1
|
Zhang P, von Ungern-Sternberg S, Hastenplug L, Solari FA, Sickmann A, Kuijpers MJE, Heemskerk JWM, Walter U, Jurk K. Multi-phased Kinetics and Interaction of Protein Kinase Signaling in Glycoprotein VI-Induced Platelet αIIbβ3 Integrin Activation and Degranulation. Thromb Haemost 2025; 125:470-483. [PMID: 38653482 PMCID: PMC12040432 DOI: 10.1055/a-2311-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Platelet glycoprotein VI (GPVI) stimulation activates the tyrosine kinases Syk and Btk, and the effector proteins phospholipase Cγ 2 (PLCγ2) and protein kinase C (PKC). Here, the activation sequence, crosstalk, and downstream effects of this Syk-Btk-PKC signalosome in human platelets were analyzed.Using immunoblotting, we quantified 14 regulated phospho-sites in platelets stimulated by convulxin with and without inhibition of Syk, Btk, or PKC. Convulxin induced fast, reversible tyrosine phosphorylation (pY) of Syk, Btk, LAT, and PLCγ2, followed by reversible serine/threonine phosphorylation (pS/T) of Syk, Btk, and downstream kinases MEK1/2, Erk1/2, p38, and Akt. Syk inhibition by PRT-060318 abolished all phosphorylations, except Syk pY352. Btk inhibition by acalabrutinib strongly decreased Btk pY223/pS180, Syk pS297, PLCγ2 pY759/Y1217, MEK1/2 pS217/221, Erk1/2 pT202/Y204, p38 pT180/Y182, and Akt pT308/S473. PKC inhibition by GF109203X abolished most pS/T phosphorylations except p38 pT180/Y182 and Akt pT308, but enhanced most Y-phosphorylations. Acalabrutinib, but not GF109203X, suppressed convulxin-induced intracellular Ca2+ mobilization, whereas all three protein kinase inhibitors abolished degranulation and αIIbβ3 integrin activation assessed by flow cytometry. Inhibition of autocrine ADP effects by AR-C669931 partly diminished convulxin-triggered degranulation.Kinetic analysis of GPVI-initiated multisite protein phosphorylation in human platelets demonstrates multiple phases and interactions of tyrosine and serine/threonine kinases with activation-altering feedforward and feedback loops partly involving PKC. The protein kinase inhibitor effects on multisite protein phosphorylation and functional readouts reveal that the signaling network of Syk, Btk, and PKC controls platelet granule exocytosis and αIIbβ3 integrin activation.
Collapse
Affiliation(s)
- Pengyu Zhang
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Saskia von Ungern-Sternberg
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Hastenplug
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fiorella A. Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute Maastricht, Koningin Emmaplein, Maastricht, The Netherlands
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Chen S, Zhou C, Dai J, Xu Q, Chen Y, Hu Z, Wang Y, Wang C. PLCG2, A Regulator of Lung Adenocarcinoma Proliferation and Migration Associated with Immune Infiltration. Curr Cancer Drug Targets 2025; 25:159-169. [PMID: 39177130 DOI: 10.2174/0115680096307100240801095132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Results from the TCGA database showed that phosphatidylinositolspecific phospholipase Cγ2 (PLCG2) expression level in Lung Adenocarcinoma (LUAD) was notably decreased compared to adjacent tissues, so we unveiled its role of LUAD. OBJECTIVE This study aims to explore the expression and clinical significance of Phosphatidylinositol- specific phospholipase Cγ2 (PLCG2) in lung adenocarcinoma (LUAD) cells and its role in cell proliferation and metastasis. METHODS Differential PLCG2 mRNA and protein levels between LUAD tissues and adjacent tissues were analyzed from the TCGA database, TIMER, and UALCAN database. Differentially expressed genes were screened for patients in the high and low PLCG2 mRNA expression groups by the R package as well as GSEA. The expression level of PLCG2 in LUAD cells was detected using qRT-PCR and CCK8, clone formation, Transwell, and Western blot assays. RESULTS PLCG2 was lowly expressed in LUAD and did not significantly correlate with the prognosis of LUAD. PLCG2 expression levels varied significantly in terms of patients' gender, age, T, N, and pathological stage. GO/KEGG enrichment analysis showed that co-expression of PLCG2 was mainly associated with the immune response- regulating cell-surface receptors, and so on. GSEA analysis showed enrichment pathways of PLCG2-related differential gees were primarily associated with the olfactory transduction pathway, ribosome, etc. R software analysis revealed a significant correlation between PLCG2 expression and six types of immune-infiltrating cells, positively correlated with immune checkpoint-related genes and negatively regulated by tumor mutational load. Overexpressing PLCG2 showed reduced LUAD cell proliferation, clone formation, cell migration and invasion, and epithelial-mesenchymal transition-associated proteins, compared with the control group. CONCLUSION PLCG2 is lowly expressed in LUAD tissues and is involved in immune infiltration of LUAD, inhibiting LUAD cell proliferation and metastasis.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Chenkang Zhou
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jieying Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Qingqing Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yuxin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zhaoting Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325015, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
3
|
Shin YC, Plummer-Medeiros AM, Mungenast A, Choi HW, TenDyke K, Zhu X, Shepard J, Sanders K, Zhuang N, Hu L, Qian D, Song K, Xu C, Wang J, Poda SB, Liao M, Chen Y. The crystal and cryo-EM structures of PLCγ2 reveal dynamic interdomain recognitions in autoinhibition. SCIENCE ADVANCES 2024; 10:eadn6037. [PMID: 39612343 PMCID: PMC11606444 DOI: 10.1126/sciadv.adn6037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Phospholipase C gamma 2 (PLCγ2) plays important roles in cell signaling downstream of various membrane receptors. PLCγ2 contains a multidomain inhibitory region critical for its regulation, while it has remained unclear how these domains contribute to PLCγ2 activity modulation. Here we determined three structures of human PLCγ2 in autoinhibited states, which reveal dynamic interactions at the autoinhibition interface, involving the conformational flexibility of the Src homology 3 (SH3) domain in the inhibitory region, and its previously unknown interaction with a carboxyl-terminal helical domain in the core region. We also determined a structure of PLCγ2 bound to the kinase domain of fibroblast growth factor receptor 1 (FGFR1), which demonstrates the recognition of FGFR1 by the nSH2 domain in the inhibitory region of PLCγ2. Our results provide structural insights into PLCγ2 regulation that will facilitate future mechanistic studies to understand the entire activation process.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Karen TenDyke
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Xiaojie Zhu
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | | | - Kristen Sanders
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Ningning Zhuang
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Liang Hu
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Dongming Qian
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John Wang
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Suresh B. Poda
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Chen
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| |
Collapse
|
4
|
Moraru R, Valle-Argos B, Minton A, Buermann L, Pan S, Wales TE, Joseph RE, Andreotti AH, Strefford JC, Packham G, Baud MGJ. Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story. J Med Chem 2024; 67:13572-13593. [PMID: 39119945 PMCID: PMC11345841 DOI: 10.1021/acs.jmedchem.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Targeted covalent inhibitors (TCIs) directing cysteine have historically relied on a narrow set of electrophilic "warheads". While Michael acceptors remain at the forefront of TCI design strategies, they show variable stability and selectivity under physiological conditions. Here, we show that the 2-sulfonylpyrimidine motif is an effective replacement for the acrylamide warhead of Ibrutinib, for the inhibition of Bruton's tyrosine kinase. In a few iterations, we discovered new derivatives, which inhibit BTK both in vitro and in cellulo at low nanomolar concentrations, on par with Ibrutinib. Several derivatives also displayed good plasma stability and reduced off-target binding in vitro across 135 tyrosine kinases. This proof-of-concept study on a well-studied kinase/TCI system highlights the 2-sulfonylpyrimidine group as a useful acrylamide replacement. In the future, it will be interesting to investigate its wider potential for developing TCIs with improved pharmacologies and selectivity profiles across structurally related protein families.
