1
|
Pacheco J, Peña KA, Savransky S, Gidon A, Hammond GRV, Janetzko J, Vilardaga JP. Fast-diffusing receptor collisions with slow-diffusing peptide ligand assemble the ternary parathyroid hormone-GPCR-arrestin complex. Nat Commun 2024; 15:10499. [PMID: 39627206 PMCID: PMC11615292 DOI: 10.1038/s41467-024-54772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
The assembly of a peptide ligand, its receptor, and β-arrestin (βarr) into a ternary complex within the cell membrane is a crucial aspect of G protein-coupled receptor (GPCR) signaling. We explore this assembly by attaching fluorescent moieties to the parathyroid hormone (PTH) type 1 receptor (PTH1R), using PTH as a prototypical peptide hormone, along with βarr and clathrin, and recording dual-color single-molecule imaging at the plasma membrane of live cells. Here we show that PTH1R exhibits a near-Brownian diffusion, whereas unbound hormone displays limited mobility and slow lateral diffusion at the cell surface. The formation of the PTH-PTH1R-βarr complex occurs in three sequential steps: (1) receptor and ligand collisions, (2) phosphoinositide (PIP3)-dependent recruitment and conformational change of βarr molecules at the plasma membrane, and (3) collision of most βarr molecules with the ligand-bound receptor within clathrin clusters. Our results elucidate the non-random pathway by which PTH-PTH1R-βarr complex is formed and unveil the critical role of PIP3 in regulating GPCR signaling.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Karina A Peña
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Alexandre Gidon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - John Janetzko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- U.S. Department of Veterans Affairs, Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
2
|
Zaïmia N, Obeid J, Varrault A, Sabatier J, Broca C, Gilon P, Costes S, Bertrand G, Ravier MA. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep 2023; 42:113326. [PMID: 37897727 DOI: 10.1016/j.celrep.2023.113326] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease β-arrestin 2 (ARRB2) levels in human islets. In mouse β cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.
Collapse
Affiliation(s)
- Nour Zaïmia
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Joelle Obeid
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Annie Varrault
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète, et Nutrition, Brussels, Belgium
| | - Safia Costes
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
3
|
Transferrin Receptor Protein 1 Cooperates with mGluR2 To Mediate the Internalization of Rabies Virus and SARS-CoV-2. J Virol 2023; 97:e0161122. [PMID: 36779763 PMCID: PMC9972945 DOI: 10.1128/jvi.01611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.
Collapse
|
4
|
El Eid L, Reynolds CA, Tomas A, Ben Jones. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol Res 2022; 184:106411. [PMID: 36007775 DOI: 10.1016/j.phrs.2022.106411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-studied incretin hormone receptor and target of several therapeutic drugs for type 2 diabetes (T2D), obesity and, more recently, cardiovascular disease. Some signalling pathways downstream of GLP-1R may be responsible for drug adverse effects such as nausea, while others mediate therapeutic outcomes of incretin-based T2D therapeutics. Understanding the interplay between different factors that alter signalling, trafficking, and receptor activity, including biased agonism, single nucleotide polymorphisms and structural modifications is key to develop the next-generation of personalised GLP-1R agonists. However, these interactions remain poorly described, especially for novel therapeutics such as dual and tri-agonists that target more than one incretin receptor. Comparison of GLP-1R structures in complex with G proteins and different peptide and non-peptide agonists has revealed novel insights into important agonist-residue interactions and networks crucial for receptor activation, recruitment of G proteins and engagement of specific signalling pathways. Here, we review the latest knowledge on GLP-1R structure and activation, providing structural evidence for biased agonism and delineating important networks associated with this phenomenon. We survey current biased agonists and multi-agonists at different stages of development, highlighting possible challenges in their translational potential. Lastly, we discuss findings related to non-synonymous genomic variants of GLP1R and the functional importance of specific residues involved in GLP-1R function. We propose that studies of GLP-1R polymorphisms, and specifically their effect on receptor dynamics and pharmacology in response to biased agonists, could have a significant impact in delineating precision medicine approaches and development of novel therapeutics.
Collapse
Affiliation(s)
- Liliane El Eid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Marzook A, Tomas A, Jones B. The Interplay of Glucagon-Like Peptide-1 Receptor Trafficking and Signalling in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2021; 12:678055. [PMID: 34040588 PMCID: PMC8143046 DOI: 10.3389/fendo.2021.678055] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) which mediates the effects of GLP-1, an incretin hormone secreted primarily from L-cells in the intestine and within the central nervous system. The GLP-1R, upon activation, exerts several metabolic effects including the release of insulin and suppression of appetite, and has, accordingly, become an important target for the treatment for type 2 diabetes (T2D). Recently, there has been heightened interest in how the activated GLP-1R is trafficked between different endomembrane compartments, controlling the spatial origin and duration of intracellular signals. The discovery of "biased" GLP-1R agonists that show altered trafficking profiles and selective engagement with different intracellular effectors has added to the tools available to study the mechanisms and physiological importance of these processes. In this review we survey early and recent work that has shed light on the interplay between GLP-1R signalling and trafficking, and how it might be therapeutically tractable for T2D and related diseases.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
7
|
Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S. Sialic acid mediated mechanical activation of β 2 adrenergic receptors by bacterial pili. Nat Commun 2019; 10:4752. [PMID: 31628314 PMCID: PMC6800425 DOI: 10.1038/s41467-019-12685-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/21/2019] [Indexed: 01/14/2023] Open
Abstract
Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Collapse
Affiliation(s)
- Zoe Virion
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France
| | - Stéphane Doly
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Kusumika Saha
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Mireille Lambert
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Camille Bied
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Catherine Robbe-Masselot
- CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université Lille, 59000, Lille, France
| | - Xavier Nassif
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathieu Coureuil
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.
