1
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
2
|
Williams-Jones DP, Webby MN, Press CE, Gradon JM, Armstrong SR, Szczepaniak J, Kleanthous C. Tunable force transduction through the Escherichia coli cell envelope. Proc Natl Acad Sci U S A 2023; 120:e2306707120. [PMID: 37972066 PMCID: PMC10666116 DOI: 10.1073/pnas.2306707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is not energised and so processes requiring a driving force must connect to energy-transduction systems in the inner membrane (IM). Tol (Tol-Pal) and Ton are related, proton motive force- (PMF-) coupled assemblies that stabilise the OM and import essential nutrients, respectively. Both rely on proton-harvesting IM motor (stator) complexes, which are homologues of the flagellar stator unit Mot, to transduce force to the OM through elongated IM force transducer proteins, TolA and TonB, respectively. How PMF-driven motors in the IM generate mechanical work at the OM via force transducers is unknown. Here, using cryoelectron microscopy, we report the 4.3Å structure of the Escherichia coli TolQR motor complex. The structure reaffirms the 5:2 stoichiometry seen in Ton and Mot and, with motor subunits related to each other by 10 to 16° rotation, supports rotary motion as the default for these complexes. We probed the mechanism of force transduction to the OM through in vivo assays of chimeric TolA/TonB proteins where sections of their structurally divergent, periplasm-spanning domains were swapped or replaced by an intrinsically disordered sequence. We find that TolA mutants exhibit a spectrum of force output, which is reflected in their respective abilities to both stabilise the OM and import cytotoxic colicins across the OM. Our studies demonstrate that structural rigidity of force transducer proteins, rather than any particular structural form, drives the efficient conversion of PMF-driven rotary motions of 5:2 motor complexes into physiologically relevant force at the OM.
Collapse
Affiliation(s)
| | - Melissa N. Webby
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Cara E. Press
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Jan M. Gradon
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sophie R. Armstrong
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Joanna Szczepaniak
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
3
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
4
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
5
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
6
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
Affiliation(s)
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
7
|
Ciragan A, Backlund SM, Mikula KM, Beyer HM, Samuli Ollila OH, Iwaï H. NMR Structure and Dynamics of TonB Investigated by Scar-Less Segmental Isotopic Labeling Using a Salt-Inducible Split Intein. Front Chem 2020; 8:136. [PMID: 32266203 PMCID: PMC7098700 DOI: 10.3389/fchem.2020.00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 11/22/2022] Open
Abstract
The growing understanding of partially unfolded proteins increasingly points to their biological relevance in allosteric regulation, complex formation, and protein design. However, the structural characterization of disordered proteins remains challenging. NMR methods can access both the dynamics and structures of such proteins, yet suffering from a high degeneracy of NMR signals. Here, we overcame this bottleneck utilizing a salt-inducible split intein to produce segmentally isotope-labeled samples with the native sequence, including the ligation junction. With this technique, we investigated the NMR structure and conformational dynamics of TonB from Helicobacter pylori in the presence of a proline-rich low complexity region. Spin relaxation experiments suggest that the several nano-second time scale dynamics of the C-terminal domain (CTD) is almost independent of the faster pico-to-nanosecond dynamics of the low complexity central region (LCCR). Our results demonstrate the utility of segmental isotopic labeling for proteins with heterogenous dynamics such as TonB and could advance NMR studies of other partially unfolded proteins.
Collapse
Affiliation(s)
- Annika Ciragan
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sofia M Backlund
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kornelia M Mikula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Oeemig JS, Ollila OS, Iwaï H. NMR structure of the C-terminal domain of TonB protein from Pseudomonas aeruginosa. PeerJ 2018; 6:e5412. [PMID: 30186676 PMCID: PMC6118199 DOI: 10.7717/peerj.5412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.