Collapse
Affiliation(s)
- Ruxandra Moraru
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Beatriz Valle-Argos
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Annabel Minton
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Lara Buermann
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Suyin Pan
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas E. Wales
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Raji E. Joseph
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy H. Andreotti
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C. Strefford
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Graham Packham
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Matthias G. J. Baud
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
5
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Li W, Sano R, Apatira M, DeAnda F, Gururaja T, Yang M, Lundgaard G, Pan C, Liu J, Zhai Y, Yoon WH, Wang L, Tse C, Souers AJ, Lee CH. Bruton's Tyrosine Kinase Inhibitors with Distinct Binding Modes Reveal Differential Functional Impact on B-Cell Receptor Signaling. Mol Cancer Ther 2024; 23:35-46. [PMID: 37735104 PMCID: PMC10762339 DOI: 10.1158/1535-7163.mct-22-0642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.
Collapse
Affiliation(s)
- Wei Li
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Renata Sano
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Mutiah Apatira
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Felix DeAnda
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | | | - Muhua Yang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Greta Lundgaard
- Drug Discovery Science and Technology, AbbVie Inc., Lake County, Illinois
| | - Chin Pan
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Jing Liu
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Yongjiao Zhai
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Woo Hyun Yoon
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Longcheng Wang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Chris Tse
- Oncology Discovery, AbbVie Inc., Lake County, Illinois
| | | | - Chih-Hung Lee
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| |
Collapse
|
7
|
AlOuda SK, Sasikumar P, AlThunayan T, Alaajam F, Khan S, Sahli KA, Abohassan MS, Pollitt A, Jung SM, Gibbins JM. Role of heat shock protein 47 in platelet glycoprotein VI dimerization and signaling. Res Pract Thromb Haemost 2023; 7:102177. [PMID: 37767064 PMCID: PMC10520510 DOI: 10.1016/j.rpth.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
Background Heat shock protein 47 (HSP47) is an intracellular chaperone protein with an indispensable role in collagen biosynthesis in collagen-secreting cells. This chaperone has also been shown to be released and present on the surface of platelets. The inhibition of HSP47 in human platelets or its ablation in mouse platelets reduces platelet function in response to collagen and the glycoprotein (GP) VI collagen receptor agonist CRP-XL. Objectives In this study, we sought, through experiments, to explore cellular distribution, trafficking, and influence on GPVI interactions to understand how HSP47 modulates collagen receptor signaling. Methods HSP47-deficient mouse platelets and SMIH- treated human platelets were used to study the role of HSP47 in collagen mediated responses and signaling. Results Using subcellular fractionation analysis and immunofluorescence microscopy, HSP47 was found to be localized to the platelet-dense tubular system. Following platelet stimulation, HSP47 mobilization to the cell surface was shown to be dependent on actin polymerization, a feature common to other dense tubular system resident platelet proteins that are released to the cell surface during activation. In this location, HSP47 was found to contribute to platelet adhesion to collagen or CRP-XL but not to GFOGER peptide (an integrin α2β1-binding sequence within collagens), indicating selective effects of HSP47 on GPVI function. Dimerization of GPVI on the platelet surface increases its affinity for collagen. GPVI dimerization was reduced following HSP47 inhibition, as was collagen and CRP-XL-mediated signaling. Conclusion The present study identifies a role for cell surface-localized HSP47 in modulating platelet responses to collagen through dimerization of GPVI, thereby enhancing platelet signaling and activation.
Collapse
Affiliation(s)
- Sarah K. AlOuda
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Taysseer AlThunayan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Fahd Alaajam
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Sabeeya Khan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Khaled A. Sahli
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- General Directorate of Medical Services, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed S. Abohassan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Alice Pollitt
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Stephanie M. Jung
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
8
|
Zhang P, Solari FA, Heemskerk JWM, Kuijpers MJE, Sickmann A, Walter U, Jurk K. Differential Regulation of GPVI-Induced Btk and Syk Activation by PKC, PKA and PP2A in Human Platelets. Int J Mol Sci 2023; 24:ijms24097776. [PMID: 37175486 PMCID: PMC10178361 DOI: 10.3390/ijms24097776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.
Collapse
Affiliation(s)
- Pengyu Zhang
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
9
|
Iguchi A, Takatori S, Kimura S, Muneto H, Wang K, Etani H, Ito G, Sato H, Hori Y, Sasaki J, Saito T, Saido TC, Ikezu T, Takai T, Sasaki T, Tomita T. INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. iScience 2023; 26:106375. [PMID: 37035000 PMCID: PMC10074152 DOI: 10.1016/j.isci.2023.106375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid β (Aβ) plaques, impair their transcriptional response to Aβ, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aβ plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aβ toxicity, thereby modulates Aβ-dependent pathological conversion of tau.
Collapse
Affiliation(s)
- Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Muneto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kai Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Takehiko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Wade-Vallance AK, Yang Z, Libang JB, Robinson MJ, Tarlinton DM, Allen CD. B cell receptor ligation induces IgE plasma cell elimination. J Exp Med 2023; 220:e20220964. [PMID: 36880536 PMCID: PMC9997509 DOI: 10.1084/jem.20220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
The proper regulation of IgE production safeguards against allergic disease, highlighting the importance of mechanisms that restrict IgE plasma cell (PC) survival. IgE PCs have unusually high surface B cell receptor (BCR) expression, yet the functional consequences of ligating this receptor are unknown. Here, we found that BCR ligation induced BCR signaling in IgE PCs followed by their elimination. In cell culture, exposure of IgE PCs to cognate antigen or anti-BCR antibodies induced apoptosis. IgE PC depletion correlated with the affinity, avidity, amount, and duration of antigen exposure and required the BCR signalosome components Syk, BLNK, and PLCγ2. In mice with a PC-specific impairment of BCR signaling, the abundance of IgE PCs was selectively increased. Conversely, BCR ligation by injection of cognate antigen or anti-IgE depleted IgE PCs. These findings establish a mechanism for the elimination of IgE PCs through BCR ligation. This has important implications for allergen tolerance and immunotherapy as well as anti-IgE monoclonal antibody treatments.
Collapse
Affiliation(s)
- Adam K. Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy B. Libang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus J. Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Christopher D.C. Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Li K, Ran B, Wang Y, Liu L, Li W. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:999061. [PMID: 36147734 PMCID: PMC9485805 DOI: 10.3389/fcell.2022.999061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton’s tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2’s role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.
Collapse
|
12
|
Arthur R, Wathen A, Lemm EA, Stevenson FK, Forconi F, Linley AJ, Steele AJ, Packham G, Valle-Argos B. BTK-independent regulation of calcium signalling downstream of the B-cell receptor in malignant B-cells. Cell Signal 2022; 96:110358. [PMID: 35597428 DOI: 10.1016/j.cellsig.2022.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
BTK inhibitors (BTKi) have dramatically improved outcomes for patients with chronic lymphocytic leukaemia (CLL) and some forms of B-cell lymphoma. However, new strategies are needed to enhance responses. Here we have performed a detailed analysis of the effects of BTKi on B-cell receptor (BCR)-induced signalling using primary malignant cells from CLL patients and B-lymphoma cell lines. Although BTK is considered as a key activator of PLCγ2, BTKi (ibrutinib and acalabrutinib) failed to fully inhibit calcium responses in CLL samples with strong BCR signalling capacity. This BTKi-resistant calcium signalling was sufficient to engage downstream calcium-dependent transcription and suppress CLL cell apoptosis and was entirely independent of BTK and not just its kinase activity as similar results were obtained using a BTK-degrading PROTAC. BTK-independent calcium signalling was also observed in two B-lymphoma cell lines where BTKi had little effect on the initial phase of the calcium response but did accelerate the subsequent decline in intracellular calcium. In contrast to BTKi, calcium responses were completely blocked by inhibition of SYK in CLL and lymphoma cells. Engagement of BTK-independent calcium responses was associated with BTK-independent phosphorylation of PLCγ2 on Y753 and Y759 in both CLL and lymphoma cells. Moreover, in CLL samples, inhibition of RAC, which can mediate BTK-independent activation of PLCγ2, cooperated with ibrutinib to suppress calcium responses. BTK-independent calcium signalling may limit the effectiveness of BTKi to suppress BCR signalling responses and our results suggest inhibition of SYK or dual inhibition of BTK and RAC as alternative strategies to strengthen pathway blockade.
