with acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2005; 289:G181-7. [PMID: 15705659 DOI: 10.1152/ajpgi.00297.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies in humans have shown that pancreatic enzyme secretion is reduced during acute pancreatitis. It is not known, however, whether the reduction is due to impaired synthesis or disruption of the secretory pathway. The rate of secretion and turnover of trypsin was measured in 12 patients with acute pancreatitis of variable etiology and severity (median Ranson's score 2.5, range 0-5, 4 with severe necrotizing disease) and eight healthy volunteers by 4-h primed/continuous intravenous infusions of 1-(13)C-labeled l-leucine, and collection of pancreatic secretions by duodenal perfusion and sampling. Trypsin secretion was reduced from 476 +/- 73 to 153 +/- 60 U/h (means +/- SE, P = 0.005) in acute pancreatitis, with the greatest reductions being observed in patients with necrotizing disease (32 +/- 7 U/h, P = 0.003). The time for newly labeled trypsin to first appear in digestive juice was not, however, delayed in pancreatitis patients (87.2 +/- 11.1 vs. 94.7 +/- 4.9 min); on the contrary, there was an early appearance of newly labeled trypsin at 30 min in patients with severe necrotizing pancreatitis (P < 0.05). Calculated zymogen pool turnover was unchanged, but pool size was decreased (P = 0.01). Despite low rates of luminal secretion, trypsin continues to be synthesized in patients with acute pancreatitis. Our findings could be explained by post-Golgi leakage of enzymes from acinar cells or by loss of synthetic function in some cells with preservation in others.
Collapse
Affiliation(s)
- Stephen J D O'Keefe
- Division of Gastroenterology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Hereditary origin of a tumor helps toward early discovery of its mutated gene; for example, it supports the compilation of a DNA panel from index cases to identify that gene by finding mutations in it. The gene for a hereditary tumor may contribute also to common tumors. For some syndromes, such as hereditary paraganglioma, several genes can cause a similar syndrome. For other syndromes, such as multiple endocrine neoplasia 2, one gene supports variants of a syndrome. Onset usually begins earlier and in more locations with hereditary than sporadic tumors. Mono- or oligoclonal ("clonal") tumor usually implies a postnatal delay, albeit less delay than for sporadic tumor, to onset and potential for cancer. Hormone excess from a polyclonal tissue shows onset at birth and no benefit from subtotal ablation of the secreting organ. Genes can cause neoplasms through stepwise loss of function, gain of function, or combinations of these. Polyclonal hormonal excess reflects abnormal gene dosage or effect, such as activation or haploinsufficiency. Polyclonal hyperplasia can cause the main endpoint of clinical expression in some syndromes or can be a precursor to clonal progression in others. Gene discovery is usually the first step toward clarifying the molecule and pathway mutated in a syndrome. Most mutated pathways in hormone excess states are only partly understood. The bases for tissue specificity of hormone excess syndromes are usually uncertain. In a few syndromes, tissue selectivity arises from mutation in the open reading frame of a regulatory gene (CASR, TSHR) with selective expression driven by its promoter. Polyclonal excess of a hormone is usually from a defect in the sensor system for an extracellular ligand (e.g., calcium, glucose, TSH). The final connections of any of these polyclonal or clonal pathways to hormone secretion have not been identified. In many cases, monoclonal proliferation causes hormone excess, probably as a secondary consequence of accumulation of cells with coincidental hormone-secretory ability.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, Room 9C-101, 10 Center Drive, MSC 1802, Bethesda, MD 20892-1802, USA.
