1
|
Vaidya A, Jain S, Sahu S, Jain PK, Pathak K, Pathak D, Kumar R, Jain SK. Anticancer Agents Based on Vulnerable Components in a Signalling Pathway. Mini Rev Med Chem 2020; 20:886-907. [DOI: 10.2174/1389557520666200212105417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy
that are clinically beneficial, but are associated with drawbacks such as drug resistance and side
effects. In quest for better treatment, many new molecular targets have been introduced in the last few
decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents.
Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and
optimization of rational combination therapies. The write up describes the leading molecular mechanisms
for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR
signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic
leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase
(PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute
2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript
reviews the anticancer drugs currently under clinical trials.
Collapse
Affiliation(s)
- Ankur Vaidya
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Shweta Jain
- Sir MadanLal Institute of Pharmacy, Etawah (U.P.), India
| | - Sanjeev Sahu
- Department of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, India
| | - Pankaj Kumar Jain
- Community Medicine, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Kamla Pathak
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Devender Pathak
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Raj Kumar
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Sanjay Kumar Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| |
Collapse
|
2
|
Epigenetic Control of a Local Chromatin Landscape. Int J Mol Sci 2020; 21:ijms21030943. [PMID: 32023873 PMCID: PMC7038174 DOI: 10.3390/ijms21030943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Proper regulation of the chromatin landscape is essential for maintaining eukaryotic cell identity and diverse cellular processes. The importance of the epigenome comes, in part, from the ability to influence gene expression through patterns in DNA methylation, histone tail modification, and chromatin architecture. Decades of research have associated this process of chromatin regulation and gene expression with human diseased states. With the goal of understanding how chromatin dysregulation contributes to disease, as well as preventing or reversing this type of dysregulation, a multidisciplinary effort has been launched to control the epigenome. Chemicals that alter the epigenome have been used in labs and in clinics since the 1970s, but more recently there has been a shift in this effort towards manipulating the chromatin landscape in a locus-specific manner. This review will provide an overview of chromatin biology to set the stage for the type of control being discussed, evaluate the recent technological advances made in controlling specific regions of chromatin, and consider the translational applications of these works.
Collapse
|
3
|
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis. BMC DEVELOPMENTAL BIOLOGY 2017; 17:11. [PMID: 28716037 PMCID: PMC5513168 DOI: 10.1186/s12861-017-0154-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Background The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2′-deoxycytidine) and temperature was evaluated. Results Five paralog genes of dnmt3, namely dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1 and dnmt3bb.2 and one gene for dnmt1 were identified. Phylogenetic analysis revealed that the dnmt gene family was highly conserved in teleosts and three fish-specific genes, dnmt3aa, dnmt3ba and dnmt3bb.2 have evolved. The spatio-temporal expression patterns of four dnmts (dnmt1, dnmt3aa, dnmt3ab and dnmt3bb.1) were different in early larval stages although all of them reduced expression with the age and were detected in neural organs and dnmt3aa appeared specific to somites. In juveniles, the four dnmt genes were expressed in brain and hematopoietic tissues such as kidney, spleen and gills. Treatment of sole embryos with 5-aza-2′-deoxycytidine down-regulated dntm1 and up-regulated dntm3aa. Moreover, in lecithotrophic larval stages, dnmt3aa and dnmt3ab were temperature sensitive and their expression was higher in larvae incubated at 16 °C relative to 20 °C. Conclusion Five dnmt3 and one dnmt1 paralog were identified in sole and their distinct developmental and tissue-specific expression patterns indicate that they may have different roles during development. The inhibitor 5-aza-2′-deoxycytidine modified the transcript abundance of dntm1 and dntm3aa in embryos, which suggests that a regulatory feedback mechanism exists for these genes. The impact of thermal regime on expression levels of dnmt3aa and dnmt3ab in lecithotrophic larval stages suggests that these paralogs might be involved in thermal programing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Firmino
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.,Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Paula Armesto
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Marco A Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
4
|
Cheishvili D, Chik F, Li CC, Bhattacharya B, Suderman M, Arakelian A, Hallett M, Rabbani SA, Szyf M. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2'-deoxycytidine-triggered invasiveness. Carcinogenesis 2014; 35:2436-46. [PMID: 25178277 DOI: 10.1093/carcin/bgu181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-Aza-2'-deoxycytidine (5-azaCdR) not only inhibits growth of non-invasive breast cancer cells but also increases their invasiveness through induction of pro-metastatic genes. Methylated DNA binding protein 2 (MBD2) is involved in silencing methylated tumor suppressor genes as well as activation of pro-metastatic genes. In this study, we show that a combination of MBD2 depletion and DNA methyltransferases (DNMT) inhibition in breast cancer cells results in a combined effect in vitro and in vivo, enhancing tumor growth arrest on one hand, while inhibiting invasiveness triggered by 5-azaCdR on the other hand. The combined treatment of MBD2 depletion and 5-azaCdR suppresses and augments distinct gene networks that are induced by DNMT inhibition alone. These data point to a potential new approach in targeting the DNA methylation machinery by combination of MBD2 and DNMT inhibitors.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University and
| | - Flora Chik
- Department of Pharmacology and Therapeutics, McGill University and
| | - Chen Chen Li
- Department of Pharmacology and Therapeutics, McGill University and
| | - Bishnu Bhattacharya
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Ani Arakelian
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada,
| |
Collapse
|
5
|
Wu J, Xu Y, Mo D, Huang P, Sun R, Huang L, Pan S, Xu J. Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 promotes cell proliferation and migration by upregulating DNMT1 via STAT3 activation. PLoS One 2014; 9:e93478. [PMID: 24675762 PMCID: PMC3968168 DOI: 10.1371/journal.pone.0093478] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), the most common AIDS-related malignancy. KSHV vIL-6 promotes KS development, but the exact mechanisms remain unclear. Here, we reported that KSHV vIL-6 enhanced the expression of DNA methyltransferase 1 (DNMT1) in endothelial cells,increased the global genomic DNA methylation, and promoted cell proliferation and migration. And this effect could be blocked by the DNA methyltransferase inhibitor, 5-azadeoxycytidine. We also showed that vIL-6 induced up-regulation of DNMT1 was dependent on STAT3 activation. Therefore, the present study suggests that vIL-6 plays a role in KS tumorigenesis partly by activating DNMT1 and inducing aberrant DNA methylation, and it might be a potential target for KS therapy.
