1
|
Vinijkumthorn R, Kingkaw A, Yanyongsirikarn P, Phaonakrop N, Roytrakul S, Vongsangnak W, Tesena P. Phosphorylation of SNW1 protein associated with equine melanocytic neoplasm identified in serum and feces. Sci Rep 2024; 14:30842. [PMID: 39730520 DOI: 10.1038/s41598-024-81338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Equine melanocytic neoplasm (EMN) represents a form of skin tumor observed predominantly in grey horses aged over 15 years. Despite its prevalence, current therapeutic and preventive strategies for EMN have been subject to limited investigation. This study endeavors to shed light on potential phosphoproteins present in equine serum and fecal samples, potentially linked to EMN, with a specific focus on functional interactions in EMN pathogenesis. We examined 50 samples (25 serum, 25 feces), divided into three groups based on EMN severity: normal (n = 16), mild (n = 18), and severe EMN (n = 16). Equine phosphoproteome analysis identified 2,359 annotated serum phosphoproteins and 2002 annotated fecal phosphoproteins through differentially expressed proteins (DEPs). KEGG analysis emphasized the role of environmental information processing. Notably, the integrin NF-kappaB binding P-TEFb to stimulate transcriptional elongation signaling pathway, involving SNW1 protein, was implicated in early stage of EMN development in both serum and fecal samples. This highlights SNW1's potential role in mediating transcriptional processes, offering a novel marker within environmental information processing. This study enhances understanding of EMN mechanisms in horses, suggesting early detection through non-invasive methods and identifying a functional pathway involving SNW1, which could inform future treatment and prevention strategies.
Collapse
Affiliation(s)
- Ruethaiwan Vinijkumthorn
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Petchpailin Yanyongsirikarn
- Prasuarthon Small Animal Hospital, Faculty of Veterinary Science, Equine Clinic, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
| | - Parichart Tesena
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Taracha-Wisniewska A, Parks EGC, Miller M, Lipinska-Zubrycka L, Dworkin S, Wilanowski T. Vitamin D Receptor Regulates the Expression of the Grainyhead-Like 1 Gene. Int J Mol Sci 2024; 25:7913. [PMID: 39063155 PMCID: PMC11276664 DOI: 10.3390/ijms25147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular functions, as well as in extraskeletal health, ensuring the proper functioning of multiple human organs, including the skin. Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. Even though they are involved in many processes regulated by vitamin D, a direct link between vitamin D-mediated cellular pathways and GRHL genes has never been described. We employed various bioinformatic methods, quantitative real-time PCR, chromatin immunoprecipitation, reporter gene assays, and calcitriol treatments to investigate this issue. We report that the vitamin D receptor (VDR) binds to a regulatory region of the Grainyhead-like 1 (GRHL1) gene and regulates its expression. Ectopic expression of VDR and treatment with calcitriol alters the expression of the GRHL1 gene. The evidence presented here indicates a role of VDR in the regulation of expression of GRHL1 and correspondingly a role of GRHL1 in mediating the actions of vitamin D.
Collapse
Affiliation(s)
- Agnieszka Taracha-Wisniewska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Emma G. C. Parks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Michal Miller
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Lidia Lipinska-Zubrycka
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Tomasz Wilanowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| |
Collapse
|
3
|
Chervova A, Molliex A, Baymaz HI, Coux RX, Papadopoulou T, Mueller F, Hercul E, Fournier D, Dubois A, Gaiani N, Beli P, Festuccia N, Navarro P. Mitotic bookmarking redundancy by nuclear receptors in pluripotent cells. Nat Struct Mol Biol 2024; 31:513-522. [PMID: 38196033 PMCID: PMC10948359 DOI: 10.1038/s41594-023-01195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.
Collapse
Affiliation(s)
- Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Amandine Molliex
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Thaleia Papadopoulou
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Florian Mueller
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Imaging and Modeling Unit, Paris, France
| | - Eslande Hercul
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - David Fournier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Agnès Dubois
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Nicolas Gaiani
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Petra Beli
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| |
Collapse
|
4
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
5
|
Knapp B, Roedig J, Roedig H, Krzysko J, Horn N, Güler BE, Kusuluri DK, Yildirim A, Boldt K, Ueffing M, Liebscher I, Wolfrum U. Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103108. [PMID: 35630584 PMCID: PMC9146371 DOI: 10.3390/molecules27103108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jens Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Heiko Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jacek Krzysko
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Nicola Horn
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Baran E. Güler
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Adem Yildirim
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Karsten Boldt
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Marius Ueffing
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Uwe Wolfrum
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
- Correspondence:
| |
Collapse
|
6
|
Martínez R, Codina AE, Barata C, Tauler R, Piña B, Navarro-Martín L. Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122881. [PMID: 32474318 DOI: 10.1016/j.jhazmat.2020.122881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya 08007, Spain.
| | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
7
|
SNW1, a Novel Transcriptional Regulator of the NF-κB Pathway. Mol Cell Biol 2019; 39:MCB.00415-18. [PMID: 30397075 DOI: 10.1128/mcb.00415-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors plays a central role in coordinating the expression of genes that control inflammation, immune responses, cell proliferation, and a variety of other biological processes. In an attempt to identify novel regulators of this pathway, we performed whole-genome RNA interference (RNAi) screens in physiologically relevant human macrophages in response to lipopolysaccharide and tumor necrosis factor alpha (TNF-α). The top hit was SNW1, a splicing factor and transcriptional coactivator. SNW1 does not regulate the cytoplasmic components of the NF-κB pathway but complexes with the NF-κB heterodimer in the nucleus for transcriptional activation. We show that SNW1 detaches from its splicing complex (formed with SNRNP200 and SNRNP220) upon NF-κB activation and binds to NF-κB's transcriptional elongation partner p-TEFb. We also show that SNW1 is indispensable for the transcriptional elongation of NF-κB target genes such as the interleukin 8 (IL-8) and TNF genes. SNW1 is a unique protein previously shown to be involved in both splicing and transcription, and in this case, its role involves binding to the NF-κB-p-TEFb complex to facilitate transcriptional elongation of some NF-κB target genes.
Collapse
|
8
|
Takada I, Tsuchiya M, Yanaka K, Hidano S, Takahashi S, Kobayashi T, Ogawa H, Nakagawa S, Makishima M. Ess2 bridges transcriptional regulators and spliceosomal complexes via distinct interacting domains. Biochem Biophys Res Commun 2018; 497:597-604. [PMID: 29454968 DOI: 10.1016/j.bbrc.2018.02.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Transcription and pre-mRNA splicing are complex, coupled processes that involve transcriptional co-regulators. Ess2 (also termed Dgcr14) is a nuclear protein that enhances the transcriptional activity of retinoic acid receptor-related orphan receptor gamma/gamma-t (Rorγ/γt). Ess2 is also a component of the spliceosomal C complex (containing U2, U5 and U6 snRNAs). However, the domains in Ess2 that function in splicing and transcription have not been identified. To elucidate the roles of Ess2 in splicing and transcription, we performed RNA immunoprecipitation (RIP) assays to detect Ess2-interacting snRNAs. We found that Ess2 associated with U6 snRNA as well as U1 and U4 snRNAs. Experiments using Ess2 deletion mutants showed that a C-terminus deletion mutant of Ess2 (1-399 a. a.) lost its ability to associate with snRNAs, whereas the N-terminus domain of Ess2 (1-200 a. a.) associated with Rorγ/γt, but not with snRNAs. Interestingly, experiments using anti-ROR common antibody showed that Rors also associated with U4 and U6 snRNAs. Ess2 knockdown in a T cell hybridoma (68-41 cells) abrogated the interaction between spliceosomes and Rors. An Ess2-dependent association was also found between an lncRNA (Rmrp) and Rors. We thus propose that Ess2 associates with both transcriptional factors and spliceosomal complexes and modulates splicing reactions coupled with transcription factors.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Kaori Yanaka
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinya Hidano
- Department of Infectious Diseases Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Sayuri Takahashi
- Department of Urology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takashi Kobayashi
- Department of Infectious Diseases Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Sinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
9
|
Yang Y, Huang Y, Zhang L, Zhang C. Transcriptional regulation of bone sialoprotein gene expression by Osx. Biochem Biophys Res Commun 2016; 476:574-579. [PMID: 27261434 DOI: 10.1016/j.bbrc.2016.05.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Osteoporosis is the most common metabolic bone disease characterized by decreased bone mass, decreased bone strength, and increased risk of fracture. It is due to unbalance between bone formation and bone resorption. Bone formation is a complex process which involves the differentiation of mesenchymal stem cells to osteoblasts. Osteoblasts produce a characteristic extracellular collagenous matrix that subsequently becomes mineralized. Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Bone sialoprotein (Bsp) is a member of the SIBLING gene family. Expression of Bsp correlates with the differentiation of osteoblasts and the onset of mineralization. Our preliminary data showed that Bsp was abolished in Osx-null mice; however, the detailed mechanism of Osx regulation on Bsp is not fully understood. In this study, regulation of Bsp expression by Osx was further characterized. It was shown that overexpression of Osx led to Bsp upregulation. Inhibition of Osx by small interfering RNA resulted in Bsp downregulation in osteoblast. Transfection assay demonstrated that Osx was able to activate Bsp promoter reporter in a dose-dependent manner. To define minimal region of Bsp promoter activated by Osx, a series of deletion mutants of Bsp promoter were generated, and the minimal region was narrowed down to the proximal 100 bp. Point-mutagenesis studies showed that one GC-rich site was required for Bsp promoter activation by Osx. ChIP assays demonstrated that endogenous Osx associated with native Bsp promoter in primary osteoblasts. Our observations provide evidence that Osx targets Bsp expression directly.