Collapse
Affiliation(s)
- Jesper S. Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- VIB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel, Brussels, Belgium
| | - O.H. Samuli Ollila
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Maki-Yonekura S, Matsuoka R, Yamashita Y, Shimizu H, Tanaka M, Iwabuki F, Yonekura K. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 2018; 7:35419. [PMID: 29661272 PMCID: PMC5903867 DOI: 10.7554/elife.35419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. Many biological processes that are essential for life are powered by the flow of ions across the membranes of cells. Similar to how energy is stored in the water behind a dam, energy is also stored when the concentration of ions on one side of a biological membrane is higher than it is on the other. When these ions then flow down this concentration gradient, the energy can be harnessed to power other processes. In many bacteria, the concentration of hydrogen ions, or protons, is higher on the outside of the cell. When the protons flow down the concentration gradient, a protein complex called the Ton system in the bacteria’s inner membrane harnesses the energy to transport various compounds, including essential nutrients, across the outer membrane, which is about 20 nanometres away. Toxins, and viruses that infect bacteria, can also hijack the Ton system to gain entry into these cells. This means that the Ton system could perhaps be targeted via drugs to treat bacterial infections. Though the Ton system is important, structural information on this protein family is limited. The Ton complex is composed of three proteins – ExbB, ExbD and TonB – located in the bacteria’s inner membrane. ExbB and ExbD together form a channel for the protons and the complex made from these two proteins can be thought of as the system’s engine. Maki-Yonekura et al. wanted to understand how the ExbB / ExbD complex works, which was challenging because the complex was not well suited to any single structural biology technique. To get around this issue, a combination of two techniques called X-ray crystallography and single particle cryo-EM were used. This approached revealed that the two proteins form complexes made up of either five or six ExbB subunits with one or three ExbD subunits, respectively. It also showed that the proteins transition between the two forms in a cell’s membrane. More of the larger six-unit complex (also called a “hexamer”) formed at higher pH. This is consistent with the increased flow of protons through the channel when the local conditions inside the cell become less acidic. Based on these results, Maki-Yonekura et al. propose that some subunits in the core of the complex rotate to harness the energy from the flow of protons, and the number of subunits in the complex changes when it switches to become active or inactive. The discoveries may provide a new vision of dynamic membrane biology. Further studies are now needed to see how general this mechanism is in biology, and the new structural information could also be used to help develop more anti-bacterial drugs.
Collapse
Affiliation(s)
| | - Rei Matsuoka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Yoshiki Yamashita
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maiko Tanaka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Fumie Iwabuki
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| |
Collapse
|
11
|
Sikora A, Joseph B, Matson M, Staley JR, Cafiso DS. Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein. Biophys J 2017; 111:1908-1918. [PMID: 27806272 DOI: 10.1016/j.bpj.2016.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B12, substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport.
Collapse
Affiliation(s)
- Arthur Sikora
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Morgan Matson
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Jacob R Staley
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
12
|
Fluorescence High-Throughput Screening for Inhibitors of TonB Action. J Bacteriol 2017; 199:JB.00889-16. [PMID: 28242720 DOI: 10.1128/jb.00889-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria acquire ferric siderophores through TonB-dependent outer membrane transporters (TBDT). By fluorescence spectroscopic hgh-throughput screening (FLHTS), we identified inhibitors of TonB-dependent ferric enterobactin (FeEnt) uptake through Escherichia coli FepA (EcoFepA). Among 165 inhibitors found in a primary screen of 17,441 compounds, we evaluated 20 in secondary tests: TonB-dependent ferric siderophore uptake and colicin killing and proton motive force-dependent lactose transport. Six of 20 primary hits inhibited TonB-dependent activity in all tests. Comparison of their effects on [59Fe]Ent and [14C]lactose accumulation suggested several as proton ionophores, but two chemicals, ebselen and ST0082990, are likely not proton ionophores and may inhibit TonB-ExbBD. The facility of FLHTS against E. coli led us to adapt it to Acinetobacter baumannii We identified its FepA ortholog (AbaFepA), deleted and cloned its structural gene, genetically engineered 8 Cys substitutions in its surface loops, labeled them with fluorescein, and made fluorescence spectroscopic observations of FeEnt uptake in A. baumannii Several Cys substitutions in AbaFepA (S279C, T562C, and S665C) were readily fluoresceinated and then suitable as sensors of FeEnt transport. As in E. coli, the test monitored TonB-dependent FeEnt uptake by AbaFepA. In microtiter format with A. baumannii, FLHTS produced Z' factors 0.6 to 0.8. These data validated the FLHTS strategy against even distantly related Gram-negative bacterial pathogens. Overall, it discovered agents that block TonB-dependent transport and showed the potential to find compounds that act against Gram-negative CRE (carbapenem-resistant Enterobacteriaceae)/ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Our results suggest that hundreds of such chemicals may exist in larger compound libraries.IMPORTANCE Antibiotic resistance in Gram-negative bacteria has spurred efforts to find novel compounds against new targets. The CRE/ESKAPE pathogens are resistant bacteria that include Acinetobacter baumannii, a common cause of ventilator-associated pneumonia and sepsis. We performed fluorescence high-throughput screening (FLHTS) against Escherichia coli to find inhibitors of TonB-dependent iron transport, tested them against A. baumannii, and then adapted the FLHTS technology to allow direct screening against A. baumannii This methodology is expandable to other drug-resistant Gram-negative pathogens. Compounds that block TonB action may interfere with iron acquisition from eukaryotic hosts and thereby constitute bacteriostatic antibiotics that prevent microbial colonization of human and animals. The FLHTS method may identify both species-specific and broad-spectrum agents against Gram-negative bacteria.