Collapse
Affiliation(s)
- Jing Wu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Yuqiao Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, Nanjing, China
- * E-mail: (JX); (SP)
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, Nanjing, China
- * E-mail: (JX); (SP)
| |
Collapse
|
6
|
Fagan RL, Wu M, Chédin F, Brenner C. An ultrasensitive high throughput screen for DNA methyltransferase 1-targeted molecular probes. PLoS One 2013; 8:e78752. [PMID: 24236046 PMCID: PMC3827244 DOI: 10.1371/journal.pone.0078752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2'-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, and covalent trapping and proteolysis of DNMT isozymes. Direct DNMT inhibitors are needed to refine understanding of the role of specific DNMT isozymes in cancer etiology and, potentially, to improve cancer prevention and treatment. Here, we developed a high throughput pipeline for identification of direct DNMT1 inhibitors. The components of this screen include an activated form of DNMT1, a restriction enzyme-coupled fluorigenic assay performed in 384 well plates with a z-factor of 0.66, a counter screen against the restriction enzyme, a screen to eliminate DNA intercalators, and a differential scanning fluorimetry assay to validate direct binders. Using the Microsource Spectrum collection of 2320 compounds, this screen identified nine compounds with dose responses ranging from 300 nM to 11 µM, representing at least two different pharmacophores with DNMT1 inhibitory activity. Seven of nine inhibitors identified exhibited two to four-fold selectivity for DNMT1 versus DNMT3A.
Collapse
Affiliation(s)
- Rebecca L. Fagan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRAS(G12V)) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.
Collapse
|
8
|
Fagan RL, Cryderman DE, Kopelovich L, Wallrath LL, Brenner C. Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 2013; 288:23858-67. [PMID: 23839987 DOI: 10.1074/jbc.m113.480517] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2'-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1.
Collapse
Affiliation(s)
- Rebecca L Fagan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
9
|
Stefanska B, Huang J, Bhattacharyya B, Suderman M, Hallett M, Han ZG, Szyf M. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 2011; 71:5891-903. [PMID: 21747116 DOI: 10.1158/0008-5472.can-10-3823] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We use hepatic cellular carcinoma (HCC), one of the most common human cancers, as a model to delineate the landscape of promoter hypomethylation in cancer. Using a combination of methylated DNA immunoprecipitation and hybridization with comprehensive promoter arrays, we have identified approximately 3,700 promoters that are hypomethylated in tumor samples. The hypomethylated promoters appeared in clusters across the genome suggesting that a high-level organization underlies the epigenomic changes in cancer. In normal liver, most hypomethylated promoters showed an intermediate level of methylation and expression, however, high-CpG dense promoters showed the most profound increase in gene expression. The demethylated genes are mainly involved in cell growth, cell adhesion and communication, signal transduction, mobility, and invasion; functions that are essential for cancer progression and metastasis. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine, activated several of the genes that are demethylated and induced in tumors, supporting a causal role for demethylation in activation of these genes. Previous studies suggested that MBD2 was involved in demethylation of specific human breast and prostate cancer genes. Whereas MBD2 depletion in normal liver cells had little or no effect, we found that its depletion in human HCC and adenocarcinoma cells resulted in suppression of cell growth, anchorage-independent growth and invasiveness as well as an increase in promoter methylation and silencing of several of the genes that are hypomethylated in tumors. Taken together, the findings define the potential functional role of hypomethylation in cancer.