Collapse
Affiliation(s)
- Ya Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yehong Huang
- Department of Research, Daobio, Inc., Dallas, TX 75093, USA
| | - Li Zhang
- Department of Research, Daobio, Inc., Dallas, TX 75093, USA
| | - Chi Zhang
- Department of Research, Daobio, Inc., Dallas, TX 75093, USA; Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Luo W, Johnson CS, Trump DL. Vitamin D Signaling Modulators in Cancer Therapy. VITAMINS AND HORMONES 2016; 100:433-72. [PMID: 26827962 DOI: 10.1016/bs.vh.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antiproliferative and pro-apoptotic effects of 1α,25-dihydroxycholecalciferol (1,25(OH)2D3, 1,25D3, calcitriol) have been demonstrated in various tumor model systems in vitro and in vivo. However, limited antitumor effects of 1,25D3 have been observed in clinical trials. This may be attributed to a variety of factors including overexpression of the primary 1,25D3 degrading enzyme, CYP24A1, in tumors, which would lead to rapid local inactivation of 1,25D3. An alternative strategy for improving the antitumor activity of 1,25D3 involves the combination with a selective CYP24A1 inhibitor. The validity of this approach is supported by numerous preclinical investigations, which demonstrate that CYP24A1 inhibitors suppress 1,25D3 catabolism in tumor cells and increase the effects of 1,25D3 on gene expression and cell growth. Studies are now required to determine whether selective CYP24A1 inhibitors+1,25D3 can be used safely and effectively in patients. CYP24A1 inhibitors plus 1,25D3 can cause dose-limiting toxicity of vitamin D (hypercalcemia) in some patients. Dexamethasone significantly reduces 1,25D3-mediated hypercalcemia and enhances the antitumor activity of 1,25D3, increases VDR-ligand binding, and increases VDR protein expression. Efforts to dissect the mechanisms responsible for CYP24A1 overexpression and combinational effect of 1,25D3/dexamethasone in tumors are underway. Understanding the cross talk between vitamin D receptor (VDR) and glucocorticoid receptor (GR) signaling axes is of crucial importance to the design of new therapies that include 1,25D3 and dexamethasone. Insights gained from these studies are expected to yield novel strategies to improve the efficacy of 1,25D3 treatment.
Collapse
Affiliation(s)
- Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Donald L Trump
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA; Inova Dwight and Martha Schar Cancer Institute, Falls Church, Virginia, USA.
| |
Collapse
|
11
|
Grzegorzewska AE, Ostromecki G, Zielińska P, Mostowska A, Niemir Z, Polcyn-Adamczak M, Pawlik M, Sowińska A, Jagodziński PP. Association of Retinoid X Receptor Alpha Gene Polymorphism with Clinical Course of Chronic Glomerulonephritis. Med Sci Monit 2015; 21:3671-81. [PMID: 26610845 PMCID: PMC4677740 DOI: 10.12659/msm.895249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Vitamin D (VD), VD binding protein, VD receptor (VDR), and retinoids are involved in pathogenesis of chronic glomerulonephritis (ChGN). We aimed to compare distribution of VD pathway gene polymorphisms in ChGN patients showing glomerular filtration rate (GFR) category 1–3, GFR category 5D, and healthy controls in order to elucidate the role of VD-related polymorphisms in the course of ChGN. Material/Methods GFR category 1–3 ChGN patients (n=195), GFR category 5D ChGN patients (n=178), and controls (n=751) underwent testing for polymorphisms of genes encoding VD binding protein (GC, rs2298849, rs7041, rs1155563), VDR (VDR, rs2228570, rs1544410), and retinoid X receptor alpha (RXRA, rs10776909, rs10881578, rs749759). Results Among GFR 1–3 subjects possessing TT genotype of RXRA rs10776909, 75% of patients had nephrotic syndrome, and 37.5% had glomerular hyperfiltration defined as GFR >140 ml/min/1.73 m2, and, consequently, serum creatinine was lower in these patients compared to the remaining subjects (0.67±0.26 vs. 0.94±0.34, P=0.014). In GFR category 5D ChGN patients, frequencies of RXRA rs10776909 allele T (25% vs. 19%) and CT+TT (46% vs. 34%) were higher compared to frequencies of respective variants in controls (Ptrend=0.004, Pgenotype=0.008). Conclusions RXRA rs10776909 allele T is specifically involved in the pathogenesis of ChGN. This risk allele may be also associated with worse clinical course of ChGN.
Collapse
Affiliation(s)
- Alicja E Grzegorzewska
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Paulina Zielińska
- Student Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, oznań University of Medical Sciences, Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Zofia Niemir
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Polcyn-Adamczak
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Pawlik
- Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
13
|
Expression and prognostic role of SKIP in human breast carcinoma. J Mol Histol 2013; 45:169-80. [PMID: 24150787 DOI: 10.1007/s10735-013-9546-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Ski-interacting protein (SKIP) is a nuclear hormone receptor-interacting cofactor, interactions with the proto-oncogene Ski, appears to modulate a number of signalling pathways involved in control of cell proliferation and differentiation, and may play a critical role in oncogenesis. In the present study, to investigate the potential roles of SKIP in breast cancer, expression patterns, interaction and the correlation with clinical/prognostic factors of SKIP and Ki-67 were examined among patients with breast cancer. Immunohistochemistry and Western blot analysis were performed for SKIP in 85 breast carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. We found that SKIP was over expressed in breast carcinoma as compared with the adjacent normal tissues. High expression of SKIP was positively associated with histological grade (P = 0.01) and Ki-67 (P = 0.004). Univariate analysis showed that SKIP expression was associated with a poor prognosis (P = 0.006). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of SKIP was up-regulated, whereas p27 was down-regulated. In addition, we employed small interfering RNA (siRNA) technique to knock down SKIP expression and observed it effects on MDA-MB-231 cells growth. SKIP depletion by siRNA inhibited cell proliferation, blocked S phase and decreased cyclin A and cyclin B levels. On the basis of these results, we suggested that SKIP overexpression was involved in the pathogenesis of breast cancer, which might serve as a future target for breast cancer.
Collapse
|
14
|
Chen D, Li Y, Dai X, Zhou X, Tian W, Zhou Y, Zou X, Zhang C. 1,25-Dihydroxyvitamin D3 activates MMP13 gene expression in chondrocytes through p38 MARK pathway. Int J Biol Sci 2013; 9:649-55. [PMID: 23847446 PMCID: PMC3708044 DOI: 10.7150/ijbs.6726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/15/2013] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing 100035, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen D, Li Y, Zhou Z, Wu C, Xing Y, Zou X, Tian W, Zhang C. HIF-1α inhibits Wnt signaling pathway by activating Sost expression in osteoblasts. PLoS One 2013; 8:e65940. [PMID: 23776575 PMCID: PMC3679053 DOI: 10.1371/journal.pone.0065940] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022] Open
Abstract
The nature of the cellular and molecular mechanisms for the transition of avascular cartilage replacement with bone during endochondral ossification remains poorly understood. One of the driving forces is hypoxia. As a master regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that osteoblast growth is inhibited under hypoxia and that HIF-1α cooperates with Osterix (Osx) to inhibit Wnt pathway. However, molecular mechanisms for inhibitory effects of HIF-1α on Wnt pathway are not well understood. In this study, our quantitative RT-PCR results revealed that the expression of a Wnt antagonist Sclerostin (Sost) was upregulated in osteoblasts during hypoxia while HIF-1α was upregulated. Treatment of desferrioxamine (DFO), a HIF-1α activator, led to further increase of Sost expression, suggesting that HIF-1α may activate Sost expression. The regulation of Sost gene expression by HIF-1α was then investigated. We performed loss-of-function experiments to examine Sost expression by using siRNA approach against HIF-1α, and found that the inhibition of HIF-1α by siRNA in osteoblasts led to the decrease of Sost expression. To address transcriptional regulation of Sost gene by HIF-1α, transient transfection assay was performed and showed that HIF-1α activated Sost-1 kb promoter reporter activity in a dose-dependent manner. To narrow down the minimal region of Sost promoter activated by HIF-1α, we generated a series of deletion mutants of Sost constructs. It was demonstrated that Sost-260 was the minimal region of Sost promoter for HIF-1α activation and that Sost-106 construct, which lack hypoxia response element, abolished HIF-1α-mediated Sost reporter activation. Gel shift assay showed that HIF-1 bound to the promoter sequence of Sost directly. These findings support our hypothesis that HIF-1α activates Sost expression. This study provides a novel molecular mechanism through which HIF-1α inhibits Wnt signaling in osteoblasts.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yang Li
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhiyu Zhou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,China
| | - Chengai Wu
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yonggang Xing
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Xuenong Zou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
- * E-mail: (CZ); (WT)
| | - Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CZ); (WT)
| |
Collapse
|
16
|
Abankwa D, Millard SM, Martel N, Choong CS, Yang M, Butler LM, Buchanan G, Tilley WD, Ueki N, Hayman MJ, Leong GM. Ski-interacting protein (SKIP) interacts with androgen receptor in the nucleus and modulates androgen-dependent transcription. BMC BIOCHEMISTRY 2013; 14:10. [PMID: 23566155 PMCID: PMC3668167 DOI: 10.1186/1471-2091-14-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
Background The androgen receptor (AR) is a member of the nuclear receptor (NR) superfamily of ligand-inducible DNA transcription factors, and is the major mediator of male sexual development, prostate growth and the pathogenesis of prostate cancer. Cell and gene specific regulation by the AR is determined by availability of and interaction with sets of key accessory cofactors. Ski-interacting protein (SKIP; SNW1, NCOA62) is a cofactor shown to interact with several NRs and a diverse range of other transcription factors. Interestingly, SKIP as part of the spliceosome is thought to link mRNA splicing with transcription. SKIP has not been previously shown to interact with the AR. Results The aim of this study was to investigate whether SKIP interacts with the AR and modulates AR-dependent transcription. Here, we show by co-immunoprecipitation experiments that SKIP is in a complex with the AR. Moreover, SKIP increased 5α-dihydrotestosterone (DHT) induced N-terminal/C-terminal AR interaction from 12-fold to almost 300-fold in a two-hybrid assay, and enhanced AR ligand-independent AF-1 transactivation. SKIP augmented ligand- and AR-dependent transactivation in PC3 prostate cancer cells. Live-cell imaging revealed a fast (half-time=129 s) translocation of AR from the cytoplasm to the nucleus upon DHT-stimulation. Förster resonance energy transfer (FRET) experiments suggest a direct AR-SKIP interaction in the nucleus upon translocation. Conclusions Our results suggest that SKIP interacts with AR in the nucleus and enhances AR-dependent transactivation and N/C-interaction supporting a role for SKIP as an AR co-factor.