| | - Stefano Marullo
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
9
|
Yoneyama Y, Lanzerstorfer P, Niwa H, Umehara T, Shibano T, Yokoyama S, Chida K, Weghuber J, Hakuno F, Takahashi SI. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. eLife 2018; 7:32893. [PMID: 29661273 PMCID: PMC5903866 DOI: 10.7554/elife.32893] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling.
Collapse
Affiliation(s)
- Yosuke Yoneyama
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hideaki Niwa
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takashi Shibano
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan.,RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Kazuhiro Chida
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Wels, Austria.,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 2017; 550:543-547. [PMID: 29045395 DOI: 10.1038/nature24264] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors mediate the biological effects of many hormones and neurotransmitters and are important pharmacological targets. They transmit their signals to the cell interior by interacting with G proteins. However, it is unclear how receptors and G proteins meet, interact and couple. Here we analyse the concerted motion of G-protein-coupled receptors and G proteins on the plasma membrane and provide a quantitative model that reveals the key factors that underlie the high spatiotemporal complexity of their interactions. Using two-colour, single-molecule imaging we visualize interactions between individual receptors and G proteins at the surface of living cells. Under basal conditions, receptors and G proteins form activity-dependent complexes that last for around one second. Agonists specifically regulate the kinetics of receptor-G protein interactions, mainly by increasing their association rate. We find hot spots on the plasma membrane, at least partially defined by the cytoskeleton and clathrin-coated pits, in which receptors and G proteins are confined and preferentially couple. Imaging with the nanobody Nb37 suggests that signalling by G-protein-coupled receptors occurs preferentially at these hot spots. These findings shed new light on the dynamic interactions that control G-protein-coupled receptor signalling.
Collapse
|
11
|
Reciprocal regulation of β 2-adrenoceptor-activated cAMP response-element binding protein signalling by arrestin2 and arrestin3. Cell Signal 2017; 38:182-191. [PMID: 28733084 DOI: 10.1016/j.cellsig.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Activation of Gs coupled receptors (e.g. β2-adrenoreceptor (β2AR)) expressed within the uterine muscle layer (myometrium), promotes intracellular cAMP generation, inducing muscle relaxation through short-term inhibition of contractile proteins, and longer-term modulation of cellular phenotype to promote quiescence. In the myometrium cAMP-driven modulation of cell phenotype is facilitated by CREB activity, however despite the importance of CREB signalling in the promotion of myometrial quiescence during pregnancy, little is currently known regarding the molecular mechanisms involved. Thus, we have characterised β-adrenoceptor-stimulated CREB signalling in the immortalised ULTR human myometrial cell line. The non-selective β-adrenoceptor agonist isoprenaline induced time- and concentration-dependent CREB phosphorylation, which was abolished by the β2AR selective antagonist ICI118,551. β2AR-stimulated CREB phosphorylation was mediated through a short-term PKA-dependent phase, and longer-term Src/p38 MAPK-dependent/PKA-independent phase. Since in model cells, arrestin2 can facilitate β2AR-mediated Src/p38 recruitment, we examined whether CREB signalling was activated through a similar process in myometrial cells. Depletion of arrestin2 attenuated p38 phosphorylation, whilst arrestin3 depletion enhanced and prolonged isoprenaline-stimulated p38 signals, which was reversed following inhibition of Src. Knockdown of arrestin2 led to enhanced short-term (up to 10min), and attenuated longer-term (>10min) isoprenaline-stimulated CREB phosphorylation. Contrastingly, removal of arrestin3 enhanced and prolonged isoprenaline-stimulated CREB phosphorylation, whilst depletion of both arrestins abolished CREB signals at time points >5min. In summary, we have delineated the molecular mechanisms coupling β2AR activity to CREB signalling in ULTR myometrial cells, revealing a biphasic activation process encompassing short-term PKA-dependent, and prolonged Src/arrestin2/p38-dependent components. Indeed, our data highlight a novel arrestin-mediated modulation of CREB signalling, suggesting a reciprocal relationship between arrestin2 and arrestin3, wherein recruitment of arrestin3 restricts the ability of β2AR to activate prolonged CREB phosphorylation by precluding recruitment of an arrestin2/Src/p38 complex.