Collapse
|
13
|
Lill Y, Jordan LD, Smallwood CR, Newton SM, Lill MA, Klebba PE, Ritchie K. Confined Mobility of TonB and FepA in Escherichia coli Membranes. PLoS One 2016; 11:e0160862. [PMID: 27935943 PMCID: PMC5147803 DOI: 10.1371/journal.pone.0160862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023] Open
Abstract
The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region 0.180−0.007+0.006 μm in radius in the outer membrane and TonB confined to a region 0.266−0.009+0.007 μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be 21−5+9 μm2/s and 5.4−0.8+1.5 μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins.
Collapse
Affiliation(s)
- Yoriko Lill
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Lorne D. Jordan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuck R. Smallwood
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Salete M. Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (PEK); (KR)
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (PEK); (KR)
| |
Collapse
|
14
|
Ciragan A, Aranko AS, Tascon I, Iwaï H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J Mol Biol 2016; 428:4573-4588. [PMID: 27720988 DOI: 10.1016/j.jmb.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling. Artificially split MCM2 intein derived from Halorhabdus utahensis remained highly soluble and was capable of protein trans-splicing with excellent ligation kinetics by reassembly under high salinity conditions. Importantly, the MCM2 intein has the active site residue of Ser at the +1 position, which remains in the ligated product, instead of Cys as found in many other efficient split inteins. Since Ser is more abundant than Cys in proteins, the novel split intein could widen the applications of segmental labeling in protein NMR spectroscopy and traceless protein ligation by exploiting a Ser residue in the native sequences as the +1 position of the MCM2 intein. The split halo-obligatory intein was successfully used to demonstrate the utility in NMR investigation of intact proteins by producing segmentally isotope-labeled intact TonB protein from Helicobacter pylori.
Collapse
Affiliation(s)
- Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Igor Tascon
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland.
| |
Collapse
|
15
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
16
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
17
|
Guerrero F, Ciragan A, Iwaï H. Tandem SUMO fusion vectors for improving soluble protein expression and purification. Protein Expr Purif 2015; 116:42-9. [PMID: 26297996 DOI: 10.1016/j.pep.2015.08.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Abstract
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin.
Collapse
Affiliation(s)
- Fernando Guerrero
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| |
Collapse
|
18
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
19
|
Dimov S, Ivanova P, Harizanova N, Ivanova I. Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. Proc Natl Acad Sci U S A 2013; 110:11553-8. [PMID: 23798405 DOI: 10.1073/pnas.1304243110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.
Collapse
|
21
|
Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex. Biochemistry 2013; 52:2638-48. [PMID: 23517233 DOI: 10.1021/bi3016108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In this study, a soluble construct of Escherichia coli TonB (residues 33-239) was used to determine the affinity of TonB for outer membrane transporters BtuB, FecA, and FhuA. Using fluorescence anisotropy, TonB(33-239) was found to bind with high affinity (tens of nanomolar) to both BtuB and FhuA; however, no high-affinity binding to FecA was observed. In BtuB, the high-affinity binding of TonB(33-239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33-239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33-239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When the TonB(33-239) dimer is bound to the outer membrane transporter, DEER shows that the TonB(33-239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle.
Collapse
Affiliation(s)
- Daniel M Freed
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | | | | | | | |
Collapse
|
22
|
Energetics of colicin import revealed by genetic cross-complementation between the Tol and Ton systems. Biochem Soc Trans 2012; 40:1480-5. [DOI: 10.1042/bst20120181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are bacterial toxins that parasitize OM (outer membrane) receptors to bind to the target cells, use an import system to translocate through the cell envelope and then kill sensitive cells. Colicins classified as group A (colicins A, E1–E9, K and N) use the Tol system (TolA, TolB, TolQ and TolR), whereas group B colicins (colicins B, D, Ia, M and 5) use the ExbB–ExbD–TonB system. Genetic evidence has suggested that TolQ and ExbB, as well as TolR and ExbD, are interchangeable, whereas this is not possible with TolA and TonB. Early reports indicated that group B colicin uptake requires energy input, whereas no energy was necessary for the uptake of the pore-forming colicin A. Furthermore, energy is required to dissociate the complex formed with colicin E9 and its cognate immunity protein during the import process. In the present paper, we detail the functional phenotypes and colicin-sensitivity results obtained in tolQ and exbB mutants and cross-complementation data of amino acid substitutions that lie within ExbB or TolQ TMHs (transmembrane helices). We also discuss on a specific phenotype that corresponds to group A colicin-sensitivity associated with a non-functional Tol system.
Collapse
|
23
|
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J Bacteriol 2012; 194:3078-87. [PMID: 22493017 DOI: 10.1128/jb.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.
Collapse
|
24
|
Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2011; 14:1655-70. [DOI: 10.1111/j.1462-2920.2011.02619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Abstract
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.