Collapse
Affiliation(s)
- Daniel Abankwa
- University of Queensland, Obesity Research Centre, Institute for Molecular Bioscience, St,Lucia, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang C, Tang W, Li Y. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS One 2012. [PMID: 23185634 PMCID: PMC3503972 DOI: 10.1371/journal.pone.0050525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation from mesenchymal stem cells. In Osx-null mice, no bone formation occurs. Matrix metalloproteinase 13 (MMP13) is a member of the matrix metalloproteinase family and plays an important role in endochondral ossification and bone remodeling. Transcriptional regulation of MMP13 expression in osteoblasts is not well understood. Here, we provide several lines of evidence which show that MMP13 is a direct target of Osx in osteoblasts. Calvaria obtained from Osx-null embryos displayed dramatic reductions in MMP13 expression compared to wild-type calvaria. Stable overexpression of Osx stimulated MMP13 expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of MMP13 expression. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the MMP13 promoter in a dose-dependent manner. To define the region of the MMP13 promoter that was responsive to Osx, a series of MMP13 promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 80 bp of the MMP13 promoter. Additional point mutant analysis was used to identify one GC-rich region that was responsible for MMP13 promoter activation by Osx. Gel Shift Assay showed that Osx bound to MMP13 promoter sequence directly. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native MMP13 promoter in primary osteoblasts in vivo. Taken together, these data strongly support a direct regulatory role for Osx in MMP13 gene expression in osteoblasts. They further provide new insight into potential mechanisms and pathways that Osx controls bone formation.
Collapse
Affiliation(s)
- Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | |
Collapse
|
18
|
Zhang J, Zhang H, Zhang X, Yu Z. Synergistic effect of retinoic acid and vitamin D analog EB1089-induced apoptosis of hepatocellular cancer cells. Cytotechnology 2012; 65:457-65. [PMID: 23070539 DOI: 10.1007/s10616-012-9500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023] Open
Abstract
Previous report showed that leukemia cells' differentiation could be induced by retinoic acid (RA), and prostate cancer cells' proliferation could be inhibited by Vitamin D or its analog. This study aimed to examine whether RA and vitamin D analog EB1089 have synergistic effect on hepatocellular cancer cells' apoptosis. The hepatocellular cancer cell lines' viability was determined by MTT method after treating by RA and EB1089 alone or in combination, cell cycle of SSMC-7721 cell analyzed by FACS, mitochondrial membrane potential of SSMC-7721 under different treatments were detected using MitoTracker Red CMXRos. TUNEL analysis was also used for cell apoptosis detection. Real time-PCR and Western Blot assay were used to detect the expression of Bcl-2 and Bax. Moreover, hepatocellular cancer model was developed by subcutaneously (S.C.) challenging H22 cells to nude mice. In the combination group (10 μmol/L RA, 10 nmol/L EB1089), the viability of hepatocellular cancer cells decreased significantly compared with drugs used alone (P < 0.05). From the TUNEL analysis, SSMC-7721 cells have a higher apoptotic ratio in the combined drug group than in the groups for which the drugs were used separately. In a hepatocellular cancer model, the tumor weight of H22 tumor bearing mice was more reduced in the combined drug treated group when compared to the groups for which the drugs were used alone (P < 0.05), in addition, significantly prolonged survival was observed. Combination of RA and EB1089 exert synergistic growth inhibition and apoptosis induction on hepatocellular cancers cells.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Oncology, Beijing Army General Hospital, No. 5, Nanmencang Ro., Beijing, 100700, China
| | | | | | | |
Collapse
|
19
|
Chen J, Mao H, Zou H, Jin W, Ni L, Ke K, Cao M, Shi W. Up-regulation of ski-interacting protein in rat brain cortex after traumatic brain injury. J Mol Histol 2012; 44:1-10. [PMID: 22965216 DOI: 10.1007/s10735-012-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/14/2012] [Indexed: 01/22/2023]
Abstract
SKIP (Ski-interacting protein), is part of nuclear regulatory complexes and interacts with factors involved in preinitiation, splicing and polyadenylation, potentiates the activity of important transcription factors, involved in an increasing number of signaling cascades. However, its distribution and function in the central nervous system remains poorly understood. In this study, western blot analysis, RT-PCR and immunohistochemistry showed a significant up-regulation of SKIP in ipsilateral peritrauma cortex compared with the sham group. Immunofluorescent labeling indicated that SKIP was localized striking in the neurons, but not astrocytes and oligodendrocytes; co-localization of SKIP and active caspase-3 and PCNA in the ipsilateral cortex. In addition, the expression patterns of active caspase-3 and PCNA were parallel with that of SKIP. Based on our data, we speculated that SKIP might play an important role in neuronal apoptosis following TBI; and might provide a basis for the further study on its role in cell cycle re-entry in traumatic brain injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang W, Yang F, Li Y, de Crombrugghe B, Jiao H, Xiao G, Zhang C. Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem 2011; 287:1671-8. [PMID: 22110141 PMCID: PMC3265850 DOI: 10.1074/jbc.m111.288472] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation. The critical step in bone formation is to replace the avascular cartilage template with vascularized bone. Osteogenesis and angiogenesis are associated with each other, sharing some essential regulators. Vascular endothelial growth factor (VEGF) is involved in both angiogenesis and osteogenesis. Transcriptional regulation of VEGF expression is not well known in osteoblasts. In this study, quantitative real-time RT-PCR results revealed that VEGF expression was down-regulated in Osx-null calvarial cells and that osteoblast marker osteocalcin expression was absent. Overexpression of Osx in stable C2C12 mesenchymal cells using a Tet-off system resulted in up-regulation of both osteocalcin and VEGF expression. The inhibition of Osx by siRNA led to repression of VEGF expression in osteoblasts. These results suggest that Osx controls VEGF expression. Transfection assays demonstrated that Osx activated VEGF promoter activity. A series of VEGF promoter deletion mutants were examined and the minimal Osx-responsive region was defined to the proximal 140-bp region of the VEGF promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VEGF promoter activation by Osx. Gel shift assay showed that Osx bound to the VEGF promoter sequence directly. Chromatin immunoprecipitation assays indicated that endogenous Osx associated with the native VEGF promoter in primary osteoblasts. Moreover, immunohistochemistry staining showed decreased VEGF protein levels in the tibiae of Osx conditional knock-out mice. We provide the first evidence that Osx controlled VEGF expression, suggesting a potential role of Osx in coordinating osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Wanjin Tang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts. PLoS One 2011; 6:e26504. [PMID: 22028889 PMCID: PMC3196580 DOI: 10.1371/journal.pone.0026504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.