Collapse
|
12
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
13
|
A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 2017; 8:15054. [PMID: 28416805 PMCID: PMC5399295 DOI: 10.1038/ncomms15054] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
In addition to G protein-coupled receptor (GPCR) desensitization and endocytosis, β-arrestin recruitment to ligand-stimulated GPCRs promotes non-canonical signalling cascades. Distinguishing the respective contributions of β-arrestin recruitment to the receptor and β-arrestin-promoted endocytosis in propagating receptor signalling has been limited by the lack of selective analytical tools. Here, using a combination of virtual screening and cell-based assays, we have identified a small molecule that selectively inhibits the interaction between β-arrestin and the β2-adaptin subunit of the clathrin adaptor protein AP2 without interfering with the formation of receptor/β-arrestin complexes. This selective β-arrestin/β2-adaptin inhibitor (Barbadin) blocks agonist-promoted endocytosis of the prototypical β2-adrenergic (β2AR), V2-vasopressin (V2R) and angiotensin-II type-1 (AT1R) receptors, but does not affect β-arrestin-independent (transferrin) or AP2-independent (endothelin-A) receptor internalization. Interestingly, Barbadin fully blocks V2R-stimulated ERK1/2 activation and blunts cAMP accumulation promoted by both V2R and β2AR, supporting the concept of β-arrestin/AP2-dependent signalling for both G protein-dependent and -independent pathways. Beta-arrestins play central roles in the mechanisms regulating GPCR signalling and trafficking. Here the authors identify a selective inhibitor of the interaction between β-arrestin and the β2-adaptin subunit of the clathrin adaptor protein AP-2, which they use to dissect the role of the β-arrestin/β2-adaptin interaction in GPCR signalling.
Collapse
|
14
|
Milanini J, Fayad R, Partisani M, Lecine P, Borg JP, Franco M, Luton F. EFA6 regulates lumen formation through alpha-actinin 1. J Cell Sci 2017; 131:jcs.209361. [DOI: 10.1242/jcs.209361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contact. The small nascent lumens grow through extension, coalescence and enlargement coordinated with cell division to give rise to a single central lumen. Here, using MDCK cells grown in 3D-culture, we show that EFA6A participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen.
Collapse
Affiliation(s)
- Julie Milanini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Racha Fayad
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariagrazia Partisani
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
- present address: BIOASTER, Lyon, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
| | - Michel Franco
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Frédéric Luton
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
15
|
Stabley DR, Oh T, Simon SM, Mattheyses AL, Salaita K. Real-time fluorescence imaging with 20 nm axial resolution. Nat Commun 2015; 6:8307. [PMID: 26392382 PMCID: PMC4595625 DOI: 10.1038/ncomms9307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Measuring the nanoscale organization of protein structures near the plasma membrane of live cells is challenging, especially when the structure is dynamic. Here we present the development of a two-wavelength total internal reflection fluorescence method capable of real-time imaging of cellular structure height with nanometre resolution. The method employs a protein of interest tagged with two different fluorophores and imaged to obtain the ratio of emission in the two channels. We use this approach to visualize the nanoscale organization of microtubules and endocytosis of the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Daniel R Stabley
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Thomas Oh
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Alexa L Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Grove J, Metcalf DJ, Knight AE, Wavre-Shapton ST, Sun T, Protonotarios ED, Griffin LD, Lippincott-Schwartz J, Marsh M. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 2014; 25:3581-94. [PMID: 25165141 PMCID: PMC4230618 DOI: 10.1091/mbc.e14-06-1154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo.
Collapse
Affiliation(s)
- Joe Grove
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Daniel J Metcalf
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Alex E Knight
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | - Tony Sun
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| | | | - Lewis D Griffin
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Godlee C, Kaksonen M. Review series: From uncertain beginnings: initiation mechanisms of clathrin-mediated endocytosis. ACTA ACUST UNITED AC 2014; 203:717-25. [PMID: 24322426 PMCID: PMC3857488 DOI: 10.1083/jcb.201307100] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Clathrin-mediated endocytosis is a central and well-studied trafficking process in eukaryotic cells. How this process is initiated is likely to be a critical point in regulating endocytic activity spatially and temporally, but the underlying mechanisms are poorly understood. During the early stages of endocytosis three components—adaptor and accessory proteins, cargo, and lipids—come together at the plasma membrane to begin the formation of clathrin-coated vesicles. Although different models have been proposed, there is still no clear picture of how these three components cooperate to initiate endocytosis, which may indicate that there is some flexibility underlying this important event.
Collapse
Affiliation(s)
- Camilla Godlee
- Cell Biology and Biophysics Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | | |
Collapse
|
18
|
Walenkamp A, Crespo G, Fierro Maya F, Fossmark R, Igaz P, Rinke A, Tamagno G, Vitale G, Öberg K, Meyer T. Hallmarks of gastrointestinal neuroendocrine tumours: implications for treatment. Endocr Relat Cancer 2014; 21:R445-60. [PMID: 25296914 DOI: 10.1530/erc-14-0106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past few years, there have been advances in the treatment of neuroendocrine tumours (NETs) and improvements in our understanding of NET biology. However, the benefits to patients have been relatively modest and much remains yet to be done. The 'Hallmarks of Cancer', as defined by Hanahan and Weinberg, provide a conceptual framework for understanding the aberrations that underlie tumourigenesis and to help identify potential targets for therapy. In this study, our objective is to review the major molecular characteristics of NETs, based on the recently modified 'Hallmarks of Cancer', and highlight areas that require further research.
