1
|
Fang H, Gao J, Yu L, Shi P, Zhao C. Engineering Pichia pastoris for Efficient De Novo Synthesis of 2'-Fucosyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8555-8566. [PMID: 40152696 DOI: 10.1021/acs.jafc.5c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant in human milk oligosaccharides (HMOs), is a nutrient of great importance. As a safe organism widely used in industries, Pichia pastoris was tested here for 2'-FL production. The de novo biosynthesis pathway of 2'-FL was constructed using genome-editing technology based on CRISPR-Cas9 with an initial titer of 1.01 g/L. Introducing N-terminal SUMO or Ub tag to FucT2 and the transporter CDT2 from Neurospora crassa into P. pastoris was found to improve 2'-FL production. Then, modular metabolic engineering was conducted to improve 2'-FL production, enhancing the GTP supply module, NADPH regeneration module, and precursor supply module. Subsequently, the key enzyme FucT2 was semirationally designed to further increase 2'-FL production. Finally, the 2'-FL production by engineered P. pastoris was scaled up to the 3 L fermenter in fed-batch mode, resulting in a titer of 22.35 g/L that is the highest by P. pastoris. The results prove the effectiveness of the metabolic engineering strategies and demonstrate that P. pastoris could be a potential chassis to produce HMOs.
Collapse
Affiliation(s)
- Hao Fang
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou 450016, Henan Province, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Jialun Gao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Peng Shi
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Soussi-Therond M, Guarin D, Razanahoera A, Zhang Y, Baudin M, Miclet E, Giraud N, Abergel D. Simultaneous Observation of the Anomerization and Reaction Rates of Enzymatic Dehydrogenation of Glucose-6-Phosphate by Dissolution DNP. J Am Chem Soc 2024; 146:34651-34660. [PMID: 39635873 DOI: 10.1021/jacs.4c12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The hyperpolarization of biological samples using dissolution dynamic nuclear polarization (dDNP) has become an attractive method for the monitoring of fast chemical and enzymatic reactions using NMR by taking advantage of a large signal increase. This approach is actively developing but still needs key methodological breakthroughs to be used as an analytical method for the monitoring of complex networks of simultaneous metabolic pathways. In this article, we use the deceptively simple example of glucose-6-phosphate (G6P) oxidation reaction by the enzyme G6P dehydrogenase (G6PDH) to discuss some important methodological aspects of dDNP kinetic experiments, such as its robustness and its ability to provide repeatable results as well as the capacity of this time-resolved methodology to test kinetic models and hypotheses and to provide reliable parameter estimates. To illustrate the potential of our approach, we report the first direct and quantitative evidence of selectivity of G6PDH toward the β anomer of G6P.
Collapse
Affiliation(s)
- Mehdi Soussi-Therond
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - David Guarin
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Aiky Razanahoera
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS, UMR 8232, Sorbonne Université, 4 Place Jussieu, Paris 75005, France
- Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang311422, China
| | - Mathieu Baudin
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT UMR 8601, Université Paris Cité, 45, Rue des Saints Pères, Paris 75006 , France
| | - Emeric Miclet
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT UMR 8601, Université Paris Cité, 45, Rue des Saints Pères, Paris 75006 , France
| | - Daniel Abergel
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| |
Collapse
|
3
|
de la Fuente Tagarro C, Martín-González D, De Lucas A, Bordel S, Santos-Beneit F. Current Knowledge on CRISPR Strategies Against Antimicrobial-Resistant Bacteria. Antibiotics (Basel) 2024; 13:1141. [PMID: 39766530 PMCID: PMC11672446 DOI: 10.3390/antibiotics13121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR/Cas systems have emerged as valuable tools to approach the problem of antimicrobial resistance by either sensitizing or lysing resistant bacteria or by aiding in antibiotic development, with successful applications across diverse organisms, including bacteria and fungi. CRISPR/Cas systems can target plasmids or the bacterial chromosome of AMR-bacteria, and it is especially necessary to have an efficient entry into the target cells, which can be achieved through nanoparticles or bacteriophages. Regarding antibiotic development and production, though the use of CRISPR/Cas in this field is still modest, there is an untapped reservoir of bacterial and fungal natural products, with over 95% yet to be characterized. In Streptomyces, a key antibiotic-producing bacterial genus, CRISPR/Cas has been successfully used to activate silent biosynthetic gene clusters, leading to the discovery of new antibiotics. CRISPR/Cas is also applicable to non-model bacteria and different species of fungi, making it a versatile tool for natural products discovery. Moreover, CRISPR/Cas-based studies offer insights into metabolic regulation and biosynthetic pathways in both bacteria and fungi, highlighting its utility in understanding genetic regulation and improving industrial strains. In this work, we review ongoing innovations on ways to treat antimicrobial resistances and on antibiotic discovery using CRISPR/Cas platforms, highlighting the role of bacteria and fungi in these processes.
Collapse
Affiliation(s)
- Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| |
Collapse
|
4
|
Dos Santos K, Bertho G, Baudin M, Giraud N. Glutamine: A key player in human metabolism as revealed by hyperpolarized magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:15-39. [PMID: 39645348 DOI: 10.1016/j.pnmrs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 12/09/2024]
Abstract
In recent years, there has been remarkable progress in the field of dissolution dynamic nuclear polarization (D-DNP). This method has shown significant potential for enhancing nuclear polarization by over 10,000 times, resulting in a substantial increase in sensitivity. The unprecedented signal enhancements achieved with D-DNP have opened new possibilities for in vitro analysis. This method enables the monitoring of structural and enzymatic kinetics with excellent time resolution at low concentrations. Furthermore, these advances can be straightforwardly translated to in vivo magnetic resonance imaging and magnetic resonance spectroscopy (MRI and MRS) experiments. D-DNP studies have used a range of 13C labeled molecules to gain deeper insights into the cellular metabolic pathways and disease hallmarks. Over the last 15 years, D-DNP has been used to analyze glutamine, a key player in the cellular metabolism, involved in many diseases including cancer. Glutamine is the most abundant amino acid in blood plasma and the major carrier of nitrogen, and it is converted to glutamate inside the cell, where the latter is the most abundant amino acid. It has been shown that increased glutamine consumption by cells is a hallmark of tumor cancer metabolism. In this review, we first highlight the significance of glutamine in metabolism, providing an in-depth description of its use at the cellular level as well as its specific roles in various organs. Next, we present a comprehensive overview of the principles of D-DNP. Finally, we review the state of the art in D-DNP glutamine analysis and its application in oncology, neurology, and perfusion marker studies.