Collapse
Affiliation(s)
- Rachael Arthur
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Alexander Wathen
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Elizabeth A Lemm
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Freda K Stevenson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Adam J Linley
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Institute of Systems, Molecular and Integrative Biology, 5(th) Floor Nuffield Building, Crown Street, Liverpool L69 3BX, United Kingdom
| | - Andrew J Steele
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Graham Packham
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | - Beatriz Valle-Argos
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
13
|
Ramdas B, Yuen LD, Palam LR, Patel R, Pasupuleti SK, Jideonwo V, Zhang J, Maguire C, Wong E, Kanumuri R, Zhang C, Sandusky G, Chan RJ, Zhang C, Stieglitz E, Haneline L, Kapur R. Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells. Mol Ther 2022; 30:2505-2521. [PMID: 35443935 PMCID: PMC9263321 DOI: 10.1016/j.ymthe.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lisa Deng Yuen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roshini Patel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jideonwo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Callista Maguire
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Wong
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Senior Director, Oncology, U.S. Medical Affairs, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Laura Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Siraliev-Perez E, Stariha JTB, Hoffmann RM, Temple BRS, Zhang Q, Hajicek N, Jenkins ML, Burke JE, Sondek J. Dynamics of allosteric regulation of the phospholipase C-γ isozymes upon recruitment to membranes. eLife 2022; 11:77809. [PMID: 35708309 PMCID: PMC9203054 DOI: 10.7554/elife.77809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.
Collapse
Affiliation(s)
- Edhriz Siraliev-Perez
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Qisheng Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nicole Hajicek
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - John Sondek
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
15
|
Betzler AC, Kieser S, Fiedler K, Laban S, Theodoraki MN, Schuler PJ, Wirth T, Tedford K, Fischer KD, Hoffmann TK, Brunner C. Differential Requirement of Vav Proteins for Btk-dependent and –Independent Signaling During B Cell Development. Front Cell Dev Biol 2022; 10:654181. [PMID: 35281114 PMCID: PMC8904969 DOI: 10.3389/fcell.2022.654181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Btk and Vav proteins are all components of the signalosome that builds upon B cell receptor (BCR) activation. However, the role of Vav proteins within the signalosome is quite complex and not yet fully understood. Until now, studies of these have focused predominantly on a deficiency of Vav proteins alone or in combination with other Vav protein family members. Since a physical association of Btk with Vav was shown previously, we asked whether these molecules lie in the same or independent signaling pathways. By analyzing Vav1 and Vav3 single knock-out mice and generating double-knock-out animals deficient for either Vav1 or Vav3 and Btk, we observed, in line with previous publications, no severe B cell developmental defects when either Vav1 or Vav3 alone are not expressed. However, a simultaneous deficiency of Btk together with either Vav1 or Vav3 leads to a severe reduction of splenic B cells, which exhibit an immature phenotype. B cell developmental defects of Btk/Vav1-double deficient mice in the periphery were more severe than those observed in Btk-single-deficient animals. Additionally, morphological changes in splenic microarchitecture were observed in double- but also in single-knock-out mutants. These observations were accompanied by reduced BCR-induced Ca2+ mobilization, proliferation, germinal center formation and immunoglobulin secretion. Although deletion of Btk alone impaired Ca2+ mobilization upon BCR activation, the defect was even more severe when Vav1 or Vav3 were also mutated, indicating that Btk and the Vav proteins act in separate pathways that converge on Ca2+ signaling. In vitro ASC differentiation suggests that both B and T cells contribute to the observed phenotype of a Btk/Vav-double deficiency. Our results show that Vav proteins and Btk are both components of the BCR-activated signalosome but control separate signaling pathways important for B cell development.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Kieser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Katja Fiedler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Institute for Physiological Chemistry, Ulm University, Ulm, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas Wirth
- Institute for Physiological Chemistry, Ulm University, Ulm, Germany
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Cornelia Brunner,
| |
Collapse
|
16
|
Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R, Vojtesek B, Hupp TR, Brennan PM. Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 2021; 4:4/12/e202101054. [PMID: 34645618 PMCID: PMC8548209 DOI: 10.26508/lsa.202101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
BTK is a dominant bioactive kinase expressed within both cancer and immune cells of GBM tissue. Complex cell co-cultures might better model the impact of kinase inhibitors as therapeutics in GBM. Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A “functional proteomics” screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Olimpia E Curran
- Department of Neuropathology, Western General Hospital, Edinburgh, UK.,Cardiff University Hospital, Cellular Pathology, Cardiff, UK
| | - Javier A Alfaro
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Faris Naji
- Pamgene International BV, 's-Hertogenbosch, Netherlands
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kathryn L Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Paul M Brennan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Jackson JT, Mulazzani E, Nutt SL, Masters SL. The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem 2021; 297:100905. [PMID: 34157287 PMCID: PMC8318911 DOI: 10.1016/j.jbc.2021.100905] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol-specific phospholipase Cγ2 (PLCγ2) is a critical signaling molecule activated downstream from a variety of cell surface receptors that contain an intracellular immunoreceptor tyrosine-based activation motif. These receptors recruit kinases such as Syk, BTK, and BLNK to phosphorylate and activate PLCγ2, which then generates 1D-myo-inositol 1,4,5-trisphosphate and diacylglycerol. These well-known second messengers are required for diverse membrane functionality including cellular proliferation, endocytosis, and calcium flux. As a result, PLCγ2 dysfunction is associated with a variety of diseases including cancer, neurodegeneration, and immune disorders. The diverse pathologies associated with PLCγ2 are exemplified by distinct genetic variants. Inherited mutations at this locus cause PLCγ2-associated antibody deficiency and immune dysregulation, in some cases with autoinflammation. Acquired mutations at this locus, which often arise as a result of BTK inhibition to treat chronic lymphocytic leukemia, result in constitutive downstream signaling and lymphocyte proliferation. Finally, a third group of PLCγ2 variants actually has a protective effect in a variety of neurodegenerative disorders, presumably by increased uptake and degradation of deleterious neurological aggregates. Therefore, manipulating PLCγ2 activity either up or down could have therapeutic benefit; however, we require a better understanding of the signaling pathways propagated by these variants before such clinical utility can be realized. Here, we review the signaling roles of PLCγ2 in hematopoietic cells to help understand the effect of mutations driving immune disorders and cancer and extrapolate from this to roles which may relate to protection against neurodegeneration.
Collapse
Affiliation(s)
- Jacob T Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elisabeth Mulazzani
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Montresor A, Toffali L, Fumagalli L, Constantin G, Rigo A, Ferrarini I, Vinante F, Laudanna C. Activation of Protein Tyrosine Phosphatase Receptor Type γ Suppresses Mechanisms of Adhesion and Survival in Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:671-684. [PMID: 34162728 DOI: 10.4049/jimmunol.2001462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/04/2021] [Indexed: 01/29/2023]
Abstract
The regulatory role of protein tyrosine kinases in β1- and β2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.
Collapse
Affiliation(s)
- Alessio Montresor
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Lara Toffali
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Laura Fumagalli
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, Laboratory of Neuroimmunology and Neuroinflammation, University of Verona, Verona, Italy; and
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy;
| |
Collapse
|
19
|
Bame E, Tang H, Burns JC, Arefayene M, Michelsen K, Ma B, Marx I, Prince R, Roach AM, Poreci U, Donaldson D, Cullen P, Casey F, Zhu J, Carlile TM, Sangurdekar D, Zhang B, Trapa P, Santoro J, Muragan P, Pellerin A, Rubino S, Gianni D, Bajrami B, Peng X, Coppell A, Riester K, Belachew S, Mehta D, Palte M, Hopkins BT, Scaramozza M, Franchimont N, Mingueneau M. Next-generation Bruton's tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin Transl Immunology 2021; 10:e1295. [PMID: 34141433 PMCID: PMC8204096 DOI: 10.1002/cti2.1295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. Methods BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. Results In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. Conclusion Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.