Collapse
Affiliation(s)
- Annemiek Walenkamp
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Guillermo Crespo
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Felipe Fierro Maya
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Reidar Fossmark
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Peter Igaz
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Anja Rinke
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Gianluca Tamagno
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Giovanni Vitale
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Au
| | - Kjell Öberg
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| | - Tim Meyer
- Department of Medical OncologyUniversity Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The NetherlandsDepartment of Medical OncologyHospital Universitario de Burgos, Avenida Islas Baleares 3, 09006 Burgos, SpainDepartment of Endocrine OncologyNational Cancer Institute, Bogotá, ColombiaDepartment of Cancer Research and Molecular MedicineNorwegian University of Science and Technology, 7491 Trondheim, Norway2nd Department of MedicineSemmelweis University, 46, Szentkiralyi Street, H-1088 Budapest, HungaryDepartment of GastroenterologyUniversity Hospital Marburg, Baldinger Strasse, Marburg D-35043, GermanyDepartment of General Internal MedicineSt Columcille's Hospital, Loughlinstown - Co., Dublin, IrelandDepartment of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, ItalyLaboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, ItalyDepartment of Endocrine OncologyUniversity Hospital, Uppsala, SwedenUCL Cancer InstituteUCL, Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
19
|
Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci U S A 2013; 110:9463-9468. [PMID: 23690606 PMCID: PMC3677467 DOI: 10.1073/pnas.1301126110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arrestins bind ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) and terminate the activation of G proteins. Additionally, nonvisual arrestin/GPCR complex can initiate G protein-independent intracellular signals through their ability to act as scaffolds that bring other signaling molecules to the internalized GPCR. Like nonvisual arrestins, vertebrate visual arrestin (ARR1) terminates G protein signaling from light-activated, phosphorylated GPCR, rhodopsin. Unlike nonvisual arrestins, its role as a transducer of signaling from internalized rhodopsin has not been reported in the vertebrate retina. Formation of signaling complexes with arrestins often requires recruitment of the endocytic adaptor protein, AP-2. We have previously shown that Lys296 → Glu (K296E), which is a naturally occurring rhodopsin mutation in certain humans diagnosed with autosomal dominant retinitis pigmentosa, causes toxicity through forming a stable complex with ARR1. Here we investigated whether recruitment of AP-2 by the K296E/ARR1 complex plays a role in generating the cell death signal in a transgenic mouse model of retinal degeneration. We measured the binding affinity of ARR1 for AP-2 and found that, although the affinity is much lower than that of the other arrestins, the unusually high concentration of ARR1 in rods would favor this interaction. We further demonstrate that p44, a splice variant of ARR1 that binds light-activated, phosphorylated rhodopsin but lacks the AP-2 binding motif, prevents retinal degeneration and rescues visual function in K296E mice. These results reveal a unique role of ARR1 in a G protein-independent signaling cascade in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Christine C. Jao
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | | |
Collapse
|
20
|
Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 2012; 6:180. [PMID: 23248581 PMCID: PMC3521152 DOI: 10.3389/fnins.2012.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.
Collapse
Affiliation(s)
- Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, NY, USA
| | | | | |
Collapse
|
21
|
Delom F, Fessart D. Role of Phosphorylation in the Control of Clathrin-Mediated Internalization of GPCR. Int J Cell Biol 2011; 2011:246954. [PMID: 21765832 PMCID: PMC3132527 DOI: 10.1155/2011/246954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/01/2011] [Indexed: 12/17/2022] Open
Abstract
The process by which G protein-coupled receptors (GPCRs) are internalized through the clathrin-coated vesicles involves interactions of multifunctional adaptor proteins. These interactions are tightly controlled by phosphorylation and dephosphorylation mechanisms resulting in the regulation of receptor endocytosis. However, the identities of the kinases involved in this process remained largely unknown until recently. This paper discusses advances in our knowledge of the important role played by protein phosphorylation in the regulation of the endocytic machinery and how phosphorylation controls the coated vesicle cycle.
Collapse
Affiliation(s)
- Frederic Delom
- Bordeaux Cardiothoracic Research Center, Bordeaux University, 146, Léo-Saignat, 33076 Bordeaux, France
- Inserm U1045, 146, Léo-Saignat, 33076 Bordeaux, France
| | - Delphine Fessart
- Bordeaux Cardiothoracic Research Center, Bordeaux University, 146, Léo-Saignat, 33076 Bordeaux, France
- Inserm U1045, 146, Léo-Saignat, 33076 Bordeaux, France
| |
Collapse
|
22
|
Lima-Fernandes E, Enslen H, Camand E, Kotelevets L, Boularan C, Achour L, Benmerah A, Gibson LCD, Baillie GS, Pitcher JA, Chastre E, Etienne-Manneville S, Marullo S, Scott MGH. Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins. EMBO J 2011; 30:2557-68. [PMID: 21642958 DOI: 10.1038/emboj.2011.178] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/09/2011] [Indexed: 01/14/2023] Open
Abstract
The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins β-arrestins (β-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, β-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, β-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. β-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration.