Collapse
Affiliation(s)
- Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill Centre for Bioinformatics, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Shepelev MV, Korobko EV, Georgiev GP, Sverdlov ED, Korobko IV. Application of mRNA regulatory regions to improve tumor specificity of transgene expression. Cancer Gene Ther 2011; 18:682-4. [PMID: 21720419 DOI: 10.1038/cgt.2011.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Efficiency and specificity are two key attributes of anti-cancer drugs including genetic therapeutic agents. We suggest a way to improve specificity of gene therapy drugs based on the ability of 3'-untranslated regions (UTR) of some mRNAs selectively stabilize transcripts only during cell division. The mRNAs of genes encoding DNA methyltransferase I (DNMT1) and topoisomerase IIα (TOP2A) are among such transcripts. When inserted into genetic constructs designed to produce therapeutic protein in tumor cells, such 3'-UTR would lead to diminished effect of therapeutic protein on normal cells, which are characterized by low or absent proliferative activity. However, when included in gene expression cassette, these 3'-UTR might result in decreased transgene expression, thus, overweighting the advantage of increased specificity of expression. We showed that DNMT1 and to the lesser extent TOP2A 3'-UTR do not alter significantly therapeutic transgene expression level in tumor cells, thus, confirming the functionality of the proposed approach.
Collapse
Affiliation(s)
- M V Shepelev
- Department of Cancer Gene Therapy, Institute of Gene Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
11
|
D'Aiuto L, Di Maio R, Mohan KN, Minervini C, Saporiti F, Soreca I, Greenamyre JT, Chaillet JR. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation 2011; 82:9-17. [PMID: 21492995 DOI: 10.1016/j.diff.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
High levels of DNA methyltransferase 1 (DNMT1), hypermethylation, and downregulation of GAD(67) and reelin have been described in GABAergic interneurons of patients with schizophrenia (SZ) and bipolar (BP) disorders. However, overexpression of DNMT1 is lethal, making it difficult to assess the direct effect of high levels of DNMT1 on neuronal development in vivo. We therefore used Dnmt1(tet/tet) mouse ES cells that overexpress DNMT1 as an in vitro model to investigate the impact of high levels of DNMT1 on neuronal differentiation. Although there is down-regulation of DNMT1 during early stages of differentiation in wild type and Dnmt1(tet/tet) ES cell lines, neurons derived from Dnmt1(tet/tet) cells showed abnormal dendritic arborization and branching. The Dnmt1(tet/tet) neuronal cells also showed elevated levels of functional N-methyl d-aspartate receptor (NMDAR), a feature also reported in some neurological and neurodegenerative disorders. Considering the roles of reelin and GAD(67) in neuronal networking and excitatory/inhibitory balance, respectively, we studied methylation of these genes' promoters in Dnmt1(tet/tet) ES cells and neurons. Both reelin and GAD(67) promoters were not hypermethylated in the Dnmt1(tet/tet) ES cells and neurons, suggesting that overexpression of DNMT1 may not directly result in methylation-mediated repression of these two genes. Taken together, our results suggest that overexpression of DNMT1 in ES cells results in an epigenetic change prior to the onset of differentiation. This epigenetic change in turn results in abnormal neuronal differentiation and upregulation of functional NMDA receptor.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Microbiology and Molecular Genetics, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis 2011; 32:224-32. [PMID: 20980350 DOI: 10.1093/carcin/bgq221] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A hallmark of cancer is aberrant DNA methylation, consisting of global hypomethylation and regional hypermethylation of tumor suppressor genes. DNA methyltransferase inhibitors have been recognized as promising candidate anticancer drugs. Drug development has focused on DNA methylation inhibitors with the goal of activating tumor suppressor genes silenced by DNA methylation. 5-azacytidine (5-AC; Vidaza), a global DNA methyltransferase inhibitor, was Food and Drug Administration approved to treat myelodysplastic syndromes and is clinically tested for solid tumors. In this paper, it was demonstrated that 5'-aza-2'-deoxycytidine (5-azaCdR) activated both silenced tumor suppressor genes and pro-metastatic genes by demethylation, raising the concern that it would promote metastasis. 5-AzaCdR treatment increased the invasiveness of non-invasive breast cancer cell lines MCF-7 cells and ZR-75-1 and dramatically induced pro-metastatic genes; Urokinase plasminogen activator (uPA), matrix metalloproteinase 2 (MMP2), metastasis-associated gene (H-MTS1; S100A4) and C-X-C chemokine receptor 4 (CXCR4). The hypothesis that the blocking of cellular transformation activity of DNA methyltransferase inhibitor could be separated from the pro-metastatic activity was tested using short interfering RNA (siRNA) targeted to the different DNA methyltransferase (DNMT) genes. Although depletion of DNMT1 had the strongest effect on colony growth suppression in cellular transformation assays, it did not result in demethylation and activation of uPA, S100A4, MMP2 and CXCR4 in MCF-7 cells. Depletion of DNMT1 did not induce cellular invasion in MCF-7 and ZR-75-1 non-invasive breast cancer cell lines. These data have implications on the design of new DNA methyltransferase inhibitor and on the proper utilization of current inhibitors.