Collapse
Affiliation(s)
- Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Abstract
The TonB system energizes transport of nutrients across the outer membrane of Escherichia coli using cytoplasmic membrane proton motive force (PMF) for energy. Integral cytoplasmic membrane proteins ExbB and ExbD appear to harvest PMF and transduce it to TonB. The carboxy terminus of TonB then physically interacts with outer membrane transporters to allow translocation of ligands into the periplasmic space. The structure of the TonB carboxy terminus (residues ~150 to 239) has been solved several times with similar results. Our previous results hinted that in vitro structures might not mimic the dimeric conformations that characterize TonB in vivo. To test structural predictions and to identify irreplaceable residues, the entire carboxy terminus of TonB was scanned with Cys substitutions. TonB I232C and N233C, predicted to efficiently form disulfide-linked dimers in the crystal structures, did not do so. In contrast, Cys substitutions positioned at large distances from one another in the crystal structures efficiently formed dimers. Cys scanning identified seven functionally important residues. However, no single residue was irreplaceable. The phenotypes conferred by changes of the seven residues depended on both the specific assay used and the residue substituted. All seven residues were synergistic with one another. The buried nature of the residues in the structures was also inconsistent with these properties. Taken together, these results indicate that the solved dimeric crystal structures of TonB do not exist. The most likely explanation for the aberrant structures is that they were obtained in the absence of the TonB transmembrane domain, ExbB, ExbD, and/or the PMF. The TonB system of Gram-negative bacteria is an attractive target for development of novel antibiotics because of its importance in iron acquisition and virulence. Logically, therefore, the structure of TonB must be accurately understood. TonB functions as a dimer in vivo, and two different but similar crystal structures of the dimeric carboxy-terminal ~90 amino acids gave rise to mechanistic models. Here we demonstrate that the crystal structures, and therefore the models based on them, are not biologically relevant. The idiosyncratic phenotypes conferred by substitutions at the only seven functionally important residues in the carboxy terminus suggest that similar to interaction of cytochromes P450 with numerous substrates, these residues allow TonB to differentially interact with different outer membrane transporters. Taken together, data suggest that TonB is maintained poised between order and disorder by ExbB, ExbD, and the proton motive force (PMF) before energy transduction to the outer membrane transporters.
Collapse
|
27
|
Köhler SD, Weber A, Howard SP, Welte W, Drescher M. The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria. Protein Sci 2010; 19:625-30. [PMID: 20095050 DOI: 10.1002/pro.345] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron-Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria.
Collapse
|
28
|
Newton SM, Trinh V, Pi H, Klebba PE. Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding. J Biol Chem 2010; 285:17488-97. [PMID: 20335169 PMCID: PMC2878513 DOI: 10.1074/jbc.m109.100206] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/23/2010] [Indexed: 11/06/2022] Open
Abstract
When Gram-negative bacteria acquire iron, the metal crosses both the outer membrane (OM) and the inner membrane, but existing radioisotopic uptake assays only measure its passage through the latter bilayer, as the accumulation of the radionuclide in the cytoplasm. We devised a methodology that exclusively observes OM transport and used it to study the uptake of ferric enterobactin (FeEnt) by Escherichia coli FepA. This technique, called postuptake binding, revealed previously unknown aspects of TonB-dependent transport reactions. The experiments showed, for the first time, that despite the discrepancy in cell envelope concentrations of FepA and TonB ( approximately 35:1), all FepA proteins were active and equivalent in FeEnt uptake, with a maximum turnover number of approximately 5/min. FepA-mediated transport of FeEnt progressed through three distinct phases with successively decreasing rates, and from its temperature dependence, the activation energy of the OM stage was 33-35 kcal/mol. The accumulation of FeEnt in the periplasm required the binding protein and inner membrane permease components of its overall transport system; postuptake binding assays on strains devoid of FepB, FepD, or FepG did not show uptake of FeEnt through the OM. However, fluorescence labeling data implied that FepA was active in the DeltafepB strain, suggesting that FeEnt entered the periplasm but then leaked out. Further experiments confirmed this futile cycle; cells without FepB transported FeEnt across the OM, but it immediately escaped through TolC.