Collapse
|
23
|
Coureuil M, Marullo S. [β(2) adrenergic receptor and β-arrestins: the meningococcal instruments to breach meninges]. Med Sci (Paris) 2011; 27:365-7. [PMID: 21524400 DOI: 10.1051/medsci/2011274011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mathieu Coureuil
- Université Paris Descartes, faculté de médecine, Inserm U1002, Paris, France
| | | |
Collapse
|
24
|
Meningococcus Hijacks a β2-adrenoceptor/β-Arrestin pathway to cross brain microvasculature endothelium. Cell 2011; 143:1149-60. [PMID: 21183077 DOI: 10.1016/j.cell.2010.11.035] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 09/28/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
Abstract
Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased β2-adrenoceptor/β-arrestin signaling pathway in endothelial cells, which ultimately traps β-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by β-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas β-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of β-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.
Collapse
|
25
|
Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, Jockers R. GPCR-Interacting Proteins, Major Players of GPCR Function. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:349-80. [DOI: 10.1016/b978-0-12-385952-5.00001-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Toshima JY, Nakanishi JI, Mizuno K, Toshima J, Drubin DG. Requirements for recruitment of a G protein-coupled receptor to clathrin-coated pits in budding yeast. Mol Biol Cell 2010; 20:5039-50. [PMID: 19828733 DOI: 10.1091/mbc.e09-07-0541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.
Collapse
Affiliation(s)
- Junko Y Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
27
|
Eckels PC, Banerjee A, Moore EE, McLaughlin NJD, Gries LM, Kelher MR, England KM, Gamboni-Robertson F, Khan SY, Silliman CC. Amantadine inhibits platelet-activating factor induced clathrin-mediated endocytosis in human neutrophils. Am J Physiol Cell Physiol 2009; 297:C886-97. [PMID: 19295175 PMCID: PMC2770739 DOI: 10.1152/ajpcell.00416.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 03/11/2009] [Indexed: 11/22/2022]
Abstract
Receptor signaling is integral for adhesion, emigration, phagocytosis, and reactive oxygen species production in polymorphonuclear neutrophils (PMNs). Priming is an important part of PMN emigration, but it can also lead to PMN-mediated organ injury in the host. Platelet-activating factor (PAF) primes PMNs through activation of a specific G protein-coupled receptor. We hypothesize that PAF priming of PMNs requires clathrin-mediated endocytosis (CME) of the PAF receptor (PAFr), and, therefore, amantadine, known to inhibit CME, significantly antagonizes PAF signaling. PMNs were isolated by standard techniques to >98% purity and tested for viability. Amantadine (1 mM) significantly inhibited the PAF-mediated changes in the cellular distribution of clathrin and the physical colocalization [fluorescence resonance energy transfer positive (FRET+)] of early endosome antigen-1 and Rab5a, known components of CME and similar to hypertonic saline, a known inhibitor of CME. Furthermore, amantadine had no effect on the PAF-induced cytosolic calcium flux; however, phosphorylation of p38 MAPK was significantly decreased. Amantadine inhibited PAF-mediated changes in PMN physiology, including priming of the NADPH oxidase and shape change with lesser inhibition of increases in CD11b surface expression and elastase release. Furthermore, rimantadine, an amantadine analog, was a more potent inhibitor of PAF priming of the N-formyl-methionyl-leucyl-phenylalanine-activated oxidase. PAF priming of PMNs requires clathrin-mediated endocytosis that is inhibited when PMNs are pretreated with either amantadine or rimantadine. Thus, amantadine and rimantadine have the potential to ameliorate PMN-mediated tissue damage in humans.
Collapse
Affiliation(s)
- Phillip C Eckels
- Department of Surgery, Denver Health Medical Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 2009; 10:583-96. [PMID: 19696796 DOI: 10.1038/nrm2751] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clathrin-mediated endocytosis oversees the constitutive packaging of selected membrane cargoes into transport vesicles that fuse with early endosomes. The process is responsive to activation of signalling receptors and ion channels, promptly clearing post-translationally tagged forms of cargo off the plasma membrane. To accommodate the diverse array of transmembrane proteins that are variably gathered into forming vesicles, a dedicated sorting machinery cooperates to ensure that non-competitive uptake from the cell surface occurs within minutes. Recent structural and functional data reveal remarkable plasticity in how disparate sorting signals are recognized by cargo-selective clathrin adaptors, such as AP-2. Cargo loading also seems to govern whether coats ultimately bud or dismantle abortively at the cell surface.