Collapse
Affiliation(s)
- Flora Chik
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Kwon O, Jeong SJ, Kim SO, He L, Lee HG, Jang KL, Osada H, Jung M, Kim BY, Ahn JS. Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b. Carcinogenesis 2010; 31:1194-201. [PMID: 20375073 DOI: 10.1093/carcin/bgq071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
E-cadherin, as a tumor suppressor, plays an important role for intercellular adhesion involved in metastasis. Although K-Ras is highly expressed in a variety of cancers, the regulation of E-cadherin expression by K-Ras in association with DNA methylation and cell metastasis has not been completely clarified. In this study, E-cadherin expression was repressed in 267B1/K-Ras human epithelial prostate cancer cells stably overexpressing K-Ras, resulting from hypermethylation of E-cadherin promoter as evidenced by methylation-specific polymerase chain reaction (PCR), bisulfite sequencing, real-time reverse transcription-PCR and western blot analysis. The increased level of DNA methyltransferase (DNMT) 3b in 267B1/K-Ras cells was reduced by small interfering RNA-mediated knockdown of k-ras, whereas DNMT1 and DNMT3a did not change regardless of K-Ras or 5-aza-2'-deoxycytidine (5'-AzaC) treatment. Furthermore, binding of DNMT3b to E-cadherin promoter was increased in 267B1/K-Ras cells but was reduced by 5'-AzaC, as revealed by chromatin immunoprecipitation assay, which was in agreement with cell aggregation and invasive mobilization of the cells. Hence, our data suggest that increased binding of DNMT3b to E-cadherin promoter region by K-Ras cause promoter hypermethylation for reduced expression of E-cadherin, leading to the decreased cell aggregation and increased metastasis of human prostate cancer cells overexpressing K-Ras.
Collapse
Affiliation(s)
- Osong Kwon
- Korea Research Institute Yangcheong-Ri, Ochang, Chungbuk 363-883, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Szyf M. The role of DNA hypermethylation and demethylation in cancer and cancer therapy. ACTA ACUST UNITED AC 2010; 15:72-5. [PMID: 18454186 PMCID: PMC2365485 DOI: 10.3747/co.v15i2.210] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M Szyf
- McGill University, Department of Pharmacology and Therapeutics,McIntyre Medical Building, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Butler JS, Palam LR, Tate CM, Sanford JR, Wek RC, Skalnik DG. DNA Methyltransferase protein synthesis is reduced in CXXC finger protein 1-deficient embryonic stem cells. DNA Cell Biol 2009; 28:223-31. [PMID: 19388845 DOI: 10.1089/dna.2009.0854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity. This study investigated the underlying mechanism for reduced DNMT1 expression in CFP1-deficient ES cells. DNMT1 transcript levels were significantly elevated in ES cells lacking CFP1, despite the observed reduction in DNMT1 protein levels. To address the posttranscriptional mechanisms by which CFP1 regulates DNMT1 protein activity, pulse/chase analyses were carried out, demonstrating a modest reduction in DNMT1 protein half-life in CFP1-deficient ES cells. Additionally, global protein synthesis was decreased in ES cells lacking CFP1, contributing to a reduction in the synthesis of DNMT1 protein. ES cells lacking CFP1 were found to contain elevated levels of phosphorylated eIF2alpha, and an accompanying reduction in translation initiation as revealed by a lower level of polyribosomes. These results reveal a novel role for CFP1 in the regulation of translation initiation, and indicate that loss of CFP1 function leads to decreased DNMT1 protein synthesis and half-life.
Collapse
Affiliation(s)
- Jill S Butler
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Evidence is emerging that several diseases and behavioral pathologies result from defects in gene function. The best-studied example is cancer, but other diseases such as autoimmune disease, asthma, type 2 diabetes, metabolic disorders, and autism display aberrant gene expression. Gene function may be altered by either a change in the sequence of the DNA or a change in epigenetic programming of a gene in the absence of a sequence change. With epigenetic drugs, it is possible to reverse aberrant gene expression profiles associated with different disease states. Several epigenetic drugs targeting DNA methylation and histone deacetylation enzymes have been tested in clinical trials. Understanding the epigenetic machinery and the differential roles of its components in specific disease states is essential for developing targeted epigenetic therapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
17
|
Wang X, Sun DF, Lu R, Chen ZF, Chen YX, Fang JY. RAF may induce cell proliferation through hypermethylation of tumor suppressor gene promoter in gastric epithelial cells. Cancer Sci 2009; 100:117-25. [PMID: 19037990 PMCID: PMC11158421 DOI: 10.1111/j.1349-7006.2008.01017.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) is critical in human malignancies. It remained to be established whether DNA methyltransferases (Dnmt) and proliferating cell nuclear antigen (PCNA) involved in DNA methylation during RAF-transformed cell proliferation. The plasmid of constitutively active RAF was used to transfect gastric cell GES-1 and cancer cell AGS. RAF promoted cell proliferation, growth in soft agar and induced cell cycle progress faster than empty plasmid by accelerating G1/S transition in both cell lines, a massive induction of cyclin D1 and PCNA expression was observed, along with reduced expression of p16INK4A, p21WAF1 and p27KIP1. Methylation-specific polymerase chain reaction and bisulfite sequencing showed that the promoter of p16INK4A was methylated in RAF-transformed cells, treatment with 5-aza-dC or PD98059 restored the expression of p16INK4A, increased p21WAF1 and p27KIP1 partially, associated with upregulation of the activity of Dnmt in RAF-transformed cell GES-1, and also decreased the hypermethylation status of p16INK4A, but not all CpG islands of p21WAF1 and p27KIP1. These data suggest that RAF may induce cell proliferation through hypermethylation of tumor suppressor gene p16INK4A, while the epigenetic inactivation of p21WAF1 and p27KIP1 may be not a key factor in RAF-transformed cells.