Collapse
Affiliation(s)
- Karen Dos Santos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Gildas Bertho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 rue d'Ulm, 75005 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
5
|
Phégnon L, Pérochon J, Uttenweiler-Joseph S, Cahoreau E, Millard P, Létisse F. 6-Phosphogluconolactonase is critical for the efficient functioning of the pentose phosphate pathway. FEBS J 2024; 291:4459-4472. [PMID: 38982839 DOI: 10.1111/febs.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
The metabolic networks of microorganisms are remarkably robust to genetic and environmental perturbations. This robustness stems from redundancies such as gene duplications, isoenzymes, alternative metabolic pathways, and also from non-enzymatic reactions. In the oxidative branch of the pentose phosphate pathway (oxPPP), 6-phosphogluconolactone hydrolysis into 6-phosphogluconate is catalysed by 6-phosphogluconolactonase (Pgl) but in the absence of the latter, the oxPPP flux is thought to be maintained by spontaneous hydrolysis. However, in Δpgl Escherichia coli, an extracellular pathway can also contribute to pentose phosphate synthesis. This raises question as to whether the intracellular non-enzymatic reaction can compensate for the absence of 6-phosphogluconolactonase and, ultimately, on the role of 6-phosphogluconolactonase in central metabolism. Our results validate that the bypass pathway is active in the absence of Pgl, specifically involving the extracellular spontaneous hydrolysis of gluconolactones to gluconate. Under these conditions, metabolic flux analysis reveals that this bypass pathway accounts for the entire flux into the oxPPP. This alternative metabolic route-partially extracellular-sustains the flux through the oxPPP necessary for cell growth, albeit at a reduced rate in the absence of Pgl. Importantly, these findings imply that intracellular non-enzymatic hydrolysis of 6-phosphogluconolactone does not compensate for the absence of Pgl. This underscores the crucial role of Pgl in ensuring the efficient functioning of the oxPPP.
Collapse
Affiliation(s)
- Léa Phégnon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Julien Pérochon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Edern Cahoreau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), France
| |
Collapse
|
6
|
Reyes JS, Cortés-Ríos J, Fuentes-Lemus E, Rodriguez-Fernandez M, Davies MJ, López-Alarcón C. Competitive oxidation of key pentose phosphate pathway enzymes modulates the fate of intermediates and NAPDH production. Free Radic Biol Med 2024; 222:505-518. [PMID: 38848786 DOI: 10.1016/j.freeradbiomed.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The oxidative phase of the pentose phosphate pathway (PPP) involving the enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), and 6-phosphogluconate dehydrogenase (6PGDH), is critical to NADPH generation within cells, with these enzymes catalyzing the conversion of glucose-6-phosphate (G6P) into ribulose-5-phosphate (Ribu5-P). We have previously studied peroxyl radical (ROO•) mediated oxidative inactivation of E. coli G6PDH, 6PGL, and 6PGDH. However, these data were obtained from experiments where each enzyme was independently exposed to ROO•, a condition not reflecting biological reality. In this work we investigated how NADPH production is modulated when these enzymes are jointly exposed to ROO•. Enzyme mixtures (1:1:1 ratio) were exposed to ROO• produced from thermolysis of 100 mM 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). NADPH was quantified at 340 nm, and protein oxidation analyzed by liquid chromatography with mass spectrometric detection (LC-MS). The data obtained were rationalized using a mathematical model. The mixture of non-oxidized enzymes, G6P and NADP+ generated ∼175 μM NADPH. Computational simulations showed a constant decrease of G6P associated with NADPH formation, consistent with experimental data. When the enzyme mixture was exposed to AAPH (3 h, 37 °C), lower levels of NADPH were detected (∼100 μM) which also fitted with computational simulations. LC-MS analyses indicated modifications at Tyr, Trp, and Met residues but at lower concentrations than detected for the isolated enzymes. Quantification of NADPH generation showed that the pathway activity was not altered during the initial stages of the oxidations, consistent with a buffering role of G6PDH towards inactivation of the oxidative phase of the pathway.
Collapse
Affiliation(s)
- Juan Sebastián Reyes
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Cortés-Ríos
- Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Maria Rodriguez-Fernandez
- Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Camilo López-Alarcón
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
7
|
Fuentes-Lemus E, Reyes JS, Figueroa JD, Davies MJ, López-Alarcón C. The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: consequences for NADPH production. Biochem Soc Trans 2023; 51:2173-2187. [PMID: 37971161 DOI: 10.1042/bst20231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The pentose phosphate pathway (PPP) is a key metabolic pathway. The oxidative phase of this process involves three reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL) and 6-phosphogluconate dehydrogenase (6PGDH) enzymes. The first and third steps (catalyzed by G6PDH and 6PGDH, respectively) are responsible for generating reduced nicotinamide adenine dinucleotide phosphate (NAPDH), a key cofactor for maintaining the reducing power of cells and detoxification of both endogenous and exogenous oxidants and electrophiles. Despite the importance of these enzymes, little attention has been paid to the fact that these proteins are targets of oxidants. In response to oxidative stimuli metabolic pathways are modulated, with the PPP often up-regulated in order to enhance or maintain the reductive capacity of cells. Under such circumstances, oxidation and inactivation of the PPP enzymes could be detrimental. Damage to the PPP enzymes may result in a downward spiral, as depending on the extent and sites of modification, these alterations may result in a loss of enzymatic activity and therefore increased oxidative damage due to NADPH depletion. In recent years, it has become evident that the three enzymes of the oxidative phase of the PPP have different susceptibilities to inactivation on exposure to different oxidants. In this review, we discuss existing knowledge on the role that these enzymes play in the metabolism of cells, and their susceptibility to oxidation and inactivation with special emphasis on NADPH production. Perspectives on achieving a better understanding of the molecular basis of the oxidation these enzymes within cellular environments are given.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan David Figueroa
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Zhang Y, Zhang X, Liu H, Hou J, Liu M, Qi Q. Efficient production of 2'-fucosyllactose in unconventional yeast Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:716-723. [PMID: 38053583 PMCID: PMC10694633 DOI: 10.1016/j.synbio.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuejing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Dos Santos K, Bertho G, Caradeuc C, Baud V, Montagne A, Abergel D, Giraud N, Baudin M. A Toolbox for Glutamine Use in Dissolution Dynamic Nuclear Polarization: from Enzymatic Reaction Monitoring to the Study of Cellular Metabolic Pathways and Imaging. Chemphyschem 2023; 24:e202300151. [PMID: 36973178 DOI: 10.1002/cphc.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Glutamine is under scrutiny regarding its metabolic deregulation linked to energetic reprogramming in cancer cells. Many analytical techniques have been used to better understand the impact of the metabolism of amino acids on biological processes, however only a few are suited to work with complex samples. Here, we report the use of a general dissolution dynamic nuclear polarization (D-DNP) formulation using an unexpensive radical as a multipurpose tool to study glutamine, with insights from enzymatic modelling to complex metabolic networks and fast imaging. First, hyperpolarized [5-13 C] glutamine is used as molecular probe to study the kinetic action of two enzymes: L-asparaginase that has been used as an anti-metabolic treatment for cancer, and glutaminase. These results are also compared with those acquired with another hyperpolarized amino acid, [1,4-13 C] asparagine. Second, we explored the use of hyperpolarized (HP) substrates to probe metabolic pathways by monitoring metabolic profiles arising from hyperpolarized glutamine in E. coli extracts. Finally, a highly concentrated sample formulation is proposed for the purpose of fast imaging applications. We think that this approach can be extended to formulate other amino acids as well as other metabolites and provide complementary insights into the analysis of metabolic networks.