Collapse
Affiliation(s)
- Eris Bame
- Clinical Sciences Biogen Cambridge MA USA
| | - Hao Tang
- Biogen Research Biogen Cambridge MA USA
| | | | | | - Klaus Michelsen
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA.,Present address: Relay Therapeutics Cambridge MA USA
| | - Bin Ma
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Isaac Marx
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Robin Prince
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Allie M Roach
- Biogen Research Biogen Cambridge MA USA.,Present address: Gilead Sciences Seattle WA USA
| | - Urjana Poreci
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Pandion Therapeutics Watertown MA USA
| | - Douglas Donaldson
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Giner Labs Newton MA USA
| | | | | | - Jing Zhu
- Biogen Research Biogen Cambridge MA USA
| | | | - Dipen Sangurdekar
- Biogen Research Biogen Cambridge MA USA.,Present address: Takeda Cambridge MA USA
| | | | - Patrick Trapa
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Joseph Santoro
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Param Muragan
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | - Davide Gianni
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Bekim Bajrami
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Xiaomei Peng
- Global Safety and Regulatory Sciences Biogen Cambridge MA USA
| | | | | | | | - Devangi Mehta
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Immunologix Laboratories Cambridge MA USA
| | - Mike Palte
- MS Development Unit Biogen Cambridge MA USA
| | - Brian T Hopkins
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | | |
Collapse
|
20
|
Smith CIE, Burger JA. Resistance Mutations to BTK Inhibitors Originate From the NF-κB but Not From the PI3K-RAS-MAPK Arm of the B Cell Receptor Signaling Pathway. Front Immunol 2021; 12:689472. [PMID: 34177947 PMCID: PMC8222783 DOI: 10.3389/fimmu.2021.689472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since the first clinical report in 2013, inhibitors of the intracellular kinase BTK (BTKi) have profoundly altered the treatment paradigm of B cell malignancies, replacing chemotherapy with targeted agents in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström's macroglobulinemia. There are over 20 BTKi, both irreversible and reversible, in clinical development. While loss-of-function (LoF) mutations in the BTK gene cause the immunodeficiency X-linked agammaglobulinemia, neither inherited, nor somatic BTK driver mutations are known. Instead, BTKi-sensitive malignancies are addicted to BTK. BTK is activated by upstream surface receptors, especially the B cell receptor (BCR) but also by chemokine receptors, and adhesion molecules regulating B cell homing. Consequently, BTKi therapy abrogates BCR-driven proliferation and the tissue homing capacity of the malignant cells, which are being redistributed into peripheral blood. BTKi resistance can develop over time, especially in MCL and high-risk CLL patients. Frequently, resistance mutations affect the BTKi binding-site, cysteine 481, thereby reducing drug binding. Less common are gain-of-function (GoF) mutations in downstream signaling components, including phospholipase Cγ2 (PLCγ2). In a subset of patients, mechanisms outside of the BCR pathway, related e.g. to resistance to apoptosis were described. BCR signaling depends on many proteins including SYK, BTK, PI3K; still based on the resistance pattern, BTKi therapy only selects GoF alterations in the NF-κB arm, whereas an inhibitor of the p110δ subunit of PI3K instead selects resistance mutations in the RAS-MAP kinase pathway. BTK and PLCγ2 resistance mutations highlight BTK's non-redundant role in BCR-mediated NF-κB activation. Of note, mutations affecting BTK tend to generate clone sizes larger than alterations in PLCγ2. This infers that BTK signaling may go beyond the PLCγ2-regulated NF-κB and NFAT arms. Collectively, when comparing the primary and acquired mutation spectrum in BTKi-sensitive malignancies with the phenotype of the corresponding germline alterations, we find that certain observations do not readily fit with the existing models of BCR signaling.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
21
|
Hu N, Wang F, Sun T, Xu Z, Zhang J, Bernard D, Xu S, Wang S, Kaminski M, Devata S, Phillips T, Malek SN. Follicular Lymphoma-associated BTK Mutations are Inactivating Resulting in Augmented AKT Activation. Clin Cancer Res 2021; 27:2301-2313. [PMID: 33419778 DOI: 10.1158/1078-0432.ccr-20-3741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE On the basis of the recent discovery of mutations in Bruton tyrosine kinase (BTK) in follicular lymphoma, we studied their functional properties. EXPERIMENTAL DESIGN We identified novel somatic BTK mutations in 7% of a combined total of 139 follicular lymphoma and 11 transformed follicular lymphoma cases, none of which had received prior treatment with B-cell receptor (BCR) targeted drugs. We reconstituted wild-type (WT) and mutant BTK into various engineered lymphoma cell lines. We measured BCR-induced signal transduction events in engineered cell lines and primary human follicular lymphoma B cells. RESULTS We uncovered that all BTK mutants destabilized the BTK protein and some created BTK kinase-dead mutants. The phospholipase C gamma 2 (PLCγ2) is a substrate of BTK but the BTK mutants did not alter PLCγ2 phosphorylation. Instead, we discovered that BTK mutants induced an exaggerated AKT phosphorylation phenotype in anti-Ig-treated recombinant lymphoma cell lines. The short hairpin RNA-mediated knockdown of BTK expression in primary human nonmalignant lymph node-derived B cells resulted in strong anti-Ig-induced AKT activation, as did the degradation of BTK protein in cell lines using ibrutinib-based proteolysis targeting chimera. Finally, through analyses of primary human follicular lymphoma B cells carrying WT or mutant BTK, we detected elevated AKT phosphorylation following surface Ig crosslinking in all follicular lymphoma B cells, including all BTK-mutant follicular lymphoma. The augmented AKT phosphorylation following BCR crosslinking could be abrogated by pretreatment with a PI3Kδ inhibitor. CONCLUSIONS Altogether, our data uncover novel unexpected properties of follicular lymphoma-associated BTK mutations with direct implications for targeted therapy development in follicular lymphoma.See related commentary by Afaghani and Taylor, p. 2123.
Collapse
Affiliation(s)
- Nan Hu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Fangyang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tianyu Sun
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Zhengfan Xu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jing Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Denzil Bernard
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shilin Xu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mark Kaminski
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Suma Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sami N Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
22
|
Arthur R, Valle-Argos B, Steele AJ, Packham G. Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:131-152. [PMID: 32924028 PMCID: PMC7116064 DOI: 10.37349/etat.2020.00009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach to target BTK. However, development is at a very early stage and considerable progress is required to refine these agents and optimize their drug-like properties before progression to clinical testing.
Collapse
Affiliation(s)
- Rachael Arthur
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Andrew J. Steele
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Institute for Life Sciences, University of Southampton, University Road, Highfield Campus, SO17 1BJ, Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
23
|
Wist M, Meier L, Gutman O, Haas J, Endres S, Zhou Y, Rösler R, Wiese S, Stilgenbauer S, Hobeika E, Henis YI, Gierschik P, Walliser C. Noncatalytic Bruton's tyrosine kinase activates PLCγ 2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem 2020; 295:5717-5736. [PMID: 32184360 DOI: 10.1074/jbc.ra119.011946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.
Collapse
Affiliation(s)
- Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Laura Meier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Hajicek N, Keith NC, Siraliev-Perez E, Temple BRS, Huang W, Zhang Q, Harden TK, Sondek J. Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. eLife 2019; 8:e51700. [PMID: 31889510 PMCID: PMC7004563 DOI: 10.7554/elife.51700] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.