Collapse
Affiliation(s)
- Salete M. Newton
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Vy Trinh
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Hualiang Pi
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Phillip E. Klebba
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
29
|
James KJ, Hancock MA, Gagnon JN, Coulton JW. TonB Interacts with BtuF, the Escherichia coli Periplasmic Binding Protein for Cyanocobalamin. Biochemistry 2009; 48:9212-20. [DOI: 10.1021/bi900722p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Ollis AA, Manning M, Held KG, Postle K. Cytoplasmic membrane protonmotive force energizes periplasmic interactions between ExbD and TonB. Mol Microbiol 2009; 73:466-81. [PMID: 19627500 DOI: 10.1111/j.1365-2958.2009.06785.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The TonB system of Escherichia coli (TonB/ExbB/ExbD) transduces the protonmotive force (pmf) of the cytoplasmic membrane to drive active transport by high-affinity outer membrane transporters. In this study, chromosomally encoded ExbD formed formaldehyde-linked complexes with TonB, ExbB and itself (homodimers) in vivo. Pmf was required for detectable cross-linking between TonB-ExbD periplasmic domains. Consistent with that observation, the presence of inactivating transmembrane domain mutations ExbD(D25N) or TonB(H20A) also prevented efficient formaldehyde cross-linking between ExbD and TonB. A specific site of periplasmic interaction occurred between ExbD(A92C) and TonB(A150C) and required functional transmembrane domains in both proteins. Conversely, neither TonB, ExbB nor pmf were required for ExbD dimer formation. These data suggest two possible models where either dynamic complex formation occurred through transmembrane domains or the transmembrane domains of ExbD and TonB configure their respective periplasmic domains. Analysis of T7-tagged ExbD with anti-ExbD antibodies revealed that a T7 tag was responsible both for our previous failure to detect T7-ExbD-ExbB and T7-ExbD-TonB formaldehyde-linked complexes and for the concomitant artefactual appearance of T7-ExbD trimers.
Collapse
Affiliation(s)
- Anne A Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
31
|
Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum. Biochem J 2009; 418:49-59. [PMID: 18973471 DOI: 10.1042/bj20081462] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121-206) has an alphabetabetaalphabeta structure, whereas residues 76-120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the beta4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 A (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the beta4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins.
Collapse
|
32
|
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2008; 481:1-15. [PMID: 18977196 DOI: 10.1016/j.abb.2008.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Efficient iron acquisition is critical for an invading microbe's survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, 285 Old Westport Road, Dartmouth, MA 02747-2300, USA
| | | |
Collapse
|
33
|
Abstract
The multiprotein TonB system of Escherichia coli involves proteins in both the cytoplasmic membrane and the outer membrane. By a still unclear mechanism, the proton-motive force of the cytoplasmic membrane is used to catalyze active transport through high-affinity transporters in the outer membrane. TonB, ExbB, and ExbD are required to transduce the cytoplasmic membrane energy to these transporters. For E. coli, transport ligands consist of iron-siderophore complexes, vitamin B(12), group B colicins, and bacteriophages T1 and ø80. Our experimental philosophy is that data gathered in vivo, where all known and unknown components are present at balanced chromosomal levels in the whole cell, can be interpreted with less ambiguity than when a subset of components is overexpressed or analysed in vitro. This chapter describes in vivo assays for the TonB system and their application.
Collapse
Affiliation(s)
- Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
34
|
Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane. J Bacteriol 2008; 190:4001-16. [PMID: 18390658 DOI: 10.1128/jb.00135-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.
Collapse
|
35
|
Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein, HasB. J Mol Biol 2008; 378:840-51. [PMID: 18402979 DOI: 10.1016/j.jmb.2008.03.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 03/21/2008] [Indexed: 11/21/2022]
Abstract
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB. While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.
Collapse
|
36
|
Garcia-Herrero A, Peacock RS, Howard SP, Vogel HJ. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins. Mol Microbiol 2007; 66:872-89. [DOI: 10.1111/j.1365-2958.2007.05957.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
38
|
Gumbart J, Wiener MC, Tajkhorshid E. Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys J 2007; 93:496-504. [PMID: 17449669 PMCID: PMC1896255 DOI: 10.1529/biophysj.107.104158] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the uptake of scarce yet essential organometallic compounds, outer membrane transporters of Gram-negative bacteria work in concert with an energy-generating inner membrane complex, thus spanning the periplasmic space to drive active transport. Here, we examine the interaction of TonB, an inner membrane protein, with an outer membrane transporter based upon a recent crystal structure of a TonB-transporter complex to characterize two largely unknown steps of the transport cycle: how energy is transmitted from TonB to the transporter and how energy transduction initiates transport. Simulations of TonB in complex with BtuB reveal that force applied to TonB is transmitted to BtuB without disruption of the very small connection between the two, supporting a mechanical mode of coupling. Based on the results of different pulling simulations, we propose that the force transduction instigates a partial unfolding of the pore-occluding luminal domain of the transporter, a potential step in the transport cycle. Furthermore, analysis of the electrostatic potentials and salt bridge interactions between the two proteins during the simulations hints at involvement of electrostatic forces in long-range interaction and binding of TonB and BtuB.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
39