Collapse
Affiliation(s)
- Xia Wang
- Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Unterberger A, Torrisani J, Szyf M. A method for purification, identification and validation of DNMT1 mRNA binding proteins. Biol Proced Online 2008; 10:47-57. [PMID: 19048127 PMCID: PMC2591025 DOI: 10.1251/bpo142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/30/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division. DNMT1 expression is tightly regulated within the cell cycle. Our previous study showed that the binding of a protein with an apparent size of ~40 kDa on DNMT1 3’-UTR triggered the destabilization of DNMT1 mRNA transcript during Go/G1 phase. Using RNA affinity capture with the 3’-UTR of DNMT1 mRNA and matrix-assisted laser desorption-time of flight tandem mass spectrometry (MALDI-TOF-MS-MS) analysis, we isolated and identified AUF 1 (AU-rich element ARE:poly-(U)-binding/degradation factor) as the binding protein. We then validated the role of this protein in the destabilization of DNMT1 mRNA. In this report, we detail the different approaches used for the isolation, the identification of a RNA binding protein and the validation of its role.
Collapse
|
19
|
Szyf M. DNA demethylation and cancer metastasis: therapeutic implications. Expert Opin Drug Discov 2008; 3:519-31. [DOI: 10.1517/17460441.3.5.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Sun L, Zhao H, Xu Z, Liu Q, Liang Y, Wang L, Cai X, Zhang L, Hu L, Wang G, Zha X. Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell Signal 2007; 19:2255-63. [PMID: 17716861 DOI: 10.1016/j.cellsig.2007.06.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
DNA methylation, which affects gene expression and chromatin stability, is catalyzed by DNA methyltransferases (DNMTs) of which DNMT1 possesses most abundant activity. PI3K/PKB pathway is an important pathway involved in cell proliferation, viability, and metabolism and often disrupted in cancer. Here we investigated the impact of PKB on DNMT1 and DNA methylation. Positive correlation between PKB-Ser473-phosphorylation and DNMT1 protein level in 17 human cell lines (p<0.01) and in 27 human bladder cancer tissues (p<0.05) was found. With activator, inhibitor, siRNA and constitutively active or dominant-negative plasmids of PKB, we found that PKB increased the protein level of DNMT1 without coordinate mRNA change, which was specific rather than due to cell-cycle change. PKB enhanced DNMT1 protein stability independent of de novo synthesis of any protein, which was attributed to down-regulation of N-terminal-120-amino-acids-dependent DNMT1 degradation via ubiquitin-proteasome pathway. Gsk3beta inhibitor rescued the decrease of DNMT1 by PKB inhibition, suggesting that Gsk3beta mediated the stabilization of DNMT1 by PKB. Then role of PKB regulating DNMT1 was investigated. Inhibition of PKB caused observable DNA hypomethylation and chromatin decondensation and DNMT1 overexpression partially reversed cell growth inhibition by PKB inhibition. In conclusion, our results suggested that PKB enhanced DNMT1 stability and maintained DNA methylation and chromatin structure, which might contribute to cancer cell growth.
Collapse
Affiliation(s)
- Lidong Sun
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Young SRL, Skalnik DG. CXXC finger protein 1 is required for normal proliferation and differentiation of the PLB-985 myeloid cell line. DNA Cell Biol 2007; 26:80-90. [PMID: 17328666 DOI: 10.1089/dna.2006.0535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CXXC finger protein 1 (CFP1) binds to unmethylated CpG motifs in DNA, is a component of the mammalian Set1 histone methyltransferase complex, and is essential for zebrafish hematopoiesis. Transfection of the human PLB-985 myeloid cell line with a short hairpin RNA directed against the transcript encoding CFP1 results in 80% fewer colonies compared to a vector control, suggesting that CFP1 is required for survival of PLB-985 cells. One clone, CFP1-AS1, exhibits a 70% decrease in CFP1 protein levels and a slower doubling time due to an increase in the proportion of cells in G(1) and G(2) and a decrease of cells in S phase. CFP1-AS1 cells exhibit a 40% reduction of DNA methyltransferase 1 protein but contain normal levels of global genomic cytosine methylation. The CFP1-AS1 clone suffers from a defect of granulocytic differentiation, as approximately half of the cells fail to obtain a terminally differentiated nuclear architecture and fail to generate a respiratory burst. Similar results were obtained upon induction of monocyte/macrophage differentiation. Extended passaging of CFP1-AS1 cells resulted in increased levels of the CFP1 protein, to approximately 85% of wild-type levels, and concomitant rescue of myeloid differentiation. These results demonstrate a role for CFP1 in mammalian hematopoietic development.