Collapse
|
29
|
Jones BW, Hinkle PM. Subcellular trafficking of the TRH receptor: effect of phosphorylation. Mol Endocrinol 2009; 23:1466-78. [PMID: 19541745 DOI: 10.1210/me.2009-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the G protein-coupled TRH receptor leads to its phosphorylation and internalization. These studies addressed the fundamental question of whether phosphorylation regulates receptor trafficking or endosomal localization regulates the phosphorylation state of the receptor. Trafficking of phosphorylated and dephosphorylated TRH receptors was characterized using phosphosite-specific antibody after labeling surface receptors with antibody to an extracellular epitope tag. Rab5 and phosphoreceptor did not colocalize at the plasma membrane immediately after TRH addition but overlapped extensively by 15 min. Dominant-negative Rab5-S34N inhibited receptor internalization. Later, phosphoreceptor was in endosomes containing Rab5 and Rab4. Dephosphorylated receptor colocalized with Rab4 but not with Rab5. Dominant-negative Rab4, -5, or -11 did not affect receptor phosphorylation or dephosphorylation, showing that phosphorylation determines localization in Rab4(+)/Rab5(-) vesicles and not vice versa. No receptor colocalized with Rab7; a small amount of phosphoreceptor colocalized with Rab11. To characterize recycling, surface receptors were tagged with antibody, or surface receptors containing an N-terminal biotin ligase acceptor sequence were labeled with biotin. Most recycling receptors did not return to the plasma membrane for more than 2 h after TRH was removed, whereas the total cell surface receptor density was largely restored in less than 1 h, indicating that recruited receptors contribute heavily to early repopulation of the plasma membrane.
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology, University of Rochester Medical Center, Box 711, Rochester, New York 14642, USA
| | | |
Collapse
|
30
|
Rappoport JZ, Simon SM. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 2009; 122:1301-5. [PMID: 19351721 PMCID: PMC2721002 DOI: 10.1242/jcs.040030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2009] [Indexed: 12/13/2022] Open
Abstract
The removal of the epidermal growth factor receptor (EGFR) from the cell surface by endocytosis is triggered by receptor activation, but many facets of EGFR trafficking remain unresolved. We employed total internal fluorescence microscopy to elucidate the dynamics of activated EGFR at the cell surface through live-cell imaging. The results of these studies demonstrate that: (1) EGFR does not localize to caveolae in live cells either before or after activation; (2) EGFR does localize to clathrin-coated pits, but only after activation; (3) activation does not result in the formation of new clathrin-coated pits; (4) activated EGFR clusters at sites of preformed clathrin lattices; (5) The AP-2 complex is involved in the internalization of activated EGFR. Using imaging techniques to show the endocytic sorting of activated EGFR for the first time in live cells, these studies suggest a refinement of the model for EGFR entry.
Collapse
|
31
|
van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 2008; 4:e1000244. [PMID: 19096510 PMCID: PMC2592694 DOI: 10.1371/journal.ppat.1000244] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 11/18/2008] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.
Collapse
Affiliation(s)
- Hilde M. van der Schaar
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael J. Rust
- Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Chen Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Heidi van der Ende-Metselaar
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (XZ); (JMS)
| | - Jolanda M. Smit
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail: (XZ); (JMS)
| |
Collapse
|
32
|
Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 2008; 83:440-53. [PMID: 18971266 DOI: 10.1128/jvi.01864-08] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an animal virus that based on electron microscopy and its dependence on acidic cellular compartments for infection is thought to enter its host cells in a clathrin-dependent manner. The exact cellular mechanism, however, is largely unknown. In this study, we characterized the entry kinetics of VSV and elucidated viral requirements for host cell factors during infection in HeLa cells. We found that endocytosis of VSV was a fast process with a half time of 2.5 to 3 min and that acid activation occurred within 1 to 2 min after internalization in early endosomes. The majority of viral particles were endocytosed in a clathrin-based, dynamin-2-dependent manner. Although associated with some of the surface-bound viruses, the classical adaptor protein complex AP-2 was not required for infection. Time-lapse microscopy revealed that the virus either entered preformed clathrin-coated pits or induced de novo formation of pits. Dynamin-2 was recruited to plasma membrane-confined virus particles. Thus, VSV can induce productive internalization by exploiting a specific combination of the clathrin-associated proteins and cellular functions.
Collapse
|
33
|
Keyel PA, Thieman JR, Roth R, Erkan E, Everett ET, Watkins SC, Heuser JE, Traub LM. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis. Mol Biol Cell 2008; 19:5309-26. [PMID: 18843039 DOI: 10.1091/mbc.e08-07-0712] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The independently folded appendages of the large alpha and beta2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The beta2 subunit appendage contains a common binding site for beta-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing beta2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 alpha subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the beta2 chain with the closely related endogenous beta1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both beta1 and beta2 subunit transcripts recapitulates the strong alpha subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive beta2-yellow fluorescent protein (YFP) expressed in the beta1 + beta2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the beta appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a beta2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a beta-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with beta2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and beta-arrestin binding to a site upon the beta2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and beta-arrestin depend on a privileged beta2 appendage site for proper cargo recruitment to clathrin bud sites.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Investigations into the mechanisms which regulate entry of integral membrane proteins, and associated ligands, into the cell through vesicular carriers (endocytosis) have greatly benefited from the application of live-cell imaging. Several excellent recent reviews have detailed specific aspects of endocytosis, such as entry of particular cargo, or the different routes of internalization. The aim of the present review is to highlight how advances in live-cell fluorescence microscopy have affected the study of clathrin-mediated endocytosis. The last decade has seen a tremendous increase in the development and dissemination of methods for imaging endocytosis in live cells, and this has been followed by a dramatic shift in the way this critical cellular pathway is studied and understood. The present review begins with a description of the technical advances which have permitted new types of experiment to be performed, as well as potential pitfalls of these new technologies. Subsequently, advances in the understanding of three key endocytic proteins will be addressed: clathrin, dynamin and AP-2 (adaptor protein 2). Although great strides have clearly been made in these areas in recent years, as is often the case, each answer has bred numerous questions. Furthermore, several examples are highlighted where, because of seemingly minor differences in experimental systems, what appear at first to be very similar studies have, at times, yielded vastly differing results and conclusions. Thus this is an exceedingly exciting time to study endocytosis, and this area serves as a clear demonstration of the power of applying live-cell imaging to answer fundamental biological questions.