Collapse
|
22
|
Tang W, Li Y, Osimiri L, Zhang C. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem 2011; 286:32995-3002. [PMID: 21828043 PMCID: PMC3190908 DOI: 10.1074/jbc.m111.244236] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor essential for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely. Satb2 is critical for osteoblast differentiation as a special AT-rich binding transcription factor. It is not known how Satb2 is transcriptionally regulated during bone formation. In this study, quantitative real-time RT-PCR results demonstrated that Satb2 was down-regulated in Osx-null calvaria. In stable C2C12 mesenchymal cells using the tetracycline (Tet)-Off system, overexpression of Osx stimulated Satb2 expression. Moreover, inhibition of Osx by siRNA led to repression of Satb2 expression in osteoblasts. These results suggest that Osx controls Satb2 expression. Transient transfection assay showed that Osx activated 1kb Satb2 promoter reporter activity in a dose-dependent manner. To define the region of Satb2 promoter responsive to Osx activation, a series of deletion mutants of Satb2 constructs were made, and the minimal region was narrowed down to the proximal 130 bp of the Satb2 promoter. Further point mutation studies found that two GC-rich region mutations disrupted the Satb2 130bp promoter activation by Osx, suggesting that these GC-rich binding sites were responsible for Satb2 activation by Osx. Gel shift assay showed that Osx bound to the Satb2 promoter sequence directly. ChIP assays indicated that endogenous Osx associated with the native Satb2 promoter in osteoblasts. Importantly, Satb2 siRNA significantly inhibited Osx-induced osteoblast marker gene expressions. Taken together, our findings indicate that Osx is an upstream regulator of Satb2 during bone formation. This reveals a new additional link of the transcriptional regulation mechanism that Osx controls bone formation.
Collapse
Affiliation(s)
- Wanjin Tang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
23
|
Wu MY, Ramel MC, Howell M, Hill CS. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol 2011; 9:e1000593. [PMID: 21358802 PMCID: PMC3039673 DOI: 10.1371/journal.pbio.1000593] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Collapse
Affiliation(s)
- Mary Y. Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Michael Howell
- High-Throughput Screening Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Yang F, Tang W, So S, de Crombrugghe B, Zhang C. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Biophys Res Commun 2010; 400:684-8. [PMID: 20816666 DOI: 10.1016/j.bbrc.2010.08.128] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/27/2010] [Indexed: 11/26/2022]
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely. Recent findings that Osx inhibits Wnt signaling provide a feedback control mechanism involved in bone formation. Mechanisms of Osx inhibition on Wnt signaling are not fully understood. Our results in this study revealed that the expression of a Wnt antagonist Sclerostin (Sost) was downregulated in Osx-null calvaria. Overexpression of Osx in stable C2C12 mesenchymal cell line resulted in Sost upregulation. Transient transfection assay showed that Osx activated 1kb Sost promoter reporter activity in a dose-dependent manner. To define Sost promoter activated by Osx, we made a series of deletion mutants of Sost constructs, and narrowed down the minimal region to the proximal 260bp. Gel shift assay indicated that Osx bound to GC-rich site within this minimal region, and that point mutations of this binding site disrupted Osx binding. Moreover, the same point mutations in 260bp Sost promoter reporter disrupted the promoter activation by Osx, suggesting that the GC-rich binding site was responsible for Sost promoter activation by Osx. To further examine physical association of Osx with Sost promoter in vivo, Chromatin immunoprecipitation (ChIP) assays were performed using primary osteoblasts from mouse calvaria. Osx was found to associate with endogenous Sost promoter. Taken together, these findings support our hypothesis that Sost is a direct target of Osx. This provides a new additional mechanism through which Osx inhibits Wnt signaling during bone formation.
Collapse
Affiliation(s)
- Fan Yang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | | | | | | | | |
Collapse
|
25
|
Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C, Huang B, Fenger U, Niehrs C, Chen YG, Wu W. Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem 2010; 285:10890-901. [PMID: 20103590 PMCID: PMC2856295 DOI: 10.1074/jbc.m109.058347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/30/2009] [Indexed: 11/06/2022] Open
Abstract
The beta-catenin-lymphoid enhancer factor (LEF) protein complex is the key mediator of canonical Wnt signaling and initiates target gene transcription upon ligand stimulation. In addition to beta-catenin and LEF themselves, many other proteins have been identified as necessary cofactors. Here we report that the evolutionally conserved splicing factor and transcriptional co-regulator, SKIP/SNW/NcoA62, forms a ternary complex with LEF1 and HDAC1 and mediates the repression of target genes. Loss-of-function studies showed that SKIP is obligatory for Wnt signaling-induced target gene transactivation, suggesting an important role of SKIP in the canonical Wnt signaling. Consistent with its involvement in beta-catenin signaling, the C-terminally truncated forms of SKIP are able to stabilize beta-catenin and enhance Wnt signaling. In Xenopus embryos, both overexpression and knockdown of Skip lead to reduced neural crest induction, consistent with down-regulated Wnt signaling in both cases. Our results indicate that SKIP is a novel component of the beta-catenin transcriptional complex.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Chromatin Immunoprecipitation
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Gene Library
- HeLa Cells
- Humans
- Immunoenzyme Techniques
- Luciferases/metabolism
- Mice
- Neural Crest/cytology
- Neural Crest/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Wnt1 Protein/genetics
- Wnt1 Protein/metabolism
- Xenopus laevis
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Ying Wang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Yu Fu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Lei Gao
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Guixin Zhu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Juan Liang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Chan Gao
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Binlu Huang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Ursula Fenger
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Christof Niehrs
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Ye-Guang Chen
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Wei Wu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| |
Collapse
|
26
|
Arriagada G, Paredes R, van Wijnen AJ, Lian JB, van Zundert B, Stein GS, Stein JL, Montecino M. 1alpha,25-dihydroxy vitamin D(3) induces nuclear matrix association of the 1alpha,25-dihydroxy vitamin D(3) receptor in osteoblasts independently of its ability to bind DNA. J Cell Physiol 2009; 222:336-46. [PMID: 19885846 DOI: 10.1002/jcp.21958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1alpha,25-dihydroxy vitamin D(3) (vitamin D(3)) has an important role during osteoblast differentiation as it directly modulates the expression of key bone-related genes. Vitamin D(3) binds to the vitamin D(3) receptor (VDR), a member of the superfamily of nuclear receptors, which in turn interacts with transcriptional activators to target this regulatory complex to specific sequence elements within gene promoters. Increasing evidence demonstrates that the architectural organization of the genome and regulatory proteins within the eukaryotic nucleus support gene expression in a physiological manner. Previous reports indicated that the VDR exhibits a punctate nuclear distribution that is significantly enhanced in cells grown in the presence of vitamin D(3). Here, we demonstrate that in osteoblastic cells, the VDR binds to the nuclear matrix in a vitamin D(3)-dependent manner. This interaction of VDR with the nuclear matrix occurs rapidly after vitamin D(3) addition and does not require a functional VDR DNA-binding domain. Importantly, nuclear matrix-bound VDR colocalizes with its transcriptional coactivator DRIP205/TRAP220/MED1 which is also matrix bound. Together these results indicate that after ligand stimulation the VDR rapidly enters the nucleus and associates with the nuclear matrix preceding vitamin D(3)-transcriptional upregulation.