Collapse
Affiliation(s)
- Nicole Hajicek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas C Keith
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Brenda RS Temple
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- R L Juliano Structural Bioinformatics Core FacilityThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Weigang Huang
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Qisheng Zhang
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| | - T Kendall Harden
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - John Sondek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
25
|
Gui F, Jiang J, He Z, Li L, Li Y, Deng Z, Lu Y, Wu X, Chen G, Su J, Song S, Zhang Y, Yun C, Huang X, Weisberg E, Zhang J, Deng X. A non-covalent inhibitor XMU-MP-3 overrides ibrutinib-resistant Btk C481S mutation in B-cell malignancies. Br J Pharmacol 2019; 176:4491-4509. [PMID: 31364164 PMCID: PMC6932946 DOI: 10.1111/bph.14809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's tyrosine kinase (BTK) plays a key role in B-cell receptor signalling by regulating cell proliferation and survival in various B-cell malignancies. Covalent low-MW BTK kinase inhibitors have shown impressive clinical efficacy in B-cell malignancies. However, the mutant BtkC481S poses a major challenge in the management of B-cell malignancies by disrupting the formation of the covalent bond between BTK and irreversible inhibitors, such as ibrutinib. The present studies were designed to develop novel BTK inhibitors targeting ibrutinib-resistant BtkC481S mutation. EXPERIMENTAL APPROACH BTK-Ba/F3, BTK(C481S)-Ba/F3 cells, and human malignant B-cells JeKo-1, Ramos, and NALM-6 were used to evaluate cellular potency of BTK inhibitors. The in vitro pharmacological efficacy and compound selectivity were assayed via cell viability, colony formation, and BTK-mediated signalling. A tumour xenograft model with BTK-Ba/F3, Ramos and BTK(C481S)-Ba/F3 cells in Nu/nu BALB/c mice was used to assess in vivo efficacy of XMU-MP-3. KEY RESULTS XMU-MP-3 is one of a group of low MW compounds that are potent non-covalent BTK inhibitors. XMU-MP-3 inhibited both BTK and the acquired mutant BTKC481S, in vitro and in vivo. Further computational modelling, site-directed mutagenesis analysis, and structure-activity relationships studies indicated that XMU-MP-3 displayed a typical Type-II inhibitor binding mode. CONCLUSION AND IMPLICATIONS XMU-MP-3 directly targets the BTK signalling pathway in B-cell lymphoma. These findings establish XMU-MP-3 as a novel inhibitor of BTK, which could serve as both a tool compound and a lead for further drug development in BTK relevant B-cell malignancies, especially those with the acquired ibrutinib-resistant C481S mutation.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Female
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Docking Simulation
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Piperidines
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Fu Gui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Jie Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yue Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Xinrui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Guyue Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Jingyi Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Siyang Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yue‐Ming Zhang
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Cai‐Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xin Huang
- Division of Drug Discovery, Hongyun Biotech Co., Ltd.NanjingChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana Farber Cancer InstituteHarvard Medical SchoolBostonMassachusetts
| | - Jianming Zhang
- National Research Center for Translational Medicine, Shanghai State Key Laboratory of Medical Genomics, Rui‐Jin HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| |
Collapse
|
26
|
Young RM, Phelan JD, Wilson WH, Staudt LM. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol Rev 2019; 291:190-213. [PMID: 31402495 PMCID: PMC6693651 DOI: 10.1111/imr.12792] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Signals emanating from the B-cell receptor (BCR) promote proliferation and survival in diverse forms of B-cell lymphoma. Precision medicine strategies targeting the BCR pathway have been generally effective in treating lymphoma, but often fail to produce durable responses in diffuse large B-cell lymphoma (DLBCL), a common and aggressive cancer. New insights into DLBCL biology garnered from genomic analyses and functional proteogenomic studies have identified novel modes of BCR signaling in this disease. Herein, we describe the distinct roles of antigen-dependent and antigen-independent BCR signaling in different subtypes of DLBCL. We highlight mechanisms by which the BCR cooperates with TLR9 and mutant isoforms of MYD88 to drive sustained NF-κB activity in the activated B-cell-like (ABC) subtype of DLBCL. Finally, we discuss progress in detecting and targeting oncogenic BCR signaling to improve the survival of patients with lymphoma.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/etiology
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/therapy
- Lymphoma/diagnosis
- Lymphoma/etiology
- Lymphoma/metabolism
- Lymphoma/therapy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan M. Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| |
Collapse
|
27
|
Bruton's tyrosine kinase is at the crossroads of metabolic adaptation in primary malignant human lymphocytes. Sci Rep 2019; 9:11069. [PMID: 31363127 PMCID: PMC6667467 DOI: 10.1038/s41598-019-47305-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
In this work we explored metabolic aspects of human primary leukemic lymphocytes that hold a potential impact on the treatment of Bruton tyrosine kinase (BTK)-driven diseases. Our results suggest that there is crosstalk between Bruton tyrosine kinase (BTK) signaling and bioenergetic stress responses. In primary chronic lymphocytic leukemia (CLL) lymphocytes, pharmacological interference with mitochondrial ATP synthesis or glucose metabolism affects BTK activity. Conversely, an inhibitor of BTK used clinically (ibrutinib) induces bioenergetic stress responses that in turn affect ibrutinib resistance. Although the detailed molecular mechanisms are still to be defined, our work shows for the first time that in primary B cells, metabolic stressors enhance BTK signaling and suggest that metabolic rewiring to hyperglycemia affects ibrutinib resistance in TP53 deficient chronic lymphocytic leukemia (CLL) lymphocytes.
Collapse
|
28
|
Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. Inhibition of Bruton's Tyrosine Kinase Modulates Microglial Phagocytosis: Therapeutic Implications for Alzheimer's Disease. J Neuroimmune Pharmacol 2019; 14:448-461. [PMID: 30758770 PMCID: PMC6707957 DOI: 10.1007/s11481-019-09839-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
Bruton’s tyrosine kinase (BTK), a critical component of B cell receptor signaling, has recently been implicated in regulation of the peripheral innate immune response. However, the role of BTK in microglia, the resident innate immune cells of the central nervous system, and its involvement in the pathobiology of neurodegenerative disease has not been explored. Here we found that BTK is a key regulator of microglial phagocytosis. Using potent BTK inhibitors and small interfering RNA (siRNA) against BTK, we observed that blockade of BTK activity decreased activation of phospholipase gamma 2, a recently identified genetic risk factor in Alzheimer’s disease (AD), and reduced phagocytosis in rodent microglia and human monocyte-derived macrophages. Inhibition of BTK signaling also decreased microglial uptake of synaptosomes but did not have major impacts on other key microglial functions such as migration and cytokine release. Similarly, blocking BTK function ex vivo in acute brain slices reduced microglial phagocytosis and maintained numbers of resting microglia. In brain tissues from the 5xFAD mouse model of AD, levels of microglial BTK were elevated while in two gene expression datasets of post-mortem AD patient brain tissues, upregulation of BTK transcript was observed. Our study provides novel insights into the role of BTK in regulating microglial phagocytosis and uptake of synaptic structures and suggests that inhibiting microglial BTK may improve cognition in AD by preventing microglial activation and synaptic loss. Microglial-mediated synapse loss has been implicated in AD pathogenesis. Inhibition of BTK decreases activation of PLCγ2, a genetic risk factor in AD, and reduces microglial phagocytosis and uptake of synaptic structures. As such BTK inhibition may represent a therapeutic route to prevent microglial activation and synapse loss in AD ![]()
Collapse
Affiliation(s)
- James Keaney
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium.
| | - Julien Gasser
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Gaëlle Gillet
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Diana Scholz
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Irena Kadiu
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium.
| |
Collapse
|
29
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Nicolson PLR, Hughes CE, Watson S, Nock SH, Hardy AT, Watson CN, Montague SJ, Clifford H, Huissoon AP, Malcor JD, Thomas MR, Pollitt AY, Tomlinson MG, Pratt G, Watson SP. Inhibition of Btk by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet aggregation mediated by glycoprotein VI. Haematologica 2018; 103:2097-2108. [PMID: 30026342 PMCID: PMC6269309 DOI: 10.3324/haematol.2018.193391] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022] Open
Abstract
Ibrutinib and acalabrutinib are irreversible inhibitors of Bruton tyrosine kinase used in the treatment of B-cell malignancies. They bind irreversibly to cysteine 481 of Bruton tyrosine kinase, blocking autophosphorylation on tyrosine 223 and phosphorylation of downstream substrates including phospholipase C-γ2. In the present study, we demonstrate that concentrations of ibrutinib and acalabrutinib that block Bruton tyrosine kinase activity, as shown by loss of phosphorylation at tyrosine 223 and phospholipase C-γ2, delay but do not block aggregation in response to a maximally-effective concentration of collagen-related peptide or collagen. In contrast, 10- to 20-fold higher concentrations of ibrutinib or acalabrutinib block platelet aggregation in response to glycoprotein VI agonists. Ex vivo studies on patients treated with ibrutinib, but not acalabrutinib, showed a reduction of platelet aggregation in response to collagen-related peptide indicating that the clinical dose of ibrutinib but not acalabrutinib is supramaximal for Bruton tyrosine kinase blockade. Unexpectedly, low concentrations of ibrutinib inhibited aggregation in response to collagen-related peptide in patients deficient in Bruton tyrosine kinase. The increased bleeding seen with ibrutinib over acalabrutinib is due to off-target actions of ibrutinib that occur because of unfavorable pharmacodynamics.