| | | |
Collapse
|
37
|
Aps JKM, Martens LC. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 2005; 150:119-31. [PMID: 15944052 DOI: 10.1016/j.forsciint.2004.10.026] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/10/2004] [Accepted: 10/10/2004] [Indexed: 11/21/2022]
Abstract
Although saliva or oral fluid "lacks the drama of blood, the sincerity of sweat and the emotional appeal of tears", quoting Mandel in 1990 [I.D. Mandel, The diagnostic uses of saliva, J. Oral Pathol. Med. 19 (1990) 119-125], it is now meeting the demand for inexpensive, non-invasive and easy-to-use diagnostic aids for oral and systemic diseases, drug monitoring and detection of illicit use of drugs of abuse, including alcohol. As the salivary secretion is a reflex response controlled by both parasympathetic and sympathetic secretomotor nerves, it can be influenced by several stimuli. Moreover, patients taking medication which influences either the central nervous system or the peripheral nervous system, or medication which mimic the latter as a side effect, will have an altered salivary composition and salivary volume. Patients suffering from certain systemic diseases may present the same salivary alterations. The circadian rhythm determines both the volume of saliva that will and can be secreted and the salivary electrolyte concentrations. Dietary influences and the patient's age also have an impact on composition and volume of saliva. The latter implies a wide variation in composition both inter- and intra-individually. Sampling must therefore be performed under standardized conditions. The greatest advantage, when compared to blood sample collection, is that saliva is readily accessible and collectible. Consequently, it can be used in clinically difficult situations, such as in children, handicapped and anxious patients, where blood sampling could be a difficult act to perform.
Collapse
Affiliation(s)
- Johan K M Aps
- UZG-P8- Department of Paediatric Dentistry and Centre for Special Care, PaeCaMed Research Unit, Ghent University, De Pintelaan 185, 9000 Gent, Belgium.
| | | |
Collapse
|
38
|
Gorr SU, Venkatesh S, Darling D. Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res 2005; 84:500-9. [PMID: 15914585 PMCID: PMC1939692 DOI: 10.1177/154405910508400604] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva plays an important role in digestion, host defense, and lubrication. The parotid gland contributes a variety of secretory proteins-including amylase, proline-rich proteins, and parotid secretory protein (PSP)-to these functions. The regulated secretion of salivary proteins ensures the availability of the correct mix of salivary proteins when needed. In addition, the major salivary glands are targets for gene therapy protocols aimed at targeting therapeutic proteins either to the oral cavity or to circulation. To be successful, such protocols must be based on a solid understanding of protein trafficking in salivary gland cells. In this paper, model systems available to study the secretion of salivary proteins are reviewed. Parotid secretory proteins are stored in large dense-core secretory granules that undergo stimulated secretion in response to extracellular stimulation. Secretory proteins that are not stored in large secretory granules are secreted by either the minor regulated secretory pathway, constitutive secretory pathways (apical or basolateral), or the constitutive-like secretory pathway. It is proposed that the maturing secretory granules act as a distribution center for secretory proteins in salivary acinar cells. Protein distribution or sorting is thought to involve their selective retention during secretory granule maturation. Unlike regulated secretory proteins in other cell types, salivary proteins do not exhibit calcium-induced aggregation. Instead, sulfated proteoglycans play a role in the storage of secretory proteins in parotid acinar cells. This work suggests that unique sorting and retention mechanisms are responsible for the distribution of secretory proteins to different secretory pathways from the maturing secretory granules in parotid acinar cells.