Collapse
Affiliation(s)
- Gloria Arriagada
- Facultad de Ciencias Biologicas, Departamento de Bioquimica y Biologia Molecular, Universidad de Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kang MR, Lee SW, Um E, Kang HT, Hwang ES, Kim EJ, Um SJ. Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells. Nucleic Acids Res 2009; 38:822-31. [PMID: 19934264 PMCID: PMC2817470 DOI: 10.1093/nar/gkp1056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that participates in cell death/survival, senescence and metabolism. Although its substrates are well characterized, no direct regulators have been defined. Here, we show that SIRT1 associates with SKI-interacting protein (SKIP) and modulates its activity as a coactivator of retinoic acid receptor (RAR). Binding assays indicated that SKIP interacts with RAR in a RA-dependent manner, through a region that overlaps the binding site for SIRT1. SKIP augmented the transcriptional activation activity of RAR by cooperating with SRC-1, and SIRT1 suppressed SKIP/SRC-1-enhanced RAR transactivation activity. The suppression was dependent on the deacetylase activity of SIRT1 and was enhanced by a SIRT1 activator, resveratrol. In contrast, the suppression was relieved by SIRT1 knockdown, overexpression of SKIP and treatment with a SIRT1 inhibitor, splitomicin. Upon SKIP overexpression, the recruitment of SIRT1 to the endogenous RARβ2 promoter was severely impaired, and SKIP was recruited to the promoter instead. Finally, resveratrol treatment inhibited RA-induced neuronal differentiation of P19 cells, accompanied by reductions in the neuronal marker nestin and a RAR target gene, RARβ2. This inhibition was relieved by either knockdown of SIRT1 or overexpression of SKIP. These data suggest that SIRT1 and SKIP play reciprocal roles in the regulation of RAR activity, which is implicated in the regulation of RA-induced neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Moo-Rim Kang
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
| | - Sang-Wang Lee
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
| | - Elisa Um
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
| | - Hyun Tae Kang
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
| | - Eun Seong Hwang
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
| | - Eun-Joo Kim
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
- *To whom correspondence should be addressed. Tel: +82 2 3408 3641; Fax: +82 2 3408 4334;
| | - Soo-Jong Um
- BK21 Graduate Program, Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul 143-747, Korea, Great Neck South High School, Great Neck, NY 11020, USA, BK21 Graduate Program, Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Korea and BK21 Graduate Program, Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701, Korea
- *To whom correspondence should be addressed. Tel: +82 2 3408 3641; Fax: +82 2 3408 4334;
| |
Collapse
|
28
|
Gahura O, Abrhámová K, Skruzný M, Valentová A, Munzarová V, Folk P, Půta F. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J Cell Biochem 2009; 106:139-51. [PMID: 19016306 DOI: 10.1002/jcb.21989] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human transcription co-regulator SNW1/SKIP is implicated in the regulation of both transcription elongation and alternative splicing. Prp45, the SNW/SKIP ortholog in yeast, is assumed to be essential for pre-mRNA processing. Here, we characterize prp45(1-169), a temperature sensitive allele of PRP45, which at permissive temperature elicits cell division defects and hypersensitivity to microtubule inhibitors. Using a synthetic lethality screen, we found that prp45(1-169) genetically interacts with alleles of NTC members SYF1, CLF1/SYF3, NTC20, and CEF1, and 2nd step splicing factors SLU7, PRP17, PRP18, and PRP22. Cwc2-associated spliceosomal complexes purified from prp45(1-169) cells showed decreased stoichiometry of Prp22, suggesting its deranged interaction with the spliceosome. In vivo splicing assays in prp45(1-169) cells revealed that branch point mutants accumulated more pre-mRNA whereas 5' and 3' splice site mutants showed elevated levels of lariat-exon intermediate as compared to wild-type cells. Splicing of canonical intron was unimpeded. Notably, the expression of Prp45(119-379) in prp45(1-169) cells restored Prp22 partition in the Cwc2-pulldowns and rescued temperature sensitivity and splicing phenotype of prp45(1-169) strain. Our data suggest that Prp45 contributes, in part through its interaction with the 2nd step-proofreading helicase Prp22, to splicing efficiency of substrates non-conforming to the consensus.
Collapse
Affiliation(s)
- Ondrej Gahura
- Faculty of Science, Department of Cell Biology, Charles University in Prague, Prague 128 00, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Fantappié MR, de Oliveira FMB, de Moraes Maciel R, Rumjanek FD, Wu W, LoVerde PT. Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: Assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. Int J Parasitol 2008; 38:1133-47. [DOI: 10.1016/j.ijpara.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
30
|
Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A 2008; 105:6936-41. [PMID: 18458345 DOI: 10.1073/pnas.0710831105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent identification of the genes responsible for several human genetic diseases affecting bone homeostasis and the characterization of mouse models for these diseases indicated that canonical Wnt signaling plays a critical role in the control of bone mass. Here, we report that the osteoblast-specific transcription factor Osterix (Osx), which is required for osteoblast differentiation, inhibits Wnt pathway activity. First, in calvarial cells of embryonic day (E)18.5 Osx-null embryos, expression of the Wnt antagonist Dkk1 was abolished, and that of Wnt target genes c-Myc and cyclin D1 was increased. Moreover, our studies demonstrated that Osx bound to and activated the Dkk1 promoter. In addition, Osx inhibited beta-catenin-induced Topflash reporter activity and beta-catenin-induced secondary axis formation in Xenopus embryos. Importantly, in calvaria of E18.5 Osx-null embryos harboring the TOPGAL reporter transgene, beta-galactosidase activity was increased, suggesting that Osx inhibited the Wnt pathway in osteoblasts in vivo. Our data further showed that Osx disrupted binding of Tcf to DNA, providing a likely mechanism for the inhibition by Osx of beta-catenin transcriptional activity. We also showed that Osx decreased osteoblast proliferation. Indeed, E18.5 Osx-null calvaria showed greater BrdU incorporation than wild-type calvaria and that Osx overexpression in C2C12 mesenchymal cells inhibited cell growth. Because Wnt signaling has a major role in stimulating osteoblast proliferation, we speculate that Osx-mediated inhibition of osteoblast proliferation is a consequence of the Osx-mediated control of Wnt/beta-catenin activity. Our results add a layer of control to Wnt/beta-catenin signaling in bone.
Collapse
|
31
|
Boer B, Kopp J, Mallanna S, Desler M, Chakravarthy H, Wilder PJ, Bernadt C, Rizzino A. Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic Acids Res 2007; 35:1773-86. [PMID: 17324942 PMCID: PMC1874607 DOI: 10.1093/nar/gkm059] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have identified large sets of genes in embryonic stem and embryonal carcinoma cells that are associated with the transcription factors Sox2 and Oct-3/4. Other studies have shown that Sox2 and Oct-3/4 work together cooperatively to stimulate the transcription of their own genes as well as a network of genes required for embryogenesis. Moreover, small changes in the levels of Sox2:Oct-3/4 target genes alter the fate of stem cells. Although positive feedforward and feedback loops have been proposed to explain the activation of these genes, little is known about the mechanisms that prevent their overexpression. Here, we demonstrate that elevating Sox2 levels inhibits the endogenous expression of five Sox2:Oct-3/4 target genes. In addition, we show that Sox2 repression is dependent on the binding sites for Sox2 and Oct-3/4. We also demonstrate that inhibition is dependent on the C-terminus of Sox2, which contains its transactivation domain. Finally, our studies argue that overexpression of neither Oct-3/4 nor Nanog broadly inhibits Sox2:Oct-3/4 target genes. Collectively, these studies provide new insights into the diversity of mechanisms that control Sox2:Oct-3/4 target genes and argue that Sox2 functions as a molecular rheostat for the control of a key transcriptional regulatory network.
Collapse
Affiliation(s)
- Brian Boer
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Janel Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Sunil Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Michelle Desler
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Harini Chakravarthy
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Phillip J. Wilder
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Cory Bernadt
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
- *To whom correspondence should be addressed. +4025596338+4025593339
| |
Collapse
|
32
|
Gelmedin V, Zavala-Góngora R, Fernández C, Brehm K. Echinococcus multilocularis: Cloning and characterization of a member of the SNW/SKIP family of transcriptional coregulators. Exp Parasitol 2005; 111:115-20. [PMID: 15936017 DOI: 10.1016/j.exppara.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/18/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
We have isolated a cDNA from the fox-tapeworm Echinococcus multilocularis that encodes EmSkip, a novel member of the SNW/SKIP family of transcriptional coregulators. EmSkip displays significant amino acid sequence homologies to already known members of the protein family and contains all the characteristic amino acid residues at their corresponding positions. RT-PCR experiments showed that the EmSkip encoding gene, emskip, is expressed in the Echinococcus larval stages metacestode and protoscolex during an infection of the intermediate host. By yeast two-hybrid analyses, EmSkip was found to be capable of forming homodimers in vivo. Furthermore, EmSkip was found to interact with EmSmadA and EmSmadB, two previously identified TGF-beta/BMP signal transducers of E. multilocularis, indicating a role of this protein in TGF-beta signaling processes in the parasite. In view of the role played by SNW/SKIP proteins in splicing mechanisms and intracellular signaling, the data presented herein should facilitate the identification of Echinococcus factors involved in such processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
33
|
Ellison TI, Dowd DR, MacDonald PN. Calmodulin-Dependent Kinase IV Stimulates Vitamin D Receptor-Mediated Transcription. Mol Endocrinol 2005; 19:2309-19. [PMID: 15919723 DOI: 10.1210/me.2004-0382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] promotes intestinal absorption of calcium primarily by binding to the vitamin D receptor (VDR) and regulating gene expression. 1,25-(OH)2D3 also exerts rapid actions at the cell membrane that include increasing intracellular calcium levels and activating protein kinase cascades. To explore potential cross talk between calcium signaling elicited by the nongenomic actions of 1,25-(OH)2D3 and the genomic pathway mediated by VDR, we examined the effects of activated Ca2+/calmodulin-dependent kinases (CaMKs) on 1,25-(OH)2D3/VDR-mediated transcription. Expression of a constitutively active form of CaMKIV dramatically stimulated 1,25-(OH)2D3-activated reporter gene expression in COS-7, HeLa, and ROS17/2.8 cell lines. Metabolic labeling studies indicated that CaMKIV increased VDR phosphorylation levels. In addition, CaMKIV increased the independent transcription activity of the VDR coactivator SRC (steroid receptor coactivator) 1, and promoted ligand-dependent interaction between VDR and SRC coactivator proteins in mammalian two-hybrid studies. The functional consequences of this multifaceted mechanism of CaMKIV action were revealed by reporter gene studies, which showed that CaMKIV and select SRC coactivators synergistically enhanced VDR-mediated transcription. These studies support a model in which CaMKIV signaling stimulates VDR-mediated transcription by increasing phosphorylation levels of VDR and enhancing autonomous SRC activity, resulting in higher 1,25-(OH)2D3-dependent interaction between VDR and SRC coactivators.