Collapse
|
35
|
Abstract
Despite the large number of G-protein-coupled receptor (GPCR) types expressed in the CNS, little is known about their dynamics in neuronal cells. Dynamic properties of the somatostatin type 2A receptor were therefore examined in resting conditions and after agonist activation in living hippocampal neurons. Using fluorescence recovery after photobleaching experiments, we found that, in absence of ligand, the sst(2A) receptor is mobile and laterally and rapidly diffuse in neuronal membranes. We then observed by live-cell imaging that, after agonist activation, membrane-associated receptors induce the recruitment of beta-arrestin 1-enhanced green fluorescent protein (EGFP) and beta-arrestin 2-EGFP to the plasma membrane. In addition, beta-arrestin 1-EGFP translocate to the nucleus, suggesting that this protein could serve as a nuclear messenger for the sst(2A) receptor in neurons. Receptors are then recruited to preexisting clathrin coated pits, form clusters that internalize, fuse, and move to a perinuclear compartment that we identified as the trans-Golgi network (TGN), and recycle. Receptor cargoes are transported through a microtubule-dependent process directly from early endosomes/recycling endosomes to the TGN, bypassing the late endosomal compartment. Together, these results provide a comprehensive description of GPCR trafficking in living neurons and provide compelling evidence that GPCR cargoes can recycle through the TGN after endocytosis, a phenomenon that has not been anticipated from studies of non-neuronal cells.
Collapse
|
36
|
CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008; 112:34-44. [PMID: 18436740 DOI: 10.1182/blood-2007-07-102103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is an immune deficiency linked in many cases to heterozygous mutations causing truncations in the cytoplasmic tail of CXC chemokine receptor 4 (CXCR4). Leukocytes expressing truncated CXCR4 display enhanced responses to the receptor ligand CXCL12, including chemotaxis, which likely impair their trafficking and contribute to the immunohematologic clinical manifestations of the syndrome. CXCR4 desensitization and endocytosis are dependent on beta-arrestin (betaarr) recruitment to the cytoplasmic tail, so that the truncated CXCR4 are refractory to these processes and so have enhanced G protein-dependent signaling. Here, we show that the augmented responsiveness of WHIM leukocytes is also accounted for by enhanced betaarr2-dependent signaling downstream of the truncated CXCR4 receptor. Indeed, the WHIM-associated receptor CXCR4(1013) maintains association with betaarr2 and triggers augmented and prolonged betaarr2-dependent signaling, as revealed by ERK1/2 phosphorylation kinetics. Evidence is also provided that CXCR4(1013)-mediated chemotaxis critically requires betaarr2, and disrupting the SHSK motif in the third intracellular loop of CXCR4(1013) abrogates betaarr2-mediated signaling, but not coupling to G proteins, and normalizes chemotaxis. We also demonstrate that CXCR4(1013) spontaneously forms heterodimers with wild-type CXCR4. Accordingly, we propose a model where enhanced functional interactions between betaarr2 and receptor dimers account for the altered responsiveness of WHIM leukocytes to CXCL12.
Collapse
|
37
|
Mishra SK, Jha A, Steinhauser AL, Kokoza VA, Washabaugh CH, Raikhel AS, Foster WA, Traub LM. Internalization of LDL-receptor superfamily yolk-protein receptors during mosquito oogenesis involves transcriptional regulation of PTB-domain adaptors. J Cell Sci 2008; 121:1264-74. [DOI: 10.1242/jcs.025833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the anautogenous disease vector mosquitoes Anopheles gambiae and Aedes aegypti, egg development is nutritionally controlled. A blood meal permits further maturation of developmentally repressed previtellogenic egg chambers. This entails massive storage of extraovarian yolk precursors by the oocyte, which occurs through a burst of clathrin-mediated endocytosis. Yolk precursors are concentrated at clathrin-coated structures on the oolemma by two endocytic receptors, the vitellogenin and lipophorin receptors. Both these mosquito receptors are members of the low-density-lipoprotein-receptor superfamily that contain FxNPxY-type internalization signals. In mammals, this tyrosine-based signal is not decoded by the endocytic AP-2 adaptor complex directly. Instead, two functionally redundant phosphotyrosine-binding domain adaptors, Disabled 2 and the autosomal recessive hypercholesterolemia protein (ARH) manage the internalization of the FxNPxY sorting signal. Here, we report that a mosquito ARH-like protein, which we designate trephin, possess similar functional properties to the orthologous vertebrate proteins despite engaging AP-2 in an atypical manner, and that mRNA expression in the egg chamber is strongly upregulated shortly following a blood meal. Temporally regulated trephin transcription and translation suggests a mechanism for controlling yolk uptake when vitellogenin and lipophorin receptors are expressed and clathrin coats operate in previtellogenic ovaries.