Collapse
Affiliation(s)
- Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, Harborne Building, University of Reading, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Sophie H Nock
- Institute for Cardiovascular and Metabolic Research, Harborne Building, University of Reading, UK
| | - Alexander T Hardy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Callum N Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Samantha J Montague
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Hayley Clifford
- Department of Immunology, Heartlands Hospital, Birmingham, UK
| | | | | | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Alice Y Pollitt
- Institute for Cardiovascular and Metabolic Research, Harborne Building, University of Reading, UK
| | - Michael G Tomlinson
- Department of Biosciences, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Guy Pratt
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| |
Collapse
|
31
|
Chen J, Kinoshita T, Gururaja T, Sukbuntherng J, James D, Lu D, Whang J, Versele M, Chang BY. The effect of Bruton's tyrosine kinase (BTK) inhibitors on collagen-induced platelet aggregation, BTK, and tyrosine kinase expressed in hepatocellular carcinoma (TEC). Eur J Haematol 2018; 101:604-612. [PMID: 30030853 DOI: 10.1111/ejh.13148] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Bruton's tyrosine kinase (BTK) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) are expressed by human platelets. These kinases participate in platelet activation through the collagen receptor glycoprotein VI and may perform overlapping functions. In clinical studies, BTK inhibitors (ibrutinib, acalabrutinib, tirabrutinib, zanubrutinib) have been associated with increased bleeding risk, which may result from inhibition of BTK alone or of both BTK and TEC, although the role of TEC in bleeding risk remains unclear. METHODS Here, in vitro catalytic and binding activities of ibrutinib and acalabrutinib were determined with four assay systems. Platelet aggregation assays determined inhibitor potency and its relationship to selectivity between BTK and TEC. RESULTS Neither inhibitor was substantially more selective for BTK over TEC. The potencies at which BTK inhibitors suppressed platelet aggregation correlated with the potencies in on-target BTK assays, including those in cells. At clinically relevant plasma concentration, ibrutinib, acalabrutinib, and tirabrutinib inhibited collagen-induced platelet aggregation to a similar extent, despite differing in vitro IC50 s. CONCLUSIONS Our results suggest BTK inhibition is the primary driver for inhibition of platelet aggregation. The subtle differences between these inhibitors suggest only randomized, double-blind, placebo-controlled clinical studies can fully address the bleeding risks of different BTK inhibitors.
Collapse
Affiliation(s)
- Jun Chen
- Pharmacyclics, LLC, an AbbVie Company, Sunnyvale, CA, USA
| | | | | | | | - Danelle James
- Pharmacyclics, LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Daniel Lu
- Pharmacyclics, LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Jennifer Whang
- Pharmacyclics, LLC, an AbbVie Company, Sunnyvale, CA, USA
| | | | - Betty Y Chang
- Pharmacyclics, LLC, an AbbVie Company, Sunnyvale, CA, USA
| |
Collapse
|
32
|
Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, Woyach JA, Johnson AJ, Byrd JC, Crews CM. Targeting the C481S Ibrutinib-Resistance Mutation in Bruton’s Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry 2018; 57:3564-3575. [DOI: 10.1021/acs.biochem.8b00391] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alexandru D. Buhimschi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Haley A. Armstrong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Momar Toure
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Timothy L. Chen
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amy M. Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jennifer A. Woyach
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amy J. Johnson
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John C. Byrd
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
33
|
Hardy AT, Palma-Barqueros V, Watson SK, Malcor JD, Eble JA, Gardiner EE, Blanco JE, Guijarro-Campillo R, Delgado JL, Lozano ML, Teruel-Montoya R, Vicente V, Watson SP, Rivera J, Ferrer-Marín F. Significant Hypo-Responsiveness to GPVI and CLEC-2 Agonists in Pre-Term and Full-Term Neonatal Platelets and following Immune Thrombocytopenia. Thromb Haemost 2018; 118:1009-1020. [PMID: 29695020 PMCID: PMC6202930 DOI: 10.1055/s-0038-1646924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neonatal platelets are hypo-reactive to the tyrosine kinase-linked receptor agonist collagen. Here, we have investigated whether the hypo-responsiveness is related to altered levels of glycoprotein VI (GPVI) and integrin α2β1, or to defects in downstream signalling events by comparison to platelet activation by C-type lectin-like receptor 2 (CLEC-2). GPVI and CLEC-2 activate a Src- and Syk-dependent signalling pathway upstream of phospholipase C (PLC) γ2. Phosphorylation of a conserved YxxL sequence known as a (hemi) immunotyrosine-based-activation-motif (ITAM) in both receptors is critical for Syk activation. Platelets from human pre-term and full-term neonates display mildly reduced expression of GPVI and CLEC-2, as well as integrin αIIbβ3, accounted for at the transcriptional level. They are also hypo-responsive to the two ITAM receptors, as shown by measurement of integrin αIIbβ3 activation, P-selectin expression and Syk and PLCγ2 phosphorylation. Mouse platelets are also hypo-responsive to GPVI and CLEC-2 from late gestation to 2 weeks of age, as determined by measurement of integrin αIIbβ3 activation. In contrast, the response to G protein-coupled receptor agonists was only mildly reduced and in some cases not altered in neonatal platelets of both species. A reduction in response to GPVI and CLEC-2, but not protease-activated receptor 4 (PAR-4) peptide, was also observed in adult mouse platelets following immune thrombocytopenia, whereas receptor expression was not impaired. Our results demonstrate developmental differences in platelet responsiveness to GPVI and CLEC-2, and also following immune platelet depletion leading to reduced Syk activation. The rapid generation of platelets during development or following platelet depletion is achieved at the expense of signalling by ITAM-coupled receptors.
Collapse
Affiliation(s)
- Alexander T Hardy
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Stephanie K Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - José E Blanco
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Rafael Guijarro-Campillo
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Juan L Delgado
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Steve P Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain.,Grado de Medicina, Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
34
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
35
|
Shaheen S, Wan Z, Li Z, Chau A, Li X, Zhang S, Liu Y, Yi J, Zeng Y, Wang J, Chen X, Xu L, Chen W, Wang F, Lu Y, Zheng W, Shi Y, Sun X, Li Z, Xiong C, Liu W. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase. eLife 2017; 6. [PMID: 28755662 PMCID: PMC5536945 DOI: 10.7554/elife.23060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The mechanosensing ability of lymphocytes regulates their activation in response to antigen stimulation, but the underlying mechanism remains unexplored. Here, we report that B cell mechanosensing-governed activation requires BCR signaling molecules. PMA-induced activation of PKCβ can bypass the Btk and PLC-γ2 signaling molecules that are usually required for B cells to discriminate substrate stiffness. Instead, PKCβ-dependent activation of FAK is required, leading to FAK-mediated potentiation of B cell spreading and adhesion responses. FAK inactivation or deficiency impaired B cell discrimination of substrate stiffness. Conversely, adhesion molecules greatly enhanced this capability of B cells. Lastly, B cells derived from rheumatoid arthritis (RA) patients exhibited an altered BCR response to substrate stiffness in comparison with healthy controls. These results provide a molecular explanation of how initiation of B cell activation discriminates substrate stiffness through a PKCβ-mediated FAK activation dependent manner.
Collapse
Affiliation(s)
- Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zongyu Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Alicia Chau
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xinxin Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Shaosen Zhang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Junyang Yi
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yun Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology, Tsinghua University, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Chunyang Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Belmont J, Gu T, Mudd A, Salomon AR. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex. J Proteome Res 2017. [PMID: 28644030 DOI: 10.1021/acs.jproteome.6b01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.
Collapse
Affiliation(s)
- Judson Belmont
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Tao Gu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Ashley Mudd
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States.,Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
37
|
Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk. Sci Rep 2017; 7:46064. [PMID: 28393919 PMCID: PMC5385489 DOI: 10.1038/srep46064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 11/08/2022] Open
Abstract
Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6′-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex.