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 811] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Larsen RA, Deckert GE, Kastead KA, Devanathan S, Keller KL, Postle K. His(20) provides the sole functionally significant side chain in the essential TonB transmembrane domain. J Bacteriol 2007; 189:2825-33. [PMID: 17277053 PMCID: PMC1855822 DOI: 10.1128/jb.01925-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic membrane protein TonB couples the protonmotive force of the cytoplasmic membrane to active transport across the outer membrane of Escherichia coli. The uncleaved amino-terminal signal anchor transmembrane domain (TMD; residues 12 to 32) of TonB and the integral cytoplasmic membrane proteins ExbB and ExbD are essential to this process, with important interactions occurring among the several TMDs of all three proteins. Here, we show that, of all the residues in the TonB TMD, only His(20) is essential for TonB activity. When alanyl residues replaced all TMD residues except Ser(16) and His(20), the resultant "all-Ala Ser(16) His(20)" TMD TonB retained 90% of wild-type iron transport activity. Ser(16)Ala in the context of a wild-type TonB TMD was fully active. In contrast, His(20)Ala in the wild-type TMD was entirely inactive. In more mechanistically informative assays, the all-Ala Ser(16) His(20) TMD TonB unexpectedly failed to support formation of disulfide-linked dimers by TonB derivatives bearing Cys substitutions for the aromatic residues in the carboxy terminus. We hypothesize that, because ExbB/D apparently cannot efficiently down-regulate conformational changes at the TonB carboxy terminus through the all-Ala Ser(16) His(20) TMD, the TonB carboxy terminus might fold so rapidly that disulfide-linked dimers cannot be efficiently trapped. In formaldehyde cross-linking experiments, the all-Ala Ser(16) His(20) TMD also supported large numbers of apparently nonspecific contacts with unknown proteins. The all-Ala Ser(16) His(20) TMD TonB retained its dependence on ExbB/D. Together, these results suggest that a role for ExbB/D might be to control rapid and nonspecific folding that the unregulated TonB carboxy terminus otherwise undergoes. Such a model helps to reconcile the crystal/nuclear magnetic resonance structures of the TonB carboxy terminus with conformational changes and mutant phenotypes observed at the TonB carboxy terminus in vivo.
Collapse
Affiliation(s)
- Ray A Larsen
- Biochemistry and Molecular Biology, The Pennsylvania State University, 301 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
41
|
Postle K, Larsen RA. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 2007; 20:453-65. [PMID: 17225934 DOI: 10.1007/s10534-006-9071-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The TonB system of Escherichia coli (and most other Gram-negative bacteria) is distinguished by its importance to iron acquisition, its contribution to bacterial pathogenesis, and a unique and mysterious mechanism of action. This system somehow gathers the potential energy of the cytoplasmic membrane (CM) proton gradient and delivers it to active transporters in the outer membrane (OM). Our understanding of this system is confounded by the challenge of reconciling often contradictory in vivo and in vitro studies that are presented in this review.
Collapse
Affiliation(s)
- Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 301 Althouse Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
42
|
Chu BCH, Peacock RS, Vogel HJ. Bioinformatic analysis of the TonB protein family. Biometals 2007; 20:467-83. [PMID: 17225063 DOI: 10.1007/s10534-006-9049-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B(12) across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a approximately 290 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22-283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second alpha-helix and the third beta-strand of the antiparallel beta-sheet. The fourth beta-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins.
Collapse
Affiliation(s)
- Byron C H Chu
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | |
Collapse
|
43
|
Chakraborty R, Storey E, van der Helm D. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 2006; 20:263-74. [PMID: 17186377 DOI: 10.1007/s10534-006-9060-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Iron is an essential nutrient for all microorganisms with a few exceptions. Microorganisms use a variety of systems to acquire iron from the surrounding environment. One such system includes production of an organic molecule known as a siderophore by many bacteria and fungi. Siderophores have the capacity to specifically chelate ferric ions. The ferricsiderophore complex is then transported into the cell via a specific receptor protein located in the outer membrane. This is an energy dependent process and is the subject of investigation in many research laboratories. The crystal structures of three outer membrane ferricsiderophore receptor proteins FepA, FhuA and FecA from Escherichia coli and two FpvA and FptA from Pseudomonas aeruginosa have recently been solved. Four of them, FhuA, FecA, FpvA and FptA have been solved in ligand-bound forms, which gave insight into the residues involved in ligand binding. The structures are similar and show the presence of similar domains; for example, all of them consist of a 22 strand-beta-barrel formed by approximately 600 C-terminal residues while approximately 150 N-terminal residues fold inside the barrel to form a plug domain. The plug domain obstructs the passage through the barrel; therefore our research focuses on the mechanism through which the ferricsiderophore complex is transported across the receptor into the periplasm. There are two possibilities, one in which the plug domain is expelled into the periplasm making way for the ferricsiderophore complex and the second in which the plug domain undergoes structural rearrangement to form a channel through which the complex slides into the periplasm. Multiple alignment studies involving protein sequences of a large number of outer membrane receptor proteins that transport ferricsiderophores have identified several conserved residues. All of the conserved residues are located within the plug and barrel domain below the ligand binding site. We have substituted a number of these residues in FepA and FhuA with either alanine or glutamine resulting in substantial changes in the chemical properties of the residues. This was done to study the effect of the substitutions on the transport of ferricsiderophores. Another strategy used was to create a disulfide bond between the residues located on two adjacent beta-strands of the plug domain or between the residues of the plug domain and the beta-barrel in FhuA by substituting appropriate residues with cysteine. We have looked for the variants where the transport is affected without altering the binding. The data suggest a distinct role of these residues in the mechanism of transport. Our data also indicate that these transporters share a common mechanism of transport and that the plug remains within the barrel and possibly undergoes rearrangement to form a channel to transport the ferricsiderophore from the binding site to the periplasm.