Collapse
Affiliation(s)
- Tara I Ellison
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
34
|
Sutton ALM, Zhang X, Ellison TI, Macdonald PN. The 1,25(OH)2D3-Regulated Transcription Factor MN1 Stimulates Vitamin D Receptor-Mediated Transcription and Inhibits Osteoblastic Cell Proliferation. Mol Endocrinol 2005; 19:2234-44. [PMID: 15890672 DOI: 10.1210/me.2005-0081] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe vitamin D endocrine system is essential for maintaining mineral ion homeostasis and preserving bone density. The most bioactive form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] elicits its effects by binding to the vitamin D receptor (VDR) and regulating the transcription of target genes. In osteoblasts, the bone-forming cells of the skeleton, 1,25-(OH)2D3 regulates cell proliferation, differentiation, and mineralization of the extracellular matrix. Despite these well-characterized biological functions, relatively few 1,25-(OH)2D3 target genes have been described in osteoblasts. In this study, we characterize the regulation and function of MN1, a novel 1,25-(OH)2D3-induced gene in osteoblastic cells. MN1 is a nuclear protein first identified as a gene disrupted in some meningiomas and leukemias. Our studies demonstrate that MN1 preferentially stimulates VDR-mediated transcription through its ligand-binding domain and synergizes with the steroid receptor coactivator family of coactivators. Furthermore, forced expression of MN1 in osteoblastic cells results in a profound decrease in cell proliferation by slowing S-phase entry, suggesting that MN1 is an antiproliferative factor that may mediate 1,25-(OH)2D3-dependent inhibition of cell growth. Collectively, these data indicate that MN1 is a 1,25-(OH)2D3-induced VDR coactivator that also may have critical roles in modulating osteoblast proliferation.
Collapse
Affiliation(s)
- Amelia L M Sutton
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
35
|
Syed V, Zhang X, Lau KM, Cheng R, Mukherjee K, Ho SM. Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene 2005; 24:8128-43. [PMID: 16116479 DOI: 10.1038/sj.onc.1208959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogens regulate normal ovarian surface epithelium (OSE) cell functions but also affect epithelial ovarian cancer (OCa) development. Little is known about how estrogens play such opposing roles. Transcriptional profiling using a cDNA microarray containing 2400 named genes identified 155 genes whose expression was altered by estradiol-17beta (E2) in three immortalized normal human ovarian surface epithelial (HOSE) cell lines and 315 genes whose expression was affected by the hormone in three established OCa (OVCA) cell lines. All but 19 of the genes in these two sets were different. Among the 19 overlapping genes, five were found to show discordant responses between HOSE and OVCA cell lines. The five genes are those that encode clone 5.1 RNA-binding protein (RNPS1), erythrocyte adducin alpha subunit (ADD1), plexin A3 (PLXNA3 or the SEX gene), nuclear protein SkiP (SKIIP), and Rap-2 (rap-2). RNPS1, ADD1, rap-2, and SKIIP were upregulated by E2 in HOSE cells but downregulated by estrogen in OVCA cells, whereas PLXNA3 showed the reverse pattern of regulation. The estrogen effects was observed within 6-18 h of treatment. In silicon analyses revealed presence of estrogen response elements in the proximal promoters of all five genes. RNPS1, ADD1, and PLXNA3 were underexpressed in OVCA cell lines compared to HOSE cell lines, while the opposite was true for rap-2 and SKIIP. Functional studies showed that RNPS1 and ADD1 exerted multiple antitumor actions in OVCA cells, while PLXNA3 only inhibited cell invasiveness. In contrast, rap-2 was found to cause significant oncogenic effects in OVCA cells, while SKIIP promotes only anchorage-independent growth. In sum, gene profiling data reveal that (1) E2 exerts different actions on HOSE cells than on OVCA cells by affecting two distinct transcriptomes with few overlapping genes and (2) among the overlapping genes, a set of putative oncogenes/tumor suppressors have been identified due to their differential responses to E2 between the two cell types. These findings may explain the paradoxical roles of estrogens in regulating normal and malignant OSE cell functions.
Collapse
Affiliation(s)
- Viqar Syed
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
1alpha,25-Dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the active metabolite of vitamin D(3), is known for the maintenance of mineral homeostasis and normal skeletal architecture. However, apart from these traditional calcium-related actions, 1,25-(OH)(2)D(3) and its synthetic analogs are being increasingly recognized for their potent antiproliferative, prodifferentiative, and immunomodulatory activities. These actions of 1,25-(OH)(2)D(3) are mediated through vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors. Physiological and pharmacological actions of 1,25-(OH)(2)D(3) in various systems, along with the detection of VDR in target cells, have indicated potential therapeutic applications of VDR ligands in inflammation (rheumatoid arthritis, psoriatic arthritis), dermatological indications (psoriasis, actinic keratosis, seborrheic dermatitis, photoaging), osteoporosis (postmenopausal and steroid-induced osteoporosis), cancers (prostate, colon, breast, myelodysplasia, leukemia, head and neck squamous cell carcinoma, and basal cell carcinoma), secondary hyperparathyroidism, and autoimmune diseases (systemic lupus erythematosus, type I diabetes, multiple sclerosis, and organ transplantation). As a result, VDR ligands have been developed for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. Furthermore, encouraging results have been obtained with VDR ligands in clinical trials of prostate cancer and hepatocellular carcinoma. This review deals with the molecular aspects of noncalcemic actions of vitamin D analogs that account for the efficacy of VDR ligands in the above-mentioned indications.
Collapse
Affiliation(s)
- Sunil Nagpal
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
37
|
Tang J, Chang HY, Yang X. The death domain-associated protein modulates activity of the transcription co-factor Skip/NcoA62. FEBS Lett 2005; 579:2883-90. [PMID: 15878163 DOI: 10.1016/j.febslet.2005.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 04/08/2005] [Indexed: 01/16/2023]
Abstract
Death domain-associated protein (Daxx) regulates both transcription and apoptosis. The role of Daxx in transcription is not well understood. Here, we show that Daxx interacts with Skip/NcoA62, a transcription cofactor that modulates the activity of oncoproteins including Ski and NotchIC. Daxx strongly binds with Skip both in vitro and in mammalian cells. This interaction is mediated by the PAH2 domain of Daxx and the highly conserved SNW domain of Skip. Daxx partially co-localizes with Skip in vivo and changes the cellular distribution of Skip. In addition, Skip represses transcription when tethered to a promoter, and Daxx antagonizes this activity. Furthermore, Skip is phosphorylated at serine 224 in its SNW domain. These results suggest a novel function of Daxx in transcription regulation through alteration of the cellular localization of Skip.
Collapse
Affiliation(s)
- Jun Tang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
38
|
Abstract
Pre-messenger RNA (pre-mRNA) splicing is a central step in gene expression. Lying between transcription and protein synthesis, pre-mRNA splicing removes sequences (introns) that would otherwise disrupt the coding potential of intron-containing transcripts. This process takes place in the nucleus, catalyzed by a large RNA-protein complex called the spliceosome. Prp8p, one of the largest and most highly conserved of nuclear proteins, occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there. Recently, Prp8p has also come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa.Prp8 is unique, having no obvious homology to other proteins; however, using bioinformatical analysis we reveal the presence of a conserved RNA recognition motif (RRM), an MPN/JAB domain and a putative nuclear localization signal (NLS). Here, we review biochemical and genetical data, mostly related to the human and yeast proteins, that describe Prp8's central role within the spliceosome and its molecular interactions during spliceosome formation, as splicing proceeds, and in post-splicing complexes.
Collapse
Affiliation(s)
- Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
39
|
Khanim FL, Gommersall LM, Wood VHJ, Smith KL, Montalvo L, O'Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM, Campbell MJ. Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene 2004; 23:6712-25. [PMID: 15300237 DOI: 10.1038/sj.onc.1207772] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that key antiproliferative target genes for the vitamin D receptor (VDR) were repressed by an epigenetic mechanism in prostate cancer cells resulting in apparent hormonal insensitivity. To explore this possibility, we examined nuclear receptor corepressor expression in a panel of nonmalignant and malignant cell lines and primary cultures, and found frequently elevated SMRT corepressor mRNA expression often associated with reduced sensitivity to 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)2D3). For example, PC-3 and DU-145 prostate cancer cell lines had 1.8-fold and twofold increases in SMRT mRNA relative to normal PrEC cells (P<0.05). Similarly, 10/15 primary tumour cultures (including three matched to normal cells from the same donors) had elevated SMRT mRNA levels; generally NCoR1 and Alien were not as commonly elevated. Corepressor proteins often have associated histone deacetylases (HDAC) and reflectively the antiproliferative action of 1alpha,25(OH)2D3 can be 'restored' by cotreatment with low doses of HDAC inhibitors such as trichostatin A (TSA, 15 nM) to induce apoptosis in prostate cancer cell lines. To decipher the transcriptional events that lead to these cellular responses, we undertook gene expression studies in PC-3 cells after cotreatment of 1alpha,25(OH)2D3 plus TSA after 6 h. Examination of known VDR target genes and cDNA microarray analyses revealed cotreatment of 1alpha,25(OH)2D3 plus TSA cooperatively upregulated eight (out of 1176) genes, including MAPK-APK2 and GADD45alpha. MRNA and protein time courses and inhibitor studies confirmed these patterns of regulation. Subsequently, we knocked down SMRT levels in PC-3 cells using a small interfering RNA (siRNA) approach and found that GADD45alpha induction by 1alpha,25(OH)2D3 alone became very significantly enhanced. The same distortion of gene responsiveness, with repressed induction of GADD45alpha was found in primary tumour cultures compared and to matched peripheral zone (normal) cultures from the same donor. These data demonstrate that elevated SMRT levels are common in prostate cancer cells, resulting in suppression of target genes associated with antiproliferative action and apparent 1alpha,25(OH)2D3-insensitivity. This can be targeted therapeutically by combination treatments with HDAC inhibitors.