Collapse
|
38
|
Matalon O, Fried S, Ben-Shmuel A, Pauker MH, Joseph N, Keizer D, Piterburg M, Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal 2016; 9:ra54. [PMID: 27221712 DOI: 10.1126/scisignal.aad6182] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Danielle Keizer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Marina Piterburg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
39
|
Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 2015; 126:61-8. [PMID: 25972157 DOI: 10.1182/blood-2015-02-626846] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023] Open
Abstract
Ibrutinib has significantly improved the outcome of patients with relapsed chronic lymphocytic leukemia (CLL). Recent reports attribute ibrutinib resistance to acquired mutations in Bruton agammaglobulinemia tyrosine kinase (BTK), the target of ibrutinib, as well as the immediate downstream effector phospholipase C, γ2 (PLCG2). Although the C481S mutation found in BTK has been shown to disable ibrutinib's capacity to irreversibly bind this primary target, the detailed mechanisms of mutations in PLCG2 have yet to be established. Herein, we characterize the enhanced signaling competence, BTK independence, and surface immunoglobulin dependence of the PLCG2 mutation at R665W, which has been documented in ibrutinib-resistant CLL. Our data demonstrate that this missense alteration elicits BTK-independent activation after B-cell receptor engagement, implying the formation of a novel BTK-bypass pathway. Consistent with previous results, PLCG2(R665W) confers hypermorphic induction of downstream signaling events. Our studies reveal that proximal kinases SYK and LYN are critical for the activation of mutant PLCG2 and that therapeutics targeting SYK and LYN can combat molecular resistance in cell line models and primary CLL cells from ibrutinib-resistant patients. Altogether, our results engender a molecular understanding of the identified aberration at PLCG2 and explore its functional dependency on BTK, SYK, and LYN, suggesting alternative strategies to combat acquired ibrutinib resistance.
Collapse
|
40
|
Abstract
During early stages of development, precursor B lymphocytes express a characteristic type of antigen receptor known as the pre-B-cell receptor (pre-BCR). This receptor differs from conventional BCRs in that it possesses a germ line-encoded surrogate light chain (SLC), which is associated with the signal transduction machinery via heavy chain (HC) proteins that have been generated by productive rearrangement of the immunoglobulin HC genes. The pre-BCR marks a key step of B-cell commitment, as it activates the B-cell-specific signaling cascade and mediates the selection, expansion, and differentiation of cells expressing a productively rearranged HC protein. Another difference between the pre-BCR and conventional BCR might be the initial event that triggers receptor activation, as the pre-BCR is activated in the absence of external ligands, while conventional BCRs require antigen for activation. Nonetheless, the pre-BCR downstream signaling cascade is largely similar to that of the BCR suggesting that the characteristic LC of the pre-BCR mediates important receptor interactions thereby providing distinctive, germ line-encoded features to the pre-BCR. In fact, the SLC enables the pre-BCR to act as a surrogate autoreactive receptor. Here, we outline the structure and function of the pre-BCR and how the autonomous signaling capacity might be a direct consequence of pre-BCR assembly. In addition to its role in early B-cell development, we discuss how the ordered activation of downstream signaling cascades enables the pre-BCR to activate seemingly opposing cellular programs such as proliferation and differentiation.
Collapse
|
41
|
Mukai T, Ishida S, Ishikawa R, Yoshitaka T, Kittaka M, Gallant R, Lin YL, Rottapel R, Brotto M, Reichenberger EJ, Ueki Y. SH3BP2 cherubism mutation potentiates TNF-α-induced osteoclastogenesis via NFATc1 and TNF-α-mediated inflammatory bone loss. J Bone Miner Res 2014; 29:2618-35. [PMID: 24916406 PMCID: PMC4262741 DOI: 10.1002/jbmr.2295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/19/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023]
Abstract
Cherubism (OMIM# 118400) is a genetic disorder with excessive jawbone resorption caused by mutations in SH3 domain binding protein 2 (SH3BP2), a signaling adaptor protein. Studies on the mouse model for cherubism carrying a P416R knock-in (KI) mutation have revealed that mutant SH3BP2 enhances tumor necrosis factor (TNF)-α production and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in myeloid cells. TNF-α is expressed in human cherubism lesions, which contain a large number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and TNF-α plays a critical role in inflammatory bone destruction in homozygous cherubism mice (Sh3bp2(KI/KI) ). The data suggest a pathophysiological relationship between mutant SH3BP2 and TNF-α-mediated bone loss by osteoclasts. Therefore, we investigated whether P416R mutant SH3BP2 is involved in TNF-α-mediated osteoclast formation and bone loss. Here, we show that bone marrow-derived M-CSF-dependent macrophages (BMMs) from the heterozygous cherubism mutant (Sh3bp2(KI/+) ) mice are highly responsive to TNF-α and can differentiate into osteoclasts independently of RANKL in vitro by a mechanism that involves spleen tyrosine kinase (SYK) and phospholipase Cγ2 (PLCγ2) phosphorylation, leading to increased nuclear translocation of NFATc1. The heterozygous cherubism mutation exacerbates bone loss with increased osteoclast formation in a mouse calvarial TNF-α injection model as well as in a human TNF-α transgenic mouse model (hTNFtg). SH3BP2 knockdown in RAW264.7 cells results in decreased TRAP-positive multinucleated cell formation. These findings suggest that the SH3BP2 cherubism mutation can cause jawbone destruction by promoting osteoclast formation in response to TNF-α expressed in cherubism lesions and that SH3BP2 is a key regulator for TNF-α-induced osteoclastogenesis. Inhibition of SH3BP2 expression in osteoclast progenitors could be a potential strategy for the treatment of bone loss in cherubism as well as in other inflammatory bone disorders.
Collapse
Affiliation(s)
- Tomoyuki Mukai
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Shu Ishida
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Periodontal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, JAPAN
| | - Remi Ishikawa
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama, JAPAN
| | - Teruhito Yoshitaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Periodontal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, JAPAN
| | - Richard Gallant
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Yi-Ling Lin
- UCLA School of Dentistry, Los Angeles, CA, USA
| | - Robert Rottapel
- Ontario Cancer Institute and the Campbell Family Cancer Research Institute, University of Toronto, Toronto, Canada
- Division of Rheumatology, Department of Medicine, Saint Michael's Hospital, Toronto, Canada
| | - Marco Brotto
- School of Nursing & Health Studies and School of Medicine, University of Missouri-Kansas City, MO, USA
| | - Ernst J. Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
42
|
A novel Bruton's tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity. Leukemia 2014; 28:1892-901. [PMID: 24518207 DOI: 10.1038/leu.2014.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 11/08/2022]
Abstract
Bruton's tyrosine kinase (Btk) modulates B-cell development and activation and has an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function; however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC-sealing zone formation. As CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not have an impact on OC-sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.
Collapse
|
43
|
Akinleye A, Furqan M, Adekunle O. Ibrutinib and indolent B-cell lymphomas. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 14:253-60. [PMID: 24445187 DOI: 10.1016/j.clml.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022]
Abstract
Most patients with indolent B-cell lymphomas fail to achieve complete remission with current treatment approaches and invariably relapse. During the past decade, innovative immunochemotherapy strategies have substantially improved disease control rates but not survival, thus providing the rationale for development of novel agents targeting dysregulated pathways that are operable in these hematological malignancies. Ibrutinib, a novel first-in-human Bruton's tyrosine kinase (BTK) inhibitor, has progressed into phase III trials after early-phase clinical studies demonstrated effective target inhibition, increased tumor response rates, and significant improvement in survival, particularly in patients with indolent B-cell lymphomas. Recently, the compound was designated a "breakthrough therapy" by the United States Food and Drug Administration for the treatment of patients with relapsed or refractory mantle cell lymphoma and Waldenström macroglobulinemia. This review summarizes recent achievements of ibrutinib, with a focus on its emerging role in the treatment of patients with indolent B-cell lymphoid malignancies.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Division of Hematology and Oncology, Department of Medicine, New York Medical College, Valhalla, NY; Department of Medicine, Richmond University Medical Center, Staten Island, NY.
| | - Muhammad Furqan
- Division of Hematology and Oncology, Department of Medicine, New York Medical College, Valhalla, NY
| | - Oluwaseyi Adekunle
- Department of Medicine, Richmond University Medical Center, Staten Island, NY
| |
Collapse
|
44
|
Abstract
In this issue of Structure, Bunney and colleagues use a combination of NMR, SAXS, crystallography, ITC, and biochemical methods to elucidate, in molecular detail, the sequence of events causing receptor-mediated activation of phospholipase C-γ(1) by protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Peter Gierschik
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany.
| | | | | |
Collapse
|
45
|
Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12:229-43. [PMID: 23449308 PMCID: PMC7595252 DOI: 10.1038/nrd3937] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signalling through the B cell receptor (BCR) is central to the development and maintenance of B cells. In light of the numerous proliferative and survival pathways activated downstream of the BCR, it comes as no surprise that malignant B cells would co-opt this receptor to promote their own growth and survival. However, direct evidence for BCR signalling in human lymphoma has only come to light recently. Roles for antigen-dependent and antigen-independent, or tonic, BCR signalling have now been described for several different lymphoma subtypes. Furthermore, correlative data implicate antigen-dependent BCR signalling in many other forms of lymphoma. A host of therapeutic agents targeting effectors of the BCR signalling pathway are now in clinical trials and have shown initial success against multiple forms of lymphoma.