Collapse
Affiliation(s)
- Karen Dos Santos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45, Rue des Saints Pères, 75006, Paris, France
| | - Gildas Bertho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45, Rue des Saints Pères, 75006, Paris, France
| | - Cédric Caradeuc
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45, Rue des Saints Pères, 75006, Paris, France
| | - Véronique Baud
- Laboratoire NF-κB, Différenciation et Cancer, Université Paris Cité, 24, Rue du faubourg Saint Jacques, 75014, Paris, France
| | - Aurélie Montagne
- Laboratoire NF-κB, Différenciation et Cancer, Université Paris Cité, 24, Rue du faubourg Saint Jacques, 75014, Paris, France
| | - Daniel Abergel
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université, 45 Rue d'Ulm, 75005, Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45, Rue des Saints Pères, 75006, Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45, Rue des Saints Pères, 75006, Paris, France
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université, 45 Rue d'Ulm, 75005, Paris, France
| |
Collapse
|
10
|
Reyes JS, Fuentes-Lemus E, Romero J, Arenas F, Fierro A, Davies MJ, López-Alarcón C. Peroxyl radicals modify 6-phosphogluconolactonase from Escherichia coli via oxidation of specific amino acids and aggregation which inhibits enzyme activity. Free Radic Biol Med 2023; 204:118-127. [PMID: 37119864 DOI: 10.1016/j.freeradbiomed.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
6-phosphogluconolactonase (6PGL) catalyzes the second reaction of the pentose phosphate pathway (PPP) converting 6-phosphogluconolactone to 6-phosphogluconate. The PPP is critical to the generation of NADPH and metabolic intermediates, but some of its components are susceptible to oxidative inactivation. Previous studies have characterized damage to the first (glucose-6-phosphate dehydrogenase) and third (6-phosphogluconate dehydrogenase) enzymes of the pathway, but no data are available for 6PGL. This knowledge gap is addressed here. Oxidation of Escherichia coli 6PGL by peroxyl radicals (ROO•, from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was examined using SDS-PAGE, amino acid consumption, liquid chromatography with mass detection (LC-MS), protein carbonyl formation and computational methods. NADPH generation was assessed using mixtures all three enzymes of the oxidative phase of the PPP. Incubation of 6PGL with 10 or 100 mM AAPH resulted in protein aggregation mostly due to reducible (disulfide) bonds. High fluxes of ROO• induced consumption of Cys, Met and Trp, with the Cys oxidation rationalizing the aggregate formation. Low levels of carbonyls were detected, while LC-MS analyses provided evidence for oxidation of selected Trp and Met residues (Met1, Trp18, Met41, Trp203, Met220 and Met221). ROO• elicited little loss of enzymatic activity of monomeric 6PGL, but the aggregates showed diminished NADPH generation. This is consistent with in silico analyses that indicate that the modified Trp and Met are far from the 6-phosphogluconolactone binding site and the catalytic dyad (His130 and Arg179). Together these data indicate that monomeric 6PGL is a robust enzyme towards oxidative inactivation by ROO• and when compared to other PPP enzymes.
Collapse
Affiliation(s)
- Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Jefferson Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Felipe Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
11
|
Linnenbrügger L, Doering L, Lansing H, Fischer K, Eirich J, Finkemeier I, von Schaewen A. Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum. FRONTIERS IN PLANT SCIENCE 2022; 13:909624. [PMID: 36119606 PMCID: PMC9478949 DOI: 10.3389/fpls.2022.909624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Glucose-6-phosphate dehydrogenase is the rate-limiting enzyme of the oxidative pentose-phosphate pathway (OPPP). The OPPP mainly provides NADPH and sugar-phosphate building blocks for anabolic pathways and is present in all eukaryotes. In plant cells, the irreversible part of the OPPP is found in several compartments. Among the isoforms catalyzing the first OPPP step in Arabidopsis, G6PD1 to G6PD4 target plastids (with G6PD1 being also directed to peroxisomes), whereas G6PD5 and G6PD6 operate in the cytosol. We noticed that alternative splice forms G6PD5.4 and G6PD5.5 encode N-terminally extended proteoforms. Compared to G6PD5.1, RT-PCR signals differed and fluorescent reporter fusions expressed in Arabidopsis protoplasts accumulated in distinct intracellular sites. Co-expression with organelle-specific markers revealed that the G6PD5.4 and G6PD5.5 proteoforms label different subdomains of the endoplasmic reticulum (ER), and analysis of C-terminal roGFP fusions showed that their catalytic domains face the cytosol. In g6pd5-1 g6pd6-2 mutant protoplasts lacking cytosolic G6PDH activity, the ER-bound proteoforms were both active and thus able to form homomers. Among the Arabidopsis 6-phosphogluconolactonases (catalyzing the second OPPP step), we noticed that isoform PGL2 carries a C-terminal CaaX motif that may be prenylated for membrane attachment. Reporter-PGL2 fusions co-localized with G6PD5.4 in ER subdomains, which was abolished by Cys-to-Ser exchange in the 256CSIL motif. Among the Arabidopsis 6-phosphogluconate dehydrogenases (catalyzing the third OPPP step), S-acylated peptides were detected for all three isoforms in a recent palmitoylome, with dual cytosolic/peroxisomal PGD2 displaying three sites. Co-expression of GFP-PGD2 diminished crowding of OFP-G6PD5.4 at the ER, independent of PGL2's presence. Upon pull-down of GFP-G6PD5.4, not only unlabeled PGD2 and PGL2 were enriched, but also enzymes that depend on NADPH provision at the ER, indicative of physical interaction with the OPPP enzymes. When membrane-bound G6PD5.5 and 5.4 variants were co-expressed with KCR1 (ketoacyl-CoA reductase, involved in fatty acid elongation), ATR1 (NADPH:cytochrome-P450 oxidoreductase), or pulled C4H/CYP73A5 (cinnamate 4-hydroxylase) as indirectly (via ATR) NADPH-dependent cytochrome P450 enzyme, co-localization in ER subdomains was observed. Thus, alternative splicing of G6PD5 can direct the NADPH-producing OPPP reactions to the cytosolic face of the ER, where they may operate as membrane-bound metabolon to support several important biosynthetic pathways of plant cells.