Collapse
Affiliation(s)
- S.-U. Gorr
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - S.G. Venkatesh
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - D.S. Darling
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
39
|
Abstract
Biogenesis of the regulated secretory pathway in the pancreatic beta-cell involves packaging of products, notably proinsulin, into immature secretory granules derived from the trans-Golgi network. Proinsulin is converted to insulin and C-peptide as granules mature. Secretory proteins not entering granules are conveyed by transport intermediates directly to the plasma membrane for constitutive secretion. One of the co-authors, Peter Arvan, has proposed that in addition, small vesicles bud from granules to traffic to the endosomal system. From there, some proteins are secreted by a (post-granular) constitutive-like pathway. He argues that retention in granules is facilitated by condensation, rendering soluble products (notably C-peptide and proinsulin) more available for constitutive-like secretion. Thus he argues that prohormone conversion is potentially important in secretory granule biogenesis. The other co-author, Philippe Halban, argues that the post-granular secretory pathway is not of physiological relevance in primary beta-cells, and contests the importance of proinsulin conversion for retention in granules. Both, however, agree that trafficking from granules to endosomes is important, purging granules of unwanted newly synthesized proteins and allowing their traffic to other destinations. In this Traffic Interchange, the two co-authors attempt to reconcile their differences, leading to a common vision of proinsulin trafficking in primary and transformed cells.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Metabolism, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
40
|
Bauer RA, Overlease RL, Lieber JL, Angleson JK. Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells. J Cell Sci 2004; 117:2193-202. [PMID: 15126621 DOI: 10.1242/jcs.01093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used fluorescence imaging of individual exocytic events in combination with immunogold electron microscopy and FM1-43 photoconversion to study the stimulus-dependent recycling of dense core vesicle content in isolated rat pituitary lactotrophs. Secretory stimulation with high external [K+] resulted in 100 exocytic sites per cell that were labeled by extracellular antibodies against the peptide hormone prolactin. Morphological analysis demonstrated that the prolactin was retained and internalized in intact dense cores. Vesicles containing non-secreted, internalized prolactin did not colocalize with DiI-LDL that had been chased into lysosomes but did transiently colocalize with internalized transferrin. The recycling vesicles also trafficked through a syntaxin 6-positive compartment but not the TGN38-positive trans-Golgi. Recycling vesicles, which returned to the cell surface in a slow basal manner, could also be stimulated to undergo exocytosis with a high release probability during subsequent exocytic stimulation with external K+. These studies suggest a functional role for recycling vesicles that retain prolactin.
Collapse
Affiliation(s)
- Roslyn A Bauer
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | | | | |
Collapse
|
41
|
Feng L, Arvan P. The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 2003; 278:31486-94. [PMID: 12796484 DOI: 10.1074/jbc.m305690200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.
Collapse
Affiliation(s)
- Lijun Feng
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
42
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
43
|
Arvan P, Zhang BY, Feng L, Liu M, Kuliawat R. Lumenal protein multimerization in the distal secretory pathway/secretory granules. Curr Opin Cell Biol 2002; 14:448-53. [PMID: 12383795 DOI: 10.1016/s0955-0674(02)00344-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Differences in protein solubility appear to play an important role in lumenal protein trafficking through Golgi/post-Golgi compartments. Recent advances indicate that multimeric protein assembly is one of the factors regulating the efficiency of protein storage within secretory granules, by mechanisms that, with slight modification, might be considered to represent the culmination of a process of Golgi cisternal maturation.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Endocrinology/Diabetes Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
44
|
Castle AM, Huang AY, Castle JD. The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J Cell Sci 2002; 115:2963-73. [PMID: 12082156 DOI: 10.1242/jcs.115.14.2963] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we reported that the minor regulated and constitutive-like pathways are the main source of resting secretion by parotid acinar cells. Using tissue lobules biosynthetically labeled with [35S]amino acids, we now show that discharge of the minor regulated pathway precedes granule exocytosis stimulated by isoproterenol (≥1 μM) or carbachol (2μM). Stimulation of the minor regulated pathway by 40 nM carbachol as well as altering its trafficking, either by adding brefeldin A or by incubating in K+-free medium, cause potentiation of amylase secretion stimulated by isoproterenol, suggesting that the minor regulated pathway contributes to the mechanism of potentiation. Both exocytosis of the minor regulated pathway and the potentiation-inducing treatments induce relocation of immunostained subapical puncta of the SNARE protein syntaxin 3 into the apical plasma membrane. Rab11 and possibly VAMP2 may be concentrated in the same relocating foci. These results suggest that the minor regulated pathway and granule exocytosis are functionally linked and that the minor regulated pathway has a second role beyond contributing to resting secretion — providing surface docking/fusion sites for granule exocytosis. In the current model of salivary protein export, discharge of the minor regulated pathway by eitherβ-adrenergic or cholinergic stimulation is an obligatory first step. Ensuing granule exocytosis is controlled mainly by β-adrenergic stimulation whereas cholinergic stimulation mainly regulates the number of surface sites where release occurs.
Collapse
Affiliation(s)
- Anna M Castle
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville 22908-0732, USA
| | | | | |
Collapse
|