Collapse
Affiliation(s)
- Ryan M Young
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Pires de Miranda M, Lopes FB, McVey CE, Bustelo XR, Simas JP. Role of Src homology domain binding in signaling complexes assembled by the murid γ-herpesvirus M2 protein. J Biol Chem 2012; 288:3858-70. [PMID: 23258536 DOI: 10.1074/jbc.m112.439810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
γ-Herpesviruses express proteins that modulate B lymphocyte signaling to achieve persistent latent infections. One such protein is the M2 latency-associated protein encoded by the murid herpesvirus-4. M2 has two closely spaced tyrosine residues, Tyr(120) and Tyr(129), which are phosphorylated by Src family tyrosine kinases. Here we used mass spectrometry to identify the binding partners of tyrosine-phosphorylated M2. Each M2 phosphomotif is shown to bind directly and selectively to SH2-containing signaling molecules. Specifically, Src family kinases, NCK1 and Vav1, bound to the Tyr(P)(120) site, PLCγ2 and the SHP2 phosphatase bound to the Tyr(P)(129) motif, and the p85α subunit of PI3K associated with either motif. Consistent with these data, we show that M2 coordinates the formation of multiprotein complexes with these proteins. The effect of those interactions is functionally bivalent, because it can result in either the phosphorylation of a subset of binding proteins (Vav1 and PLCγ2) or in the inactivation of downstream targets (AKT). Finally, we show that translocation to the plasma membrane and subsequent M2 tyrosine phosphorylation relies on the integrity of a C-terminal proline-rich SH3 binding region of M2 and its interaction with Src family kinases. Unlike other γ-herpesviruses, that encode transmembrane proteins that mimic the activation of ITAMs, murid herpesvirus-4 perturbs B cell signaling using a cytoplasmic/membrane shuttling factor that nucleates the assembly of signaling complexes using a bilayered mechanism of phosphotyrosine and proline-rich anchoring motifs.
Collapse
Affiliation(s)
- Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
47
|
Fu G, Chen Y, Schuman J, Wang D, Wen R. Phospholipase Cγ2 plays a role in TCR signal transduction and T cell selection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2326-32. [PMID: 22837484 DOI: 10.4049/jimmunol.1103458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the important signaling events following TCR engagement is activation of phospholipase Cγ (PLCγ). PLCγ has two isoforms, PLCγ1 and PLCγ2. It is known that PLCγ1 is important for TCR signaling and TCR-mediated T cell selection and functions, whereas PLCγ2 is critical for BCR signal transduction and BCR-mediated B cell maturation and functions. In this study, we report that PLCγ2 was expressed in primary T cells, and became associated with linker for activated T cells and Src homology 2-domain containing leukocyte protein of 76 kDa and activated upon TCR stimulation. PLCγ1/PLCγ2 double-deficient T cells displayed further block from CD4 and CD8 double-positive to single-positive transition compared with PLCγ1 single-deficient T cells. TCR-mediated proliferation was further impaired in PLCγ1/PLCγ2 double-deficient T cells compared with PLCγ1 single-deficient T cells. TCR-mediated signal transduction, including Ca²⁺ mobilization and Erk activation, was further impaired in PLCγ1/PLCγ2 double-deficient relative to PLCγ1 single-deficient T cells. In addition, in HY TCR transgenic mouse model, thymic positive and negative selections were reduced in PLCγ1 heterozygous- and PLCγ2 homozygous-deficient (PLCγ1⁺/⁻PLCγ2⁻/⁻) relative to wild-type, PLCγ2 single-deficient (PLCγ2⁻/⁻), or PLCγ1 heterozygous-deficient (PLCγ1⁺/⁻) mice. Taken together, these data demonstrate that PLCγ2 participates in TCR signal transduction and plays a role in T cell selection.
Collapse
Affiliation(s)
- Guoping Fu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
48
|
Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis 2012; 7 Suppl 1:S5. [PMID: 22640988 PMCID: PMC3359958 DOI: 10.1186/1750-1172-7-s1-s5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cherubism is a rare bone dysplasia that is characterized by symmetrical bone resorption limited to the jaws. Bone lesions are filled with soft fibrous giant cell-rich tissue that can expand and cause severe facial deformity. The disorder typically begins in children at ages of 2-5 years and the bone resorption and facial swelling continues until puberty; in most cases the lesions regress spontaneously thereafter. Most patients with cherubism have germline mutations in the gene encoding SH3BP2, an adapter protein involved in adaptive and innate immune response signaling. A mouse model carrying a Pro416Arg mutation in SH3BP2 develops osteopenia and expansile lytic lesions in bone and some soft tissue organs. In this review we discuss the genetics of cherubism, the biological functions of SH3BP2 and the analysis of the mouse model. The data suggest that the underlying cause for cherubism is a systemic autoinflammatory response to physiologic challenges despite the localized appearance of bone resorption and fibrous expansion to the jaws in humans.
Collapse
Affiliation(s)
- Ernst J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | |
Collapse
|
49
|
The degree of BCR and NFAT activation predicts clinical outcomes in chronic lymphocytic leukemia. Blood 2012; 120:356-65. [PMID: 22613791 DOI: 10.1182/blood-2011-12-397158] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
B-cell antigen receptor (BCR)-mediated signaling plays a critical role in chronic lymphocytic leukemia (CLL) pathogenesis and gives an in vitro survival advantage to B cells isolated from patients with unfavorable prognostic factors. In this study, we undertook to elucidate the signaling intermediates responsible for this biologic alteration. In responding cells only, in vitro BCR engagement triggers global phosphorylation of Syk, activation of phospholipase Cγ2, and intracellular calcium mobilization, reflecting competency of BCR signaling. The calcium-calcineurin-dependent transcription factor NFAT2 is up-regulated and to some extent constitutively activated in all CLL B cells. In contrast, its DNA-binding capacity is enhanced on IgM stimulation in responding cells only. NFAT inhibition using the VIVIT peptide prevents induction of CD23 target gene and IgM-induced survival, converting responding cells to unresponsive status. At the opposite, ionomycin-induced NFAT activity allows survival of nonresponding cells. These results demonstrate that the functional heterogeneity relies on variability of protein levels establishing BCR-dependent thresholds and NFAT-dependent activation. Finally, status of the BCR-NFAT pathway for each patient reveals its relevance for CLL clinical outcome and points out to BCR-NFAT intermediates as promising functional therapeutic targets.
Collapse
|
50
|
5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils. Biochem Pharmacol 2012; 84:182-91. [PMID: 22484311 DOI: 10.1016/j.bcp.2012.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
Abstract
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-7-methoxyflavone (MCL-1), a lignan extracted from the leaves of Muntingia calabura L. (Tiliaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G release in human neutrophils. Signaling pathways regulated by MCL-1 to oppose fMLP-induced respiratory burst were evaluated by membrane localization of Tec induced by fMLP and by immunoblotting analysis of downstream phosphorylation targets of Tec. Briefly, MCL-1 specific inhibited fMLP-induced superoxide anion production in a concentration-dependent (IC(50)=0.16±0.01 μM) and Tec kinase-dependent manner, however, MCL-1 did not affect fMLP-induced cathepsin G release. Further, MCL-1 suppressed fMLP-induced Tec translocation from the cytosol to the inner leaflet of the plasma membrane, and subsequently activation of phospholipase Cγ2 (PLCγ2). Moreover, MCL-1 attenuated PLCγ2 activity and intracellular calcium concentration notably through extracellular calcium influx. Consequently, fMLP-induced phosphorylation of protein kinase C (PKC) and membrane localization of p47(phox) were decreased by MCL-1 in a Tec-dependent manner, while the phosphorylation of extracellular signal-regulated kinase (ERK), p38, AKT and Src tyrosine kinase family remained unaffected. In addition, MCL-1 neither inhibited NADPH oxidase activity nor increased cyclicAMP levels. MCL-1 specific opposes fMLP-mediated respiratory burst by inhibition of membrane localization of Tec and subsequently interfered with the activation of PLCγ2, protein kinase C, and p47(phox).
Collapse
|