Collapse
Affiliation(s)
- Loreen Linnenbrügger
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Lennart Doering
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Hannes Lansing
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Kerstin Fischer
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Jürgen Eirich
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Iris Finkemeier
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Antje von Schaewen
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| |
Collapse
|
12
|
Dhumal TT, Kumar R, Paul A, Roy PK, Garg P, Singh S. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway. Biochimie 2022; 202:212-225. [PMID: 36037881 DOI: 10.1016/j.biochi.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
The enzymes of the pentose phosphate pathway are vital to survival in kinetoplastids. The second step of the pentose phosphate pathway involves hydrolytic cleavage of 6-phosphogluconolactone to 6-phosphogluconic acid by 6- phosphogluconolactonase (6PGL). In the present study, Leishmania donovani 6PGL (Ld6PGL) was cloned and overexpressed in bacterial expression system. Comparative sequence analysis revealed the conserved sequence motifs, functionally and structurally important residues in 6PGL family. In silico amino acid substitution study and interacting partners of 6PGL were predicted. The Ld6PGL enzyme was found to be active in the assay and in the parasites. Specificity was confirmed by western blot analysis. The ∼30 kDa protein was found to be a dimer in MALDI, glutaraldehyde crosslinking and size exclusion chromatography studies. Kinetic analysis and structural stability studies of Ld6PGL were performed with denaturants and at varied temperature. Computational 3D Structural modelling of Ld6PGL elucidates that it has a similar α/β hydrolase fold structural topology as in other members of 6PGL family. The three loops are found in extended form when the structure is compared with the human 6PGL (Hs6PGL). Further, enzyme substrate binding mode and its mechanism were investigated using the molecular docking and molecular simulation studies. Interesting dynamics action of substrate 6-phosphogluconolactone was observed into active site during MD simulation. Interesting differences were observed between host and parasite enzyme which pointed towards its potential to be explored as an antileishmanial drug target. This study forms the basis for further analysis of the role of Ld6PGL in combating oxidative stress in Leishmania.
Collapse
Affiliation(s)
- Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
13
|
Colás-Ruiz NR, Ramirez G, Courant F, Gomez E, Hampel M, Lara-Martín PA. Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150080. [PMID: 34525742 DOI: 10.1016/j.scitotenv.2021.150080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Sulisobenzone (BP-4) is one of the benzophenone type UV filters most frequently detected in aquatic ecosystems. As a suspected endocrine disrupting compound, scarce information is available yet about other molecular effects and its mechanism of action. Here, we used an integrated transcriptomic and metabolomic approach to improve the current understanding on the toxicity of BP-4 towards aquatic species. Gilt-head sea bream individuals were exposed at environmentally relevant concentrations (10 μg L-1) for 22 days. Transcriptomic analysis revealed 371 differentially expressed genes in liver while metabolomic analysis identified 123 differentially modulated features in plasma and 118 in liver. Integration of transcriptomic and metabolomic data showed disruption of the energy metabolism (>10 pathways related to the metabolism of amino acids and carbohydrates were impacted) and lipid metabolism (5 glycerophospholipids and the expression of 3 enzymes were affected), suggesting oxidative stress. We also observed, for the first time in vivo and at environmental relevant concentrations, the disruption of several enzymes involved in the steroid and thyroid hormones biosynthesis. DNA and RNA synthesis was also impacted by changes in the purine and pyrimidine metabolisms. Overall, the multiomic workflow presented here increases the evidence on suspected effects of BP-4 exposure and identifies additional modes of action of the compounds that could have been overlooked by using single omic approaches.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Gaëlle Ramirez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
14
|
Brune KD, Liekniņa I, Sutov G, Morris AR, Jovicevic D, Kalniņš G, Kazāks A, Kluga R, Kastaljana S, Zajakina A, Jansons J, Skrastiņa D, Spunde K, Cohen AA, Bjorkman PJ, Morris HR, Suna E, Tārs K. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. Chembiochem 2021; 22:3199-3207. [PMID: 34520613 DOI: 10.1002/cbic.202100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Collapse
Affiliation(s)
- Karl D Brune
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Grigorij Sutov
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania
| | - Alexander R Morris
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK
| | - Dejana Jovicevic
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Sabine Kastaljana
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Karīna Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Howard R Morris
- BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK.,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| |
Collapse
|
15
|
Batsios G, Taglang C, Cao P, Gillespie AM, Najac C, Subramani E, Wilson DM, Flavell RR, Larson PEZ, Ronen SM, Viswanath P. Imaging 6-Phosphogluconolactonase Activity in Brain Tumors In Vivo Using Hyperpolarized δ-[1- 13C]gluconolactone. Front Oncol 2021; 11:589570. [PMID: 33937017 PMCID: PMC8082394 DOI: 10.3389/fonc.2021.589570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging. METHODS To interrogate the function of PGLS in redox, PGLS expression was silenced in U87, U251 and GS2 glioblastoma cells by RNA interference and levels of NADPH and reduced glutathione (GSH) measured. Clonogenicity assays were used to assess the effect of PGLS silencing on glioblastoma proliferation. Hyperpolarized δ-[1-13C]gluconolactone metabolism to 6PG was assessed in live cells treated with the chemotherapeutic agent temozolomide (TMZ) or with vehicle control. 13C 2D echo-planar spectroscopic imaging (EPSI) studies of hyperpolarized δ-[1-13C]gluconolactone metabolism were performed on rats bearing orthotopic glioblastoma tumors or tumor-free controls on a 3T spectrometer. Longitudinal 2D EPSI studies of hyperpolarized δ-[1-13C]gluconolactone metabolism and T2-weighted magnetic resonance imaging (MRI) were performed in rats bearing orthotopic U251 tumors following treatment with TMZ to examine the ability of hyperpolarized δ-[1-13C]gluconolactone to report on treatment response. RESULTS PGLS knockdown downregulated NADPH and GSH, elevated oxidative stress and inhibited clonogenicity in all models. Conversely, PGLS expression and activity and steady-state NADPH and GSH were higher in tumor tissues from rats bearing orthotopic glioblastoma xenografts relative to contralateral brain and tumor-free brain. Importantly, [1-13C]6PG production from hyperpolarized δ-[1-13C]gluconolactone was observed in live glioblastoma cells and was significantly reduced by treatment with TMZ. Furthermore, hyperpolarized δ-[1-13C]gluconolactone metabolism to [1-13C]6PG could differentiate tumor from contralateral normal brain in vivo. Notably, TMZ significantly reduced 6PG production from hyperpolarized δ-[1-13C]gluconolactone at an early timepoint prior to volumetric alterations as assessed by anatomical imaging. CONCLUSIONS Collectively, we have, for the first time, identified a role for PGLS activity in glioblastoma proliferation and validated the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive in vivo imaging of glioblastomas and their response to therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
16
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Dubreuil MM, Morgens DW, Okumoto K, Honsho M, Contrepois K, Lee-McMullen B, Traber GM, Sood RS, Dixon SJ, Snyder MP, Fujiki Y, Bassik MC. Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway. Cell Rep 2021; 30:1417-1433.e7. [PMID: 32023459 DOI: 10.1016/j.celrep.2020.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/07/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress.