Collapse
Affiliation(s)
- Ranjan Chakraborty
- Department of Health Sciences, College of Public and Allied Health, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
44
|
Carter DM, Miousse IR, Gagnon JN, Martinez E, Clements A, Lee J, Hancock MA, Gagnon H, Pawelek PD, Coulton JW. Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD. J Biol Chem 2006; 281:35413-24. [PMID: 16928679 DOI: 10.1074/jbc.m607611200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of approximately 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.
Collapse
Affiliation(s)
- David M Carter
- Department of Microbiology and Immunology, and Sheldon Biotechnology Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Adams H, Zeder-Lutz G, Schalk I, Pattus F, Celia H. Interaction of TonB with the outer membrane receptor FpvA of Pseudomonas aeruginosa. J Bacteriol 2006; 188:5752-61. [PMID: 16885443 PMCID: PMC1540090 DOI: 10.1128/jb.00435-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyoverdine-mediated iron uptake by the FpvA receptor in the outer membrane of Pseudomonas aeruginosa is dependent on the inner membrane protein TonB1. This energy transducer couples the proton-electrochemical potential of the inner membrane to the transport event. To shed more light upon this process, a recombinant TonB1 protein lacking the N-terminal inner membrane anchor (TonB(pp)) was constructed. This protein was, after expression in Escherichia coli, purified from the soluble fraction of lysed cells by means of an N-terminal hexahistidine or glutathione S-transferase (GST) tag. Purified GST-TonB(pp) was able to capture detergent-solubilized FpvA, regardless of the presence of pyoverdine or pyoverdine-Fe. Targeting of the TonB1 fragment to the periplasm of P. aeruginosa inhibited the transport of ferric pyoverdine by FpvA in vivo, indicating an interference with endogenous TonB1, presumably caused by competition for binding sites at the transporter or by formation of nonfunctional TonB heterodimers. Surface plasmon resonance experiments demonstrated that the FpvA-TonB(pp) interactions have apparent affinities in the micromolar range. The binding of pyoverdine or ferric pyoverdine to FpvA did not modulate this affinity. Apparently, the presence of either iron or pyoverdine is not essential for the formation of the FpvA-TonB complex in vitro.
Collapse
Affiliation(s)
- Hendrik Adams
- ESBS UMR7175, Récepteurs et Protéines Membranaires, Rue Sebastien Brant, BP 10413 F-67412 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Rudolph G, Hennecke H, Fischer HM. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 2006; 30:631-48. [PMID: 16774589 DOI: 10.1111/j.1574-6976.2006.00030.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Iron is critical for bacterial growth, but problems arise from the toxicity of excess iron; thus, iron uptake is subject to tight control. The most widely found and best-studied iron-responsive regulator in Gram-negative bacteria is the ferric uptake regulator Fur. In recent years, however, it has become apparent that iron regulation in rhizobia differs from that in many other bacteria. New regulators (RirA, Irr, Mur) were identified which appear to mediate functions that in other bacteria are accomplished by Fur. Even though some of them belong to the Fur family, they exhibit properties that clearly separate them from genuine Fur proteins. This article surveys the principal mechanisms of iron acquisition and uptake in rhizobia, and puts particular emphasis on recent findings on transcriptional regulators and their means to sense the cellular iron status and to regulate gene expression. In this context, we point out differences and similarities with regard to the operators, regulons and structure of the discussed iron regulatory proteins.
Collapse
Affiliation(s)
- Gesine Rudolph
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
47
|
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW. Structure of TonB in Complex with FhuA, E. coli Outer Membrane Receptor. Science 2006; 312:1399-402. [PMID: 16741125 DOI: 10.1126/science.1128057] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cytoplasmic membrane protein TonB spans the periplasm of the Gram-negative bacterial cell envelope, contacts cognate outer membrane receptors, and facilitates siderophore transport. The outer membrane receptor FhuA from Escherichia coli mediates TonB-dependent import of ferrichrome. We report the 3.3 angstrom resolution crystal structure of the TonB carboxyl-terminal domain in complex with FhuA. TonB contacts stabilize FhuA's amino-terminal residues, including those of the consensus Ton box sequence that form an interprotein beta sheet with TonB through strand exchange. The highly conserved TonB residue arginine-166 is oriented to form multiple contacts with the FhuA cork, the globular domain enclosed by the beta barrel.