Collapse
Affiliation(s)
- Suzanne R L Young
- Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
22
|
Roach HI, Aigner T. DNA methylation in osteoarthritic chondrocytes: a new molecular target. Osteoarthritis Cartilage 2007; 15:128-37. [PMID: 16908204 DOI: 10.1016/j.joca.2006.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/09/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the current knowledge of the mechanism of DNA methylation, its association with transcriptional silencing, possible mechanisms of hyper- and hypomethylation and how epigenetic changes may relate to the pathogenesis of osteoarthritis (OA). METHODS Journal literature was searched using Pubmed. Since there are very few publications directly on epigenetic phenomena in OA, the search was extended to give an overview of epigenetic mechanisms as they relate to the molecular mechanisms of the disease. RESULTS While the epigenetics of cancer cells have been intensively investigated, little attention has so far been paid as to whether epigenetic changes contribute to the pathology of non-neoplastic diseases such as OA. This review explains the mechanisms of DNA methylation, its role in transcriptional regulation, and possible demethylation mechanisms that may be applicable to OA. Preliminary evidence suggests that changes in DNA methylation, together with cytokines, growth factors and changes in matrix composition, are likely to be important in determining the complex gene expression patterns that are observed in osteoarthritic chondrocytes. CONCLUSION Early evidence points to a role of epigenetics in the pathogenesis of OA. Since epigenetic changes, although heritable at the cellular level, are potentially reversible, epigenetics could be a new molecular target for therapeutic intervention, especially early in the disease.
Collapse
Affiliation(s)
- H I Roach
- Bone and Joint Research Group, Division of Developmental Origins of Health and Disease, University of Southampton, UK.
| | | |
Collapse
|
23
|
Cybulsky AV, Takano T, Papillon J, Hao W, Mancini A, Di Battista JA, Cybulsky MI. The 3′-untranslated region of the Ste20-like kinase SLK regulates SLK expression. Am J Physiol Renal Physiol 2007; 292:F845-52. [PMID: 17003224 DOI: 10.1152/ajprenal.00234.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ste20-like kinase, SLK, a germinal center kinase found in kidney epithelial cells, signals to promote apoptosis. Expression of SLK mRNA and protein and kinase activity are increased during kidney development and recovery from ischemic acute renal failure. The 3′-untranslated region (3′-UTR) of SLK mRNA contains multiple adenine and uridine-rich elements, suggesting that 3′-UTR may regulate mRNA stability. This was confirmed in COS cell transient transfection studies, which showed that expression of the SLK open-reading frame plus 3′-UTR mRNA was reduced by 35% relative to the open-reading frame alone. To further characterize the SLK-3′-UTR, this nucleotide sequence was subcloned downstream of enhanced green fluorescent protein (EGFP) cDNA. In COS, 293T, and glomerular epithelial cells, expression of EGFP mRNA and protein was markedly reduced in the presence of the SLK-3′-UTR. After transfection and subsequent addition of actinomycin D, EGFP mRNA remained stable in cells for at least 6 h, whereas EGFP-SLK-3′-UTR mRNA decayed with a half-life of ∼4 h. A region containing five AUUUA motifs within the SLK-3′-UTR destabilized EGFP mRNA. Deletion of this region from the SLK-3′-UTR, in part, restored mRNA stability. By UV cross-linking and SDS-PAGE, the SLK-3′-UTR bound to protein(s) of ∼30 kDa in extracts of COS cells, glomerular epithelial cells, and kidney. Cotransfection of HuR (a RNA binding protein of ∼30 kDa) increased the steady-state mRNA level of EGFP-SLK-3′-UTR but not EGFP. Thus the SLK-3′-UTR may interact with kidney RNA-binding proteins to regulate expression of SLK mRNA during kidney development and after ischemic injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Torrisani J, Unterberger A, Tendulkar SR, Shikimi K, Szyf M. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol Cell Biol 2007; 27:395-410. [PMID: 17030625 PMCID: PMC1800664 DOI: 10.1128/mcb.01236-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 07/28/2006] [Accepted: 09/22/2006] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.
Collapse
Affiliation(s)
- Jerome Torrisani
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
25
|
Ghisolfi L, Papucci L, Bevilacqua A, Canti G, Tataranni G, Lapucci A, Schiavone N, Capaccioli S, Nicolin A. Increased Bcl2 expression by antisense oligoribonucleotides targeting the adenine-uridine-rich element motif. Mol Pharmacol 2005; 68:816-21. [PMID: 15955869 DOI: 10.1124/mol.105.014357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA has become a promising target for pharmacological purposes. Most current strategies are directed toward down-regulating its functions. In this study, we provide evidence of the up-regulation of messenger RNA in a sequence-specific manner. The bcl2 (b)-ARE (adenine-uridine-rich element) in the 3'-untranslated region of the b-RNA that regulates the rate of RNA degradation has been targeted with three chemically modified oligoribonucleotides designed in the antisense orientation (asORNs). The three asORNs were studied by a cell-free degradation assay. All three slowed the rate of RNA decay in a dose-response fashion, they were specific to the b-ARE, and two of them were individually effective. asORNs were then transfected into the malignant cells in culture and b-RNA half-life was measured by real-time reverse transcriptase-polymerase chain reaction. We showed that by stabilizing b-RNA the three asORNs increased the expression of b-RNA and of the relevant protein in a dose-response fashion.