Collapse
Affiliation(s)
- Michael M Dubreuil
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | - Ria S Sood
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Scott J Dixon
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Michael C Bassik
- Program in Cancer Biology, Stanford University, Stanford, CA 94305-5120, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305-5120, USA.
| |
Collapse
|
18
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
19
|
Lansing H, Doering L, Fischer K, Baune MC, Schaewen AV. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:823-836. [PMID: 31641750 DOI: 10.1093/jxb/erz473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.
Collapse
Affiliation(s)
- Hannes Lansing
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Lennart Doering
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Kerstin Fischer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Marie-Christin Baune
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Antje Von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| |
Collapse
|
20
|
Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, Wang M, Wu S, Dai Q, Vu H, Zacharias L, DeBerardinis R, Lim E, Metallo C, Boggon TJ, Lonial S, Lin R, Mao H, Pan Y, Shan C, Chen J. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell 2019; 76:857-871.e9. [PMID: 31586547 PMCID: PMC6925637 DOI: 10.1016/j.molcel.2019.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.
Collapse
Affiliation(s)
- Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liang Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaoxiong Wu
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Hieu Vu
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren Zacharias
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Esther Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Yu M, Zhao Y. Cell permeability, β-lactamase activity, and transport contribute to high level of resistance to ampicillin in Lysobacter enzymogenes. Appl Microbiol Biotechnol 2019; 104:1149-1161. [PMID: 31822985 DOI: 10.1007/s00253-019-10266-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
Discovery of multidrug resistance (MDR) in environmental microorganisms provides unique resources for uncovering antibiotic resistomes, which could be vital to predict future emergence of MDR pathogens. Our previous studies indicated that Lysobacter sp. conferred intrinsic resistance to multiple antibiotics at high levels, especially ampicillin, the first broad-spectrum β-lactam antibiotics against both Gram-positive and Gram-negative bacteria. However, the underlying molecular mechanisms for resistance to ampicillin in Lysobacter enzymogenes strain C3 (LeC3) remain unknown. In this study, screening a Tn5 transposon mutant library of LeC3 recovered 12 mutants with decreased ampicillin resistance, and three mutants (i.e., tatC, lebla, and lpp) were selected for further characterization. Our results revealed that genes encoding β-lactamase (lebla) and twin-arginine translocation (tatC) system for β-lactamase transport played a pivotal role in conferring ampicillin resistance in L. enzymogenes. It was also demonstrated that the lpp gene was not only involved in resistance against β-lactams but also conferred resistance to multiple antibiotics in L. enzymogenes. Permeability assay results indicated that decreased MDR in the lpp mutant was in part due to its higher cellular permeability. Furthermore, our results showed that the difference of LeC3 and L. antibioticus strain LaATCC29479 in ampicillin susceptibility was partly due to their differences in cellular permeability, but not due to β-lactamase activities.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Li ML, Wu SH, Zhang JJ, Tian HY, Shao Y, Wang ZB, Irwin DM, Li JL, Hu XT, Wu DD. 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. Genome Biol 2019; 20:258. [PMID: 31779658 PMCID: PMC6883628 DOI: 10.1186/s13059-019-1866-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Brain aging is a complex process that depends on the precise regulation of multiple brain regions; however, the underlying molecular mechanisms behind this process remain to be clarified in non-human primates. RESULTS Here, we explore non-human primate brain aging using 547 transcriptomes originating from 44 brain areas in rhesus macaques (Macaca mulatta). We show that expression connectivity between pairs of cerebral cortex areas as well as expression symmetry between the left and right hemispheres both decrease after aging. Although the aging mechanisms across different brain areas are largely convergent, changes in gene expression and alternative splicing vary at diverse genes, reinforcing the complex multifactorial basis of aging. Through gene co-expression network analysis, we identify nine modules that exhibit gain of connectivity in the aged brain and uncovered a hub gene, PGLS, underlying brain aging. We further confirm the functional significance of PGLS in mice at the gene transcription, molecular, and behavioral levels. CONCLUSIONS Taken together, our study provides comprehensive transcriptomes on multiple brain regions in non-human primates and provides novel insights into the molecular mechanism of healthy brain aging.
Collapse
Affiliation(s)
- Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shi-Hao Wu
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zheng-Bo Wang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
23
|
Tang Y, Cheng F, Feng Z, Jia G, Li C. Stereostructural Elucidation of Glucose Phosphorylation by Raman Optical Activity. J Phys Chem B 2019; 123:7794-7800. [PMID: 31335146 DOI: 10.1021/acs.jpcb.9b05968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorylation of glucose is the prime step in sugar metabolism and energy storage. Two key glucose phosphates are involved, that is, glucose 6-phosphate (G6P) and α-glucose 1-phosphate (αG1P). The chiral conformation of glucose, G6P, and αG1P plays an essential role in enzyme-mediated conversions. However, few techniques were able to give a direct view of the conformational changes from glucose to G6P and αG1P. Here, Raman optical activity (ROA) was used to elucidate the stereochemical evolution of glucose upon phosphorylation. ROA was found to be extremely sensitive to different phosphorylation sites. A characteristic ROA marker of (+)980 cm-1, originated from the phosphate group symmetric stretching vibration, is observed for αG1P with phosphorylation at chiral C1, while no corresponding ROA signal for G6P with phosphorylation at achiral C6 is observed. Phosphorylation-induced gauch-gauch (gg)/gauch-trans (gt) rotamer distribution changes can be sensitively probed by the sign of the ROA band around 1460 cm-1. A positive ROA band at 1465 cm-1 of glucose corresponds to a higher gt ratio, while a negative band at 1455 cm-1 of G6P suggests a dominant gg population, and the disappearance of this ROA band for αG1P indicates a nearly balanced gg/gt distribution. Meanwhile, the phosphorylation at C6 and C1 could cause dramatic reduction of the conformational flexibility of the adjacent C4-OH and C2-OH, respectively. These stereochemical changes revealed by ROA spectra offer a structural basis on the understanding of sugar phosphorylation from the perspective of chirality.
Collapse
Affiliation(s)
- Yuxuan Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Feng Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
24
|
Metabolite Repair Enzymes Control Metabolic Damage in Glycolysis. Trends Biochem Sci 2019; 45:228-243. [PMID: 31473074 DOI: 10.1016/j.tibs.2019.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.