Collapse
Affiliation(s)
- Farhat L Khanim
- Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham Medical School, Edgbaston, Birmingham B15 2TH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Laduron S, Deplus R, Zhou S, Kholmanskikh O, Godelaine D, De Smet C, Hayward SD, Fuks F, Boon T, De Plaen E. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004; 32:4340-50. [PMID: 15316101 PMCID: PMC514365 DOI: 10.1093/nar/gkh735] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MAGE-A1 belongs to a family of 12 genes that are active in various types of tumors and silent in normal tissues except in male germ-line cells. The MAGE-encoded antigens recognized by T cells are highly tumor-specific targets for T cell-oriented cancer immunotherapy. The function of MAGE-A1 is currently unknown. To analyze it, we attempted to identify protein partners of MAGE-A1. Using yeast two-hybrid screening, we detected an interaction between MAGE-A1 and Ski Interacting Protein (SKIP). SKIP is a transcriptional regulator that connects DNA-binding proteins to proteins that either activate or repress transcription. We show that MAGE-A1 inhibits the activity of a SKIP-interacting transactivator, namely the intracellular part of Notch1. Deletion analysis indicated that this inhibition requires the binding of MAGE-A1 to SKIP. Moreover, MAGE-A1 was found to actively repress transcription by binding and recruiting histone deacetylase 1 (HDAC1). Our results indicate that by binding to SKIP and by recruiting HDACs, MAGE-A1 can act as a potent transcriptional repressor. MAGE-A1 could therefore participate in the setting of specific gene expression patterns for tumor cell growth or spermatogenesis.
Collapse
Affiliation(s)
- Sandra Laduron
- Ludwig Institute for Cancer Research, Brussels branch, and Cellular Genetics Unit, Université Catholique de Louvain, Brussels B1200, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Figueroa JD, Hayman MJ. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene. Biochem Biophys Res Commun 2004; 319:1105-9. [PMID: 15194481 DOI: 10.1016/j.bbrc.2004.05.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 10/26/2022]
Abstract
The PRP45 gene has been identified as encoding a protein involved in mRNA splicing that is essential in Saccharomyces cerevisiae. PRP45's human homolog SKIP has been identified as a mediator of transcriptional programming in a variety of signal transduction pathways including TGFbeta, nuclear hormones, Notch, and retinoblastoma signaling. However, Skip has been also identified in purified spliceosomal complexes but an explicit role in splicing has not been identified in mammalian cells. To determine if the Skip protein could function as a splicing factor we investigated if the SKIP gene could functionally complement the yeast PRP45 gene. We show that SKIP complements the PRP45 deletion and rescues the lethal phenotype. These results show that the human SKIP gene can functionally substitute for the mRNA splicing gene PRP45 of S. cerevisiae.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
42
|
Figueroa JD, Hayman MJ. Differential effects of the Ski-interacting protein (SKIP) on differentiation induced by transforming growth factor-β1 and bone morphogenetic protein-2 in C2C12 cells. Exp Cell Res 2004; 296:163-72. [PMID: 15149847 DOI: 10.1016/j.yexcr.2004.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/23/2004] [Indexed: 11/28/2022]
Abstract
The transforming growth factor-beta (TGF-beta) and bone morphogenetic proteins (BMP) are key regulatory factors that affect many critical cellular events in growth and development. Recently, we have shown that the Ski-interacting protein (SKIP) can augment TGF-beta signals. Here, we extended these studies by examining the biologic consequences of SKIP overexpression on TGF-beta1 and BMP-2 signals in C2C12 cells. C2C12 myoblasts differentiate into myotubes when the media is depleted of mitogenic factors, and TGF-beta1 inhibits this myotube formation. BMP-2 not only inhibits the myotube formation, but also induces C2C12 cells to differentiate into osteoblasts. Here, we show that SKIP-overexpressing C2C12 cells treated with TGF-beta1 or BMP-2 displayed no differences in comparison to vector control cells in their ability to form myotubes or in the expression of the myogenic markers myosin heavy chain-1 and myogenin. Unexpectedly, SKIP-overexpressing C2C12 cells treated with BMP-2 displayed suppressed expression of the induced osteoblast markers alkaline phosphatase, osteocalcin, and the transcription factor Runx2. Lastly, SKIP could repress transcription induced by BMP-2 in luciferase reporter assays done in C2C12 cells. These data show that SKIP has specific inhibitory effects on BMP-2-induced differentiation and implicate SKIP to be a novel regulator of the differentiation programming induced by TGF-beta signals.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
43
|
Kivinen A, Patrikainen L, Kurkela R, Porvari K, Vihko P. USF2 is connected to GAAAATATGATA element and associates with androgen receptor-dependent transcriptional regulation in prostate. Prostate 2004; 59:190-202. [PMID: 15042619 DOI: 10.1002/pros.20015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND We have previously identified a GAAAATATGATA binding site (pros) of a transcription factor involved in prostatic and androgen-dependent gene regulation. We now purified the potential factors interacting with the pros and characterized their co-operation with the androgen receptor (AR). METHODS Sequence-specific DNA affinity chromatography, mass-spectrometry, electromobility shift assays, supershifts, glutathione-S-transferase pull-downs, and transient transfections. RESULTS Several proteins bound to the pros site, but only upstream stimulatory factor 2 (USF2) was confirmed to be part of the transcription factor complex. Weak interaction was detected between AR and the transcription factor complex. Physical proximity between the androgen response element (ARE) and the pros was shown to be important for their co-operation. In the presence of pros and androgen, AR achieves its maximal efficiency even at low concentrations. CONCLUSIONS The protein complex binding to the GAAAATATGATA site does not have a significant independent function, but may interact with AR if GAAAATATGATA is physically close to the ARE and enhances the transactivation function of AR.
Collapse
Affiliation(s)
- Anne Kivinen
- Biocenter Oulu and Research Center for Molecular Endocrinology, WHO Collaborating Centre for Research of Reproductive Health, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
44
|
MacDonald PN, Dowd DR, Zhang C, Gu C. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription. J Steroid Biochem Mol Biol 2004; 89-90:179-86. [PMID: 15225769 DOI: 10.1016/j.jsbmb.2004.03.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NCoA62/SKIP was discovered as a nuclear protein that interacts with the Vitamin D receptor (VDR) and the SKI oncoprotein. NCoA62/SKIP expresses properties consistent with other nuclear receptor transcriptional coactivator proteins. For example, NCoA62/SKIP interacts selectively with the VDR-RXR heterodimer, it forms a ternary complex with liganded VDR and steroid receptor coactivator (SRC) proteins, and it synergizes with SRCs to augment 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)]- and VDR-activated transcription. Chromatin immunoprecipitation studies show that NCoA62/SKIP is recruited in a 1,25-(OH)(2)D(3)-dependent manner to native Vitamin D responsive gene promoters and it enters these promoter complexes after VDR and SRC entry. This suggests that NCoA62/SKIP functions at a distal step in the transactivation process. Recent studies indicate that NCoA62/SKIP is a component of the spliceosome machinery and interacts with important splicing factors such as prp8 and the U5 200kDa helicase. Functional studies also support an involvement of NCoA62/SKIP in mRNA splicing. Collectively, these data suggest a pivotal role for NCoA62/SKIP in coupling transcriptional regulation by VDR to RNA splicing. They further solidify an important role for VDR/NR-interactors downstream of the transcription process in determining the overall response of Vitamin D and steroid hormone regulated genes.
Collapse
Affiliation(s)
- Paul N MacDonald
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
45
|
Nagai K, Yamaguchi T, Takami T, Kawasumi A, Aizawa M, Masuda N, Shimizu M, Tominaga S, Ito T, Tsukamoto T, Osumi T. SKIP modifies gene expression by affecting both transcription and splicing. Biochem Biophys Res Commun 2004; 316:512-7. [PMID: 15020246 DOI: 10.1016/j.bbrc.2004.02.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 11/29/2022]
Abstract
SKIP has been described as a transcriptional coregulator as well as a spliceosome component, but the relationship between these functions is not clear. We found that SKIP activated reporter gene expression from the basal promoters of viral origin. SKIP exhibited more prominent effect on the promoters with stronger activities, in an experiment employing a series of reporter constructs carrying different numbers of GC boxes. We also found that SKIP suppressed aberrant splicing at a cryptic splice donor site in the luciferase reporter gene. In addition, SKIP suppressed splicing of an extra intron created by a beta-thalassemia mutation in the human beta-globin gene. In the transfection experiment, an intronless reporter exhibited a higher level of expression, but was less significantly activated by SKIP, than the intron-containing reporter. These results indicate that SKIP affects gene expression by both transcriptional activation and regulation of pre-mRNA splicing.