Collapse
Affiliation(s)
- Peter D Pawelek
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Peacock RS, Andrushchenko VV, Demcoe AR, Gehmlich M, Lu LS, Herrero AG, Vogel HJ. Characterization of TonB Interactions with the FepA Cork Domain and FecA N-terminal Signaling Domain. Biometals 2006; 19:127-42. [PMID: 16718599 DOI: 10.1007/s10534-005-5420-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/23/2005] [Indexed: 10/24/2022]
Abstract
The mechanism of TonB dependent siderophore uptake through outer membrane transporters in Gram-negative bacteria is poorly understood. In an effort to expand our knowledge of the interaction between TonB and the outer membrane transporters, we have cloned and expressed the FepA cork domain (11-154) from Salmonella typhimurium and characterized its interaction with the periplasmic C-terminal domain of TonB (103-239) by isotope assisted FTIR and NMR spectroscopy. For comparison we also performed similar experiments using the FecA N-terminal domain (1-96) from Escherichia coli which includes the conserved TonB box. The FepA cork domain was completely unfolded in solution, as observed for the E. coli cork domain previously [Usher et al. (2001) Proc Natl Acad Sci USA 98, 10676-10681]. The FepA cork domain was found to bind to TonB, eliciting essentially the same chemical shift changes in TonB C-terminal domain as was observed in the presence of TonB box peptides. The FecA construct did not cause this same structural change in TonB. The binding of the FepA cork domain to TonB-CTD was found to decrease the amount of ordered secondary structure in TonB-CTD. It is likely that the FecA N-terminal domain interferes with TonB-CTD binding to the TonB box. Binding of the FepA cork domain induces a loss of secondary structure in TonB, possibly exposing TonB surface area for additional intermolecular interactions such as potential homodimerization or additional interactions with the barrel of the outer membrane transporter.
Collapse
Affiliation(s)
- R Sean Peacock
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Carter DM, Gagnon JN, Damlaj M, Mandava S, Makowski L, Rodi DJ, Pawelek PD, Coulton JW. Phage Display Reveals Multiple Contact Sites between FhuA, an Outer Membrane Receptor of Escherichia coli, and TonB. J Mol Biol 2006; 357:236-51. [PMID: 16414071 DOI: 10.1016/j.jmb.2005.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/06/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophysical studies established that TonB binds to FhuA through multiple regions of interaction. Panning of phage-displayed random peptide libraries (Ph.D.-12, Ph.D.-C7C) against TonB identified peptide sequences that specifically interact with TonB. Analyses of these sequences using the Receptor Ligand Contacts (RELIC) suite of programs revealed clusters of multiply aligned peptides that mapped to FhuA. These clusters localized to a continuous periplasm-accessible surface: Ton box/switch helix; cork domain/beta1 strand; and periplasmic turn 8. Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP). Purified FhuA peptides fused to MBP bound specifically to TonB by ELISA. Furthermore, they competed with ligand-loaded FhuA for binding to TonB. RELIC also identified clusters of multiply aligned peptides corresponding to the Ton box regions in BtuB, FepA, and FecA; to periplasmic turn 8 in BtuB and FecA; and to periplasmic turns 1 and 2 in FepA. These experimental outcomes identify specific molecular contacts made between TonB and OM receptors that extend beyond the well-characterized Ton box.
Collapse
Affiliation(s)
- David M Carter
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lerner-Ellis JP, Tirone JC, Pawelek PD, Doré C, Atkinson JL, Watkins D, Morel CF, Fujiwara TM, Moras E, Hosack AR, Dunbar GV, Antonicka H, Forgetta V, Dobson CM, Leclerc D, Gravel RA, Shoubridge EA, Coulton JW, Lepage P, Rommens JM, Morgan K, Rosenblatt DS. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet 2005; 38:93-100. [PMID: 16311595 DOI: 10.1038/ng1683] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/23/2005] [Indexed: 01/17/2023]
Abstract
Methylmalonic aciduria and homocystinuria, cblC type (OMIM 277400), is the most common inborn error of vitamin B(12) (cobalamin) metabolism, with about 250 known cases. Affected individuals have developmental, hematological, neurological, metabolic, ophthalmologic and dermatologic clinical findings. Although considered a disease of infancy or childhood, some individuals develop symptoms in adulthood. The cblC locus was mapped to chromosome region 1p by linkage analysis. We refined the chromosomal interval using homozygosity mapping and haplotype analyses and identified the MMACHC gene. In 204 individuals, 42 different mutations were identified, many consistent with a loss of function of the protein product. One mutation, 271dupA, accounted for 40% of all disease alleles. Transduction of wild-type MMACHC into immortalized cblC fibroblast cell lines corrected the cellular phenotype. Molecular modeling predicts that the C-terminal region of the gene product folds similarly to TonB, a bacterial protein involved in energy transduction for cobalamin uptake.
Collapse
|