Collapse
|
25
|
The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:15297-15306. [PMID: 31296566 PMCID: PMC6660741 DOI: 10.1073/pnas.1908556116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many mutations that affect plastidial metabolism are embryo-lethal, as expected if the disrupted genes encode enzymes with essential housekeeping functions. However, some mutations that disrupt the plastidial oxidative pentose phosphate pathway (OPPP) cause developmental defects, as well as embryo arrest at the globular stage of development. We show that the OPPP provides the substrate for the pathway of purine synthesis, ribose-5-phosphate, and is thus essential for the generation of nucleic acids during the very early stages of embryo development. Inadequate purine synthesis leads to abnormal patterns of cell division in the embryo and blocks development beyond the globular stage. Therefore, defects in primary metabolic pathways can have profound consequences for development as well as simply reducing growth. Large numbers of genes essential for embryogenesis in Arabidopsis encode enzymes of plastidial metabolism. Disruption of many of these genes results in embryo arrest at the globular stage of development. However, the cause of lethality is obscure. We examined the role of the plastidial oxidative pentose phosphate pathway (OPPP) in embryo development. In nonphotosynthetic plastids the OPPP produces reductant and metabolic intermediates for central biosynthetic processes. Embryos with defects in various steps in the oxidative part of the OPPP had cell division defects and arrested at the globular stage, revealing an absolute requirement for the production via these steps of ribulose-5-phosphate. In the nonoxidative part of the OPPP, ribulose-5-phosphate is converted to ribose-5-phosphate (R5P)—required for purine nucleotide and histidine synthesis—and subsequently to erythrose-4-phosphate, which is required for synthesis of aromatic amino acids. We show that embryo development through the globular stage specifically requires synthesis of R5P rather than erythrose-4-phosphate. Either a failure to convert ribulose-5-phosphate to R5P or a block in purine nucleotide biosynthesis beyond R5P perturbs normal patterning of the embryo, disrupts endosperm development, and causes early developmental arrest. We suggest that seed abortion in mutants unable to synthesize R5P via the oxidative part of the OPPP stems from a lack of substrate for synthesis of purine nucleotides, and hence nucleic acids. Our results show that the plastidial OPPP is essential for normal developmental progression as well as for growth in the embryo.
Collapse
|
26
|
Riahi J, Amri B, Chibani F, Azri W, Mejri S, Bennani L, Zoghlami N, Matros A, Mock HP, Ghorbel A, Jardak R. Comparative analyses of albumin/globulin grain proteome fraction in differentially salt-tolerant Tunisian barley landraces reveals genotype-specific and defined abundant proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:652-661. [PMID: 30672087 DOI: 10.1111/plb.12965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Salinity is one of the major abiotic stresses threatening crop production and yield worldwide. Breeding programmes are therefore needed to improve yield under cultivation in soil. Traits from locally adopted landraces provide a resource to assist breeding of novel elite genotypes. Here, we examine differentially expressed proteins by performing comparative proteomic profiling of the albumin/globulin grain fraction of Tunisian barley genotype landraces with contrasting salinity tolerance. Tunisian barley Boulifa (B, tolerant) and Testour (T, sensitive) mature grains were assessed in 2-DE profiles. Differentially expressed spots, with an abundance enhanced 1.5-fold in the grain, were subjected to MALDI TOF/TOF MS for identification. Distinctiveness between tolerant and sensitive genotypes was proved in the albumin/globulin fraction using PCA; 64 spots showed significant differential abundance. Increased accumulation of 40 spots was confirmed in Boulifa with, interestingly, four genotype-specific spots. Two of these four spots were sHSP. Proteins with highest abundance were serpin Z7, 16.9 KDa Class I HSP and phosphogluconolactonase 2. Proteins such as expansin, kiwellin, kinesin and succinyl-CoA ligase were identified for the first time in barley grain. Moreover, ß-amylase, LEA family and others were identified as abundant in Boulifa. On the other hand, proteins more accumulated in Testour are implicated mainly in ROS scavenging and protease inhibition. Our results clearly indicate proteomic contrast between the two selected genotypes. With identification of specific HSP, high abundant stress-protective and other defined proteins, we provide biochemical traits that will support breeding programmes to address the threat of salinity in agricultural production.
Collapse
Affiliation(s)
- J Riahi
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - B Amri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - F Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - W Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - S Mejri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - L Bennani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - N Zoghlami
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - A Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - H P Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - A Ghorbel
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - R Jardak
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
27
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
28
|
Wang X, Li M, Liu X, Zhang L, Duan Q, Zhang J. Quantitative Proteomic Analysis of Castor ( Ricinus communis L.) Seeds During Early Imbibition Provided Novel Insights into Cold Stress Response. Int J Mol Sci 2019; 20:E355. [PMID: 30654474 PMCID: PMC6359183 DOI: 10.3390/ijms20020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Min Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Xuming Liu
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Lixue Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Qiong Duan
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Jixing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| |
Collapse
|
29
|
Targeting the Pentose Phosphate Pathway: Characterization of a New 6PGL Inhibitor. Biophys J 2018; 115:2114-2126. [PMID: 30467026 DOI: 10.1016/j.bpj.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is a lethal disease caused by the protozoan parasite Trypanosoma brucei. However, although many efforts have been made to understand the biochemistry of this parasite, drug development has led to treatments that are of limited efficiency and of great toxicity. To develop new drugs, new targets must be identified, and among the several metabolic processes of trypanosomes that have been proposed as drug targets, carbohydrate metabolism (glycolysis and the pentose phosphate pathway (PPP)) appears as a promising one. As far as the PPP is concerned, a limited number of studies are related to the glucose-6-phosphate dehydrogenase. In this work, we have focused on the activity of the second PPP enzyme (6-phospho-gluconolactonase (6PGL)) that transforms 6-phosphogluconolactone into 6-phosphogluconic acid. A lactam analog of the natural substrate has been synthesized, and binding of the ligand to 6PGL has been investigated by NMR titration. The ability of this ligand to inhibit 6PGL has also been demonstrated using ultraviolet experiments, and protein-inhibitor interactions have been investigated through docking calculations and molecular dynamics simulations. In addition, a marginal inhibition of the third enzyme of the PPP (6-phosphogluconate dehydrogenase) was also demonstrated. Our results thus open new prospects for targeting T. brucei.
Collapse
|
30
|
Fatima T, Rani S, Fischer S, Efferth T, Kiani FA. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Biophys Chem 2018; 240:98-106. [PMID: 30014892 DOI: 10.1016/j.bpc.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorable mechanism, two water molecules participate in the hydrolysis reaction and the mechanism is sequential, i.e., activation of the attacking water molecule (OH bond breaking) precedes that of the cleavage of the CO bond of the C-O-C linkage. The rate-limiting energy barrier of this mechanism is comparable to the reported experimental free energy barrier. This mechanism has similarities with the mechanism of triphosphate hydrolysis and that of hydrolytic cleavage of DNA in EcoRV enzyme. This two-water sequential hydrolysis mechanism could be the unified mechanism required for the hydrolysis of other hydrolysable species in living cells.