Collapse
Affiliation(s)
- Keisuke Nagai
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Leong GM, Subramaniam N, Issa LL, Barry JB, Kino T, Driggers PH, Hayman MJ, Eisman JA, Gardiner EM. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem Biophys Res Commun 2004; 315:1070-6. [PMID: 14985122 DOI: 10.1016/j.bbrc.2004.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/27/2022]
Abstract
Ski-interacting protein (SKIP), a vitamin D receptor (VDR) coactivator, also functions as a repressor in Notch signalling in association with the corepressor SMRT. Here we show that SKIP bifunctionally modulates (activates or represses) Retinoid-X receptor (RXR)- and VDR-dependent gene transcription in a cell line-specific manner, with activation in CV-1 and repression in P19 cells. The coactivator function of SKIP in these cells appeared to correlate with the relative level and ratio of expression of N-CoR and p300, with greater SKIP activation in higher p300-expressing and lower N-CoR-expressing cell-lines. C-terminal deletion of SKIP (delta334-536 aa) was associated with strong activation in both CV-1 and P19 cells. The corepressors N-CoR and SMRT and the coregulator p300 interacted with SKIP through the same N-terminal region (1-200 aa). Overall these results suggest that transcriptional action of SKIP may depend on distinct functional domains and cell line-specific interactions with both corepressors and coactivators.
Collapse
Affiliation(s)
- Gary M Leong
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bettoun DJ, Burris TP, Houck KA, Buck DW, Stayrook KR, Khalifa B, Lu J, Chin WW, Nagpal S. Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-mediated transcriptional activation. Mol Endocrinol 2003; 17:2320-8. [PMID: 12893883 DOI: 10.1210/me.2003-0148] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The vitamin D receptor (VDR) belongs to the thyroid hormone/retinoid receptor subfamily of nuclear receptors and functions as a heterodimer with retinoid X receptor (RXR). The RXR-VDR heterodimer, in contrast to other members of the class II nuclear receptor subfamily, is nonpermissive where RXR does not bind its cognate ligand, and therefore its role in VDR-mediated transactivation by liganded RXR-VDR has not been fully characterized. Here, we show a unique facet of the intermolecular RXR-VDR interaction, in which RXR actively participates in vitamin D3-dependent gene transcription. Using helix 3 and helix 12 mutants of VDR and RXR, we provide functional evidence that liganded VDR allosterically modifies RXR from an apo (unliganded)- to a holo (liganded)-receptor conformation, in the absence of RXR ligand. As a result of the proposed allosteric modification of RXR by liganded VDR, the heterodimerized RXR shows the "phantom ligand effect" and thus acquires the capability to recruit coactivators steroid receptor coactivator 1, transcriptional intermediary factor 2, and amplified in breast cancer-1. Finally, using a biochemical approach with purified proteins, we show that RXR augments the 1,25-dihydroxyvitamin D3-dependent recruitment of transcriptional intermediary factor 2 in the context of RXR-VDR heterodimer. These results confirm and extend the previous observations suggesting that RXR is a significant contributor to VDR-mediated gene expression and provide a mechanism by which RXR acts as a major contributor to vitamin D3-dependent transcription.
Collapse
Affiliation(s)
- David J Bettoun
- Gene Regulation, Bone and Inflammation Research, Eli Lilly & Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J Biol Chem 2003; 278:35325-36. [PMID: 12840015 DOI: 10.1074/jbc.m305191200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear coactivator-62 kDa/Ski-interacting protein (NCoA62/SKIP) is a putative vitamin D receptor (VDR) and nuclear receptor coactivator protein that is unrelated to other VDR coactivators such as those in the steroid receptor coactivator (SRC) family. The mechanism through which NCoA62/SKIP functions in VDR-activated transcription is unknown. In the present study, we identified a nuclear localization sequence in the COOH terminus of NCoA62/SKIP and showed that NCoA62/SKIP was targeted to nuclear matrix subdomains. Chromatin immunoprecipitation studies revealed that endogenous NCoA62/SKIP associated in a 1,25-dihydroxyvitamin D3-dependent manner with VDR target genes in ROS17/2.8 osteosarcoma cells. A cyclic pattern of promoter occupancy by VDR, SRC-1, and NCoA62/SKIP was observed, with NCoA62/SKIP entering these promoter complexes after SRC-1. These studies provide strong support for the proposed role of NCoA62/SKIP as a VDR transcriptional coactivator, and they indicate that key mechanistic differences probably exist between NCoA62/SKIP and SRC coactivators. To explore potential mechanisms, NCoA62/SKIP-interacting proteins were purified from HeLa cell nuclear extracts and identified by mass spectrometry. The identified proteins represent components of the spliceosome as well as other nuclear matrix-associated proteins. Here, we show that a dominant negative inhibitor of NCoA62/SKIP (dnNCoA62/SKIP) interfered with appropriate splicing of transcripts derived from 1,25-dihydroxyvitamin D3-induced expression of a growth hormone minigene cassette. Taken together, these data show that NCoA62/SKIP has properties that are consistent with those of nuclear receptor coactivators and with RNA spliceosome components, thus suggesting a potential role for NCoA62/SKIP in coupling VDR-mediated transcription to RNA splicing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Barry JB, Leong GM, Church WB, Issa LL, Eisman JA, Gardiner EM. Interactions of SKIP/NCoA-62, TFIIB, and retinoid X receptor with vitamin D receptor helix H10 residues. J Biol Chem 2003; 278:8224-8. [PMID: 12529369 DOI: 10.1074/jbc.c200712200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitamin D receptor (VDR) is a ligand-dependent transcription factor that heterodimerizes with retinoid X receptor (RXR) and interacts with the basal transcription machinery and transcriptional cofactors to regulate target gene activity. The p160 coactivator GRIP1 and the distinct coregulator Ski-interacting protein (SKIP)/NCoA-62 synergistically enhance ligand-dependent VDR transcriptional activity. Both coregulators bind directly to and form a ternary complex with VDR, with GRIP1 contacting the activation function-2 (AF-2) domain and SKIP/NCoA-62 interacting through an AF-2 independent interface. It was previously reported that SKIP/NCoA-62 interaction with VDR was independent of the heterodimerization interface (specifically, helices H10/H11). In contrast, the present study defines specific residues within a conserved and surface-exposed region of VDR helix H10 that are required for interaction with SKIP/NCoA-62 and for full ligand-dependent transactivation activity. SKIP/NCoA-62, the basal transcription factor TFIIB, and RXR all interacted with VDR helix H10 mutants at reduced levels compared with wild type in the absence of ligand and exhibited different degrees of increased interaction upon ligand addition. Thus, SKIP/NCoA-62 interacts with VDR at a highly conserved region not previously associated with coregulator binding to regulate transactivation by a molecular mechanism distinct from that of p160 coactivators.
Collapse
Affiliation(s)
- Janelle B Barry
- Bone and Mineral Research Program and Molecular Modeling Facility, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Christakos S, Dhawan P, Liu Y, Peng X, Porta A. New insights into the mechanisms of vitamin D action. J Cell Biochem 2003; 88:695-705. [PMID: 12577303 DOI: 10.1002/jcb.10423] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is a secosteroid whose genomic mechanism of action is similar to that of other steroid hormones and is mediated by stereospecific interaction of 1,25(OH)(2)D(3) with the vitamin D receptor (VDR) which heterodimerizes with the retinoid X receptor (RXR). After interaction with the vitamin D response element (VDRE) in the promoter of target genes, transcription proceeds through the interaction of VDR with coactivators and with the transcription machinery. The identification of the steps involved in this process has been a major focus of recent research in the field. However, the functional significance of target proteins as well as the functional significance of proteins involved in the transport and metabolism of vitamin D is also of major importance. Within the past few years much new information has been obtained from studies using knockout and transgenic mice. New insight has been obtained using this technology related to the physiological significance of the vitamin D binding protein (DBP), used to transport vitamin D metabolites, as well as the physiological significance of target proteins including 25-hydroxyvitamin D(3) 24-hydroxylase (24(OH)ase), 25-hydroxyvitamin D(3)-1 alpha-hydroxylase (1 alpha-(OH)ase), VDR, and osteopontin. The crystal structure of the DBP and the ligand binding domain of the VDR have recently been reported, explaining, in part, the unique properties of these proteins. In addition novel 1,25(OH)(2)D(3) target genes have been identified including the epithelial calcium channel, present in the proximal intestine and in the distal nephron. Thus in recent years a number of exciting discoveries have been made that have enhanced our understanding of mechanisms involved in the pleiotropic actions of 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA. christak@umdnj@edu
| | | | | | | | | |
Collapse
|