Collapse
Affiliation(s)
- Laura Ghisolfi
- Department of Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajasekhar VK, Holland EC. Postgenomic global analysis of translational control induced by oncogenic signaling. Oncogene 2004; 23:3248-64. [PMID: 15094774 DOI: 10.1038/sj.onc.1207546] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is commonly assumed that developmental and oncogenic signaling achieve their phenotypic effects primarily by directly regulating the transcriptional profile of cells. However, there is growing evidence that the direct effect on transcription may be overshadowed by differential effects on the translational efficiency of specific existing mRNA species. Global analysis of this effect using microarrays indicates that this mechanism of controlling protein production provides a highly specific, robust, and rapid response to oncogenic and developmental stimuli. The mRNAs so affected encode proteins involved in cell-cell interaction, signal transduction, and growth control. Furthermore, a large number of transcription factors capable of secondarily rearranging the transcriptional profile of the cell are controlled at this level as well. To what degree this translational control is either necessary or sufficient for tumor formation or maintenance remains to be determined.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Department of Surgery (Neurosurgery), Neurology, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
27
|
Milutinovic S, Brown SE, Zhuang Q, Szyf M. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J Biol Chem 2004; 279:27915-27. [PMID: 15087453 DOI: 10.1074/jbc.m312823200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) catalyzes the post-replication methylation of DNA and is responsible for maintaining the DNA methylation pattern during cell division. A long list of data supports a role for DNMT1 in cellular transformation and inhibitors of DNMT1 were shown to have antitumorigenic effects. It was long believed that DNMT1 promoted tumorigenesis by maintaining the hypermethylated and silenced state of tumor suppressor genes. We have previously shown that DNMT1 knock down by either antisense oligonucleotides directed at DNMT1 or expressed antisense activates a number of genes involved in stress response and cell cycle arrest by a DNA methylation-independent mechanism. In this report we demonstrate that antisense knock down of DNMT1 in human lung carcinoma A549 and embryonal kidney HEK293 cells induces gene expression by a mechanism that does not involve either of the known epigenomic mechanisms, DNA methylation, histone acetylation, or histone methylation. The mechanism of activation of the cell cycle inhibitor p21 and apoptosis inducer BIK by DNMT1 inhibition is independent of the mechanism of activation of the same genes by histone deacetylase inhibition. We determine whether DNMT1 knock down activates one of the nodal transcription activation pathways in the cell and demonstrate that DNMT1 activates Sp1 response elements. This activation of Sp1 response does not involve an increase in either Sp1 or Sp3 protein levels in the cell or the occupancy of the Sp1 elements with these proteins. The methylation-independent regulation of Sp1 elements by DNMT1 unravels a novel function for DNMT1 in gene regulation. DNA methylation was believed to be a mechanism for suppression of CG-rich Sp1-bearing promoters. Our data suggest a fundamentally different and surprising role for DNMT1 regulation of CG-rich genes by a mechanism independent of DNA methylation and histone acetylation. The implications of our data on the biological roles of DNMT1 and the therapeutic potential of DNMT1 inhibitors as anticancer agents are discussed.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
28
|
Abstract
Vertebrate DNA is modified by methyl moieties at the 5'-position of cytosine rings residing in the di-nucleotide sequence CpG. Approximately 80% of CpG dinucleotide sequences are methylated. The pattern of distribution of methylated CGs is cell-type specific and correlates with gene expression programming and chromatin structure. Three kinds of seemingly contradictory aberrations in DNA methylation are observed in cancer, global hypomethylation, and regional hypermethylation and deregulated level of expression of DNA methyltransferases. It was previously proposed that the DNA methylation machinery is a candidate target for anticancer therapy. Inhibition of hypermethylation was the first therapeutic target. However, recent data suggests that inhibition of DNA methylation might have untoward effects such as induction of genes involved in metastasis. This review discusses the relative role of the three levels of alteration in the DNA methylation in cancer, proposes a unified hypothesis on the relative roles of increased DNA methyltransferase as well as the coexistence of hypo -and hyper- methylation in cancer and its possible implications on anticancer therapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Promenade, Quebec H3G 1Y6, Montreal, Canada.
| |
Collapse
|
29
|
Abstract
There is overwhelming evidence that DNA methylation patterns are altered in cancer. Methylation of CG-rich islands in regulatory regions of genes marks them for transcriptional silencing. Multiple genes, which confer selective advantage upon cancer cells such as tumor suppressors, adhesion molecules, inhibitors of angiogenesis and repair enzymes are silenced. In parallel, tumor cell genomes are globally less methylated than their normal counterparts. In contrast to regional hypermethylation, this loss of methylation in cancer cells occurs in sparsely distributed CG sequences. We now understand that DNA methylation machineries might include a number of DNA methyltransferases, proteins that direct DNA methyltransferases to specific promoters, chromatin modifying enzymes as well as demethylases. There is also data to suggest that pharmacological down regulation of some members of the DNA methylation machinery could inhibit cancer in vitro, in vivo and in clinical trials. Understanding which functions of DNA methylation machinery are critical for cancer is essential for the design of inhibitors of the DNA methylation machinery as anticancer agents. This review discusses the possible role of DNA methyltranferases and demethylases in tumorigenesis and the possible pharmacological and therapeutic implications of the DNA methylation machinery.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Que, Canada H3G 1Y6.