Collapse
Affiliation(s)
- Tabeer Fatima
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Biotechnology, University of Sialkot, 51310 Sialkot, Pakistan
| | - Sadaf Rani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing, The University of Heidelberg, D-69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Farooq Ahmad Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, 02118 Boston, MA, United States.
| |
Collapse
|
31
|
Sadet A, Weber EMM, Jhajharia A, Kurzbach D, Bodenhausen G, Miclet E, Abergel D. Rates of Chemical Reactions Embedded in a Metabolic Network by Dissolution Dynamic Nuclear Polarisation NMR. Chemistry 2018; 24:5456-5461. [PMID: 29356139 DOI: 10.1002/chem.201705520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/11/2022]
Abstract
The isomerisation of 6-phosphogluconolactones and their hydrolyses into 6-phosphogluconic acid form a non enzymatic side cycle of the pentose-phosphate pathway (PPP) in cells. Dissolution dynamic nuclear polarisation can be used for determining the kinetic rates of the involved transformations in real time. It is found that the hydrolysis of both lactones is significantly slower than the isomerisation process, thereby shedding new light onto this subtle chemical process.
Collapse
Affiliation(s)
- Aude Sadet
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Emmanuelle M M Weber
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Aditya Jhajharia
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Dennis Kurzbach
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Geoffrey Bodenhausen
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Emeric Miclet
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Daniel Abergel
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France.,Laboratoire des biomolécules, LBM, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
32
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
33
|
Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology (Reading) 2017; 163:1148-1155. [DOI: 10.1099/mic.0.000501] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Haiyan Jia
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Longmei Zhang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Tongtong Wang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Jin Han
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Hui Tang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Liping Zhang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| |
Collapse
|
34
|
Abstract
Genomic studies focus on key metabolites and pathways that, despite their obvious anthropocentric design, keep being 'predicted', while this is only finding again what is already known. As increasingly more genomes are sequenced, this lightpost effect may account at least in part for our failure to understand the function of a continuously growing number of genes. Core metabolism often goes astray, accidentally producing a variety of unexpected compounds. Catabolism of these forgotten metabolites makes an essential part of the functions coded in metagenomes. Here, I explore the fate of a limited number of those: compounds resulting from radical reactions and molecules derived from some reactive intermediates produced during normal metabolism. I try both to update investigators with the most recent literature and to uncover old articles that may open up new research avenues in the genome exploration of metabolism. This should allow us to foresee further developments in experimental genomics and genome annotation.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'HôpitalParis75013France
| |
Collapse
|
35
|
The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol 2016; 32:622-634. [DOI: 10.1016/j.pt.2016.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
|
36
|
Sharkey TD, Weise SE. The glucose 6-phosphate shunt around the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4067-77. [PMID: 26585224 DOI: 10.1093/jxb/erv484] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It is just over 60 years since a cycle for the regeneration of the CO2-acceptor used in photosynthesis was proposed. In this opinion paper, we revisit the origins of the Calvin-Benson cycle that occurred at the time that the hexose monophosphate shunt, now called the pentose phosphate pathway, was being worked out. Eventually the pentose phosphate pathway was separated into two branches, an oxidative branch and a non-oxidative branch. It is generally thought that the Calvin-Benson cycle is the reverse of the non-oxidative branch of the pentose phosphate pathway but we describe crucial differences and also propose that some carbon routinely passes through the oxidative branch of the pentose phosphate pathway. This creates a futile cycle but may help to stabilize photosynthesis. If it occurs it could explain a number of enigmas including the lack of complete labelling of the Calvin-Benson cycle intermediates when carbon isotopes are fed to photosynthesizing leaves.
Collapse
Affiliation(s)
- Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Sean E Weise
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
George DS, Razali Z, Santhirasegaram V, Somasundram C. Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2851-2860. [PMID: 26350493 DOI: 10.1002/jsfa.7454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Postharvest treatments of fruits using techniques such as ultraviolet-C have been linked with maintenance of the fruit quality as well as shelf-life extension. However, the effects of this treatment on the quality of fruits on a proteomic level remain unclear. This study was conducted in order to understand the response of mango fruit to postharvest UV-C irradiation. RESULTS Approximately 380 reproducible spots were detected following two-dimensional gel electrophoresis. Through gel analysis, 24 spots were observed to be differentially expressed in UV-C treated fruits and 20 were successfully identified via LCMS/MS. Postharvest UV-C treatment resulted in degradative effects on these identified proteins of which 40% were related to stress response, 45% to energy and metabolism and 15% to ripening and senescence. In addition, quality and shelf-life analysis of control and irradiated mangoes was evaluated. UV-C was found to be successful in retention of quality and extension of shelf-life up to 15 days. Furthermore, UV-C was also successful in increasing antioxidants (total flavonoid, reducing power and ABTS scavenging activity) in mangoes. CONCLUSION This study provides an overview of the effects of UV-C treatment on the quality of mango on a proteomic level as well as the potential of this treatment in shelf-life extension of fresh-cut fruits. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dominic Soloman George
- Institute of Biological Sciences & Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences & Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vicknesha Santhirasegaram
- Institute of Biological Sciences & Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences & Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Lewis MA, Buniello A, Hilton JM, Zhu F, Zhang WI, Evans S, van Dongen S, Enright AJ, Steel KP. Exploring regulatory networks of miR-96 in the developing inner ear. Sci Rep 2016; 6:23363. [PMID: 26988146 PMCID: PMC4796898 DOI: 10.1038/srep23363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Annalisa Buniello
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Fei Zhu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - William I Zhang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephanie Evans
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
39
|
Liu Z, Liu P, Xiao D, Zhang X. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. J Ind Microbiol Biotechnol 2016; 43:851-60. [PMID: 26946319 DOI: 10.1007/s10295-016-1751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
Abstract
Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.
Collapse
Affiliation(s)
- Zichun Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
40
|
Silverman AM, Qiao K, Xu P, Stephanopoulos G. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 2016; 100:3781-98. [DOI: 10.1007/s00253-016-7376-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
|
41
|
Tan Z, Chen J, Zhang X. Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:262. [PMID: 27980672 PMCID: PMC5134279 DOI: 10.1186/s13068-016-0675-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. RESULTS Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. CONCLUSIONS In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.
Collapse
Affiliation(s)
- Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jing Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
42
|
Fujieda N, Schätti J, Stuttfeld E, Ohkubo K, Maier T, Fukuzumi S, Ward TR. Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chem Sci 2015; 6:4060-4065. [PMID: 29218172 PMCID: PMC5707476 DOI: 10.1039/c5sc01065a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023] Open
Abstract
Adding a metal cofactor to a protein bearing a latent metal binding site endows the macromolecule with nascent catalytic activity.
As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat 7.8 × 10–2 s–1, KM 1.1 × 10–5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLac reveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate.
Collapse
Affiliation(s)
- Nobutaka Fujieda
- Department of Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland . ;
| | - Jonas Schätti
- Department of Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland . ;
| | - Edward Stuttfeld
- Biozentrum , University of Basel , Klingelbergstr. 50/70 , CH-4056 Basel , Switzerland
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , Osaka University , ALCA and SENTAN , Japan Science and Technology Agency (JST) , 2-1 Yamada-oka , Suita , Osaka 565-0871 , Japan.,Department of Bioinspired Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Timm Maier
- Biozentrum , University of Basel , Klingelbergstr. 50/70 , CH-4056 Basel , Switzerland
| | - Shunichi Fukuzumi
- Department of Material and Life Science , Graduate School of Engineering , Osaka University , ALCA and SENTAN , Japan Science and Technology Agency (JST) , 2-1 Yamada-oka , Suita , Osaka 565-0871 , Japan.,Department of Bioinspired Science , Ewha Womans University , Seoul 120-750 , Korea.,Faculty of Science and Technology , Meijo University and ALCA and SENTAN , Japan Science and Technology Agency (JST) , Tempaku , Nagoya , Aichi 468-8502 , Japan
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland . ;
| |
Collapse
|
43
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|
44
|
Enterococcus faecalis 6-phosphogluconolactonase is required for both commensal and pathogenic interactions with Manduca sexta. Infect Immun 2014; 83:396-404. [PMID: 25385794 DOI: 10.1128/iai.02442-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecalis is a commensal and pathogen of humans and insects. In Manduca sexta, E. faecalis is an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigate E. faecalis factors required for commensalism, we identified E. faecalis genes that are upregulated in the gut of M. sexta using recombinase-based in vivo expression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designated pglA. A pglA deletion mutant was impaired in both pathogenesis and gut persistence in M. sexta and produced enhanced biofilms compared with the wild type in an in vitro polystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants for E. faecalis commensal and pathogenic interactions with M. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to prevent E. faecalis infections.
Collapse
|
45
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 920] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
46
|
Lerche MH, Jensen PR, Karlsson M, Meier S. NMR insights into the inner workings of living cells. Anal Chem 2014; 87:119-32. [PMID: 25084065 DOI: 10.1021/ac501467x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mathilde H Lerche
- Albeda Research , Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | | | | | | |
Collapse
|
47
|
Nenkov I, Stahlhut G, Kusian B, Mitov I, Bowien B. Bioinformatical Sequence Analysis of the Products of the AdjacentZWFandEDD2Operons ofRalstonia EutrophaH16. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
48
|
Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei. PLoS Comput Biol 2013; 9:e1003371. [PMID: 24339766 PMCID: PMC3854711 DOI: 10.1371/journal.pcbi.1003371] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023] Open
Abstract
Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate “leak” must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally. Mathematical models have been valuable tools for investigating the complex behaviors of metabolism. Due to incomplete knowledge of biological systems, these models contain inevitable uncertainty. This uncertainty is present in the measured or estimated parameter values, but also in the structure of the metabolic network. In this paper we increase the coverage of a particularly well studied model of glucose metabolism in Trypanosoma brucei, a tropical parasite that causes African sleeping sickness, by extending it with an additional pathway in two compartments. During this modeling process we highlighted uncertainties in parameter values and network structure and used these to formulate new hypotheses which were subsequently tested experimentally. The models were improved with the experimentally derived data, but uncertainty remained concerning the exact topology of the system. These models allowed us to investigate the effects of the loss of one enzyme, 6-phosphogluconate dehydrogenase. By taking uncertainty into account, the models demonstrated that the loss of this enzyme is lethal to the parasite by a mechanism different than that in other organisms. Our methodology shows how formally introducing uncertainty into model building provides robust model behavior that is independent of the network structure or parameter values.
Collapse
|
49
|
Bussell JD, Keech O, Fenske R, Smith SM. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:578-91. [PMID: 23621281 DOI: 10.1111/tpj.12222] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 05/08/2023]
Abstract
Sugar metabolism and the oxidative pentose phosphate pathway (OPPP) are strongly implicated in N assimilation, although the relationship between them and the roles of the plastidial and cytosolic OPPP have not been established genetically. We studied a knock-down mutant of the plastid-localized OPPP enzyme 6-phosphogluconolactonase 3 (PGL3). pgl3-1 plants exhibited relatively greater resource allocation to roots but were smaller than the wild type. They had a lower content of amino acids and free NO3 - in leaves than the wild type, despite exhibiting comparable photosynthetic rates and efficiency, and normal levels of many other primary metabolites. When N-deprived plants were fed via the roots with 15NO3 -, pgl3-1 exhibited normal induction of OPPP and nitrate assimilation genes in roots, and amino acids in roots and shoots were labeled with (15) N at least as rapidly as in the wild type. However, when N-replete plants were fed via the roots with sucrose, expression of specific OPPP and N assimilation genes in roots increased in the wild type but not in pgl3-1. Thus, sugar-dependent expression of N assimilation genes requires OPPP activity and the specificity of the effect of the pgl3-1 mutation on N assimilation genes establishes that it is not the result of general energy deficiency or accumulation of toxic intermediates. We conclude that expression of specific nitrate assimilation genes in the nucleus of root cells is positively regulated by a signal emanating from OPPP activity in the plastid.
Collapse
Affiliation(s)
- John D Bussell
- Australian Research Council Centre of Excellence in Plant Energy Biology (M316), University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
50
|
Lin HR, Wu CC, Wu YH, Hsu CW, Cheng ML, Chiu DTY. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity. J Proteome Res 2013; 12:3434-48. [PMID: 23742107 DOI: 10.1021/pr4002959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is pivotal to reduced nicotinamide adenine dinucleotide phosphate (NADPH) production and cellular redox balance. Cells with G6PD deficiency are susceptible to oxidant-induced death at high oxidative stress. However, it remains unclear what precise biological processes are affected by G6PD deficiency due to altered cellular redox homeostasis, particularly at low oxidative stress. To further explore the biological role of G6PD, we generated G6PD-knockdown cell clones using lung cancer line A549. We identified proteins differentially expressed in the knockdown clones without the addition of exogenous oxidant by means of isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). We validated a panel of proteins that showed altered expression in G6PD-knockdown clones and were involved in metabolism of xenobiotic and glutathione (GSH) as well as energy metabolism. To determine the physiological relevancy of our findings, we investigated the functional consequence of G6PD depletion in cells treated with a prevalent xenobiotic, aflatoxin B₁(AFB₁). We found a protective role of G6PD in AFB₁-induced cytotoxicity, possibly via providing NADPH for NADPH oxidase to induce epoxide hydrolase 1 (EPHX1), a xenobiotic-metabolizing enzyme. Collectively, our findings reveal for the first time a proteome-wide dysregulation by G6PD depletion under the condition without exogenous oxidant challenge, and we suggest a novel association of G6PD activity with AFB₁-related xenobiotic metabolism.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|