| |
Collapse
|
30
|
Bevilacqua A, Ceriani MC, Canti G, Asnaghi L, Gherzi R, Brewer G, Papucci L, Schiavone N, Capaccioli S, Nicolin A. Bcl-2 protein is required for the adenine/uridine-rich element (ARE)-dependent degradation of its own messenger. J Biol Chem 2003; 278:23451-9. [PMID: 12702730 DOI: 10.1074/jbc.m210620200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the decay of human bcl-2 mRNA is mediated by an adenine/uridine-rich element (ARE) located in the 3'-untranslated region. Here, we have utilized a non-radioactive cell-free mRNA decay system to investigate the biochemical and functional mechanisms regulating the ARE-dependent degradation of bcl-2 mRNA. Using RNA substrates, mutants, and competitors, we found that decay is specific and ARE-dependent, although maximized by the ARE-flanking regions. In unfractionated extracts from different cell types and in whole cells, the relative enzymatic activity was related to the amount of Bcl-2 protein expressed by the cells at steady state. The degradation activity was lost upon Bcl-2 depletion and was reconstituted by adding recombinant Bcl-2. Ineffective extracts from cells that constitutively do not express Bcl-2 acquire full degradation activity by adding recombinant Bcl-2 protein. We conclude that Bcl-2 is necessary to activate the degradation complex on the relevant RNA target.
Collapse
|
31
|
Kimura F, Seifert HH, Florl AR, Santourlidis S, Steinhoff C, Swiatkowski S, Mahotka C, Gerharz CD, Schulz WA. Decrease of DNA methyltransferase 1 expression relative to cell proliferation in transitional cell carcinoma. Int J Cancer 2003; 104:568-78. [PMID: 12594811 DOI: 10.1002/ijc.10988] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many common cancers such as transitional cell carcinoma (TCC), specific genes are hypermethylated, whereas overall DNA methylation is diminished. Genome-wide DNA hypomethylation mostly affects repetitive sequences such as LINE-1 retrotransposons. Methylation of these sequences depends on adequate expression of DNA methyltransferase I (DNMT1) during DNA replication. Therefore, DNMT1 expression relative to proliferation was investigated in TCC cell lines and tissue as well as in renal carcinoma (RCC) cell lines, which also display hypomethylation, as indicated by decreased LINE-1 methylation. Cultured normal uroepithelial cells or normal bladder tissue served as controls. In all tumor cell lines, DNMT1 mRNA as well as protein was decreased relative to the DNA replication factor PCNA, and DNA hypomethylation was present. However, the extents of hypomethylation and DNMT1 downregulation did not correlate. Reporter gene assays showed that the differences in DNMT1 expression between normal and tumor cells were not established at the level of DNMT1 promoter regulation. Diminished DNMT1:PCNA mRNA ratios were also found in 28/45 TCC tissues but did not correlate with the extent of DNA hypomethylation. In addition, expression of the presumed de novo methyltransferases DNMT3A and DNMT3B mRNAs was investigated. DNMT3B overexpression was observed in about half of all high-stage TCC (DNMT3B vs. tumor stage, chi(2): p = 0.03), whereas overexpression of DNMT3A was rarer and less pronounced. Expression of DNMT3A and DNMT3B in most RCC lines was higher than in TCC lines. Our data indicate that DNMT1 expression does not increase adequately with cell proliferation in bladder cancer. This relative downregulation probably contributes to hypomethylation of repetitive DNA but does not determine its extent alone.
Collapse
Affiliation(s)
- Fumihiro Kimura
- Urologische Klinik, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Milutinovic S, Zhuang Q, Niveleau A, Szyf M. Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 2003; 278:14985-95. [PMID: 12576480 DOI: 10.1074/jbc.m213219200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The DNA methylation pattern is an important component of the epigenome that regulates and maintains gene expression programs. In this paper, we test the hypothesis that vertebrate cells possess mechanisms protecting them from epigenomic stress similar to DNA damage checkpoints. We show that knockdown of DNMT1 (DNA methyltransferase 1) by an antisense oligonucleotide triggers an intra-S-phase arrest of DNA replication that is not observed with control oligonucleotide. The cells are arrested at different positions throughout the S-phase of the cell cycle, suggesting that this response is not specific to distinct classes of origins of replication. The intra-S-phase arrest of DNA replication is proposed to protect the genome from extensive DNA demethylation that could come about by replication in the absence of DNMT1. This protective mechanism is not induced by 5-aza-2'-deoxycytidine, a nucleoside analog that inhibits DNA methylation by trapping DNMT1 in the progressing replication fork, but does not reduce de novo synthesis of DNMT1. Our data therefore suggest that the intra-S-phase arrest is triggered by a reduction in DNMT1 and not by demethylation of DNA. DNMT1 knockdown also leads to an induction of a set of genes that are implicated in genotoxic stress response such as NF-kappaB, JunB, ATF-3, and GADD45beta (growth arrest DNA damage 45beta gene). Based on these data, we suggest that this stress response mechanism evolved to guard against buildup of DNA methylation errors and to coordinate inheritance of genomic and epigenomic information.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|