Collapse
Affiliation(s)
- Sanjay K. Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Amie L. Steinhauser
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Vladimir A. Kokoza
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Charles H. Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Urs NM, Kowalczyk AP, Radhakrishna H. Different Mechanisms Regulate Lysophosphatidic Acid (LPA)-dependent Versus Phorbol Ester-dependent Internalization of the LPA1 Receptor. J Biol Chem 2008; 283:5249-57. [DOI: 10.1074/jbc.m710003200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Differences in motilin receptor desensitization after stimulation with motilin or motilides are due to alternative receptor trafficking. Biochem Pharmacol 2007; 75:1115-28. [PMID: 18096134 DOI: 10.1016/j.bcp.2007.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS & AIMS The motilin receptor (MTLR) is an important therapeutic target for treatment of hypomotility disorders. The negative outcome in clinical trials with the motilin agonist, ABT-229, indicated that desensitization may limit the therapeutic usefulness of motilides. We therefore compared the mechanisms involved in the intracellular trafficking of the MTLR after stimulation with motilin, erythromycin-A (EM-A) or ABT-229. METHODS Desensitization was studied by measuring changes in Ca2+ rises and by receptor binding studies in CHO cells co-expressing the Ca2+ indicator apoaequorin and the MTLR, C-terminally tagged with EGFP. Receptor phosphorylation was studied by immunoprecipitation. MTLR-EGFP trafficking to organelles and translocation of beta-arrestins were visualized by fluorescence microscopy. RESULTS Agonist-induced desensitization of the MTLR was due to receptor internalization with potencies (p-int50) in the order of: ABT-229 (8.3)>motilin (7.86)>EM-A (4.77) but with no differences in the internalization kinetics (t(1/2): approximately 25 min). The percentage cell surface receptor loss was more profound after exposure to ABT-229 (88+/-1%) than to motilin (63+/-10%) or EM-A (34+/-2%). For motilin and EM-A MTLR phosphorylation probably occurs via G protein-coupled receptor kinases while for ABT-229 phosphorylation was also protein kinase C dependent. All agonists translocated cytosolic beta-arrestin-2 with greater affinity to the plasma membrane than beta-arrestin-1. After internalization the MTLR co-localized with transferrin but not with cathepsin D. After stimulation with motilin and EM-A the t(1/2) for MTLR resensitization was 3h and 1h, respectively but amounted 26h for ABT-229. CONCLUSION Our results suggest that the resensitization kinetics determine the desensitization properties of the motilin agonists.
Collapse
|
40
|
beta-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc Natl Acad Sci U S A 2007; 104:18061-6. [PMID: 17984062 DOI: 10.1073/pnas.0705550104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-arrestins (beta-arrs), two ubiquitous proteins involved in serpentine heptahelical receptor regulation and signaling, form constitutive homo- and heterooligomers stabilized by inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Monomeric beta-arrs are believed to interact with receptors after agonist activation, and therefore, beta-arr oligomers have been proposed to represent a resting biologically inactive state. In contrast to this, we report here that the interaction with and subsequent titration out of the nucleus of the protooncogene Mdm2 specifically require beta-arr2 oligomers together with the previously characterized nucleocytoplasmic shuttling of beta-arr2. Mutation of the IP6-binding sites impair oligomerization, reduce interaction with Mdm2, and inhibit p53-dependent antiproliferative effects of beta-arr2, whereas the competence for receptor regulation and signaling is maintained. These observations suggest that the intracellular concentration of beta-arr2 oligomers might control cell survival and proliferation.
Collapse
|
41
|
Burtey A, Schmid EM, Ford MGJ, Rappoport JZ, Scott MGH, Marullo S, Simon SM, McMahon HT, Benmerah A. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of beta-arrestins. Traffic 2007; 8:914-31. [PMID: 17547696 DOI: 10.1111/j.1600-0854.2007.00578.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-arrestins (betaarrs) play a central role in the regulation of G-protein-coupled receptors (GPCRs). Their binding to phosphorylated activated GPCRs induces a conformational transition to an active state resulting in the release of their flexible C-terminal tail. Binding sites for clathrin and the adaptor protein (AP)-2 clathrin adaptor complex are then unmasked, which drive the recruitment of betaarrs-GPCR complexes into clathrin-coated pits (CCPs). A conserved isoleucine-valine-phenylalanine (IVF) motif of the C-terminal tail controls betaarr activation through intramolecular interactions. Here, we provide structural, biochemical and functional evidence in living cells that the IVF motif also controls binding to AP-2. While the F residue is directly involved in AP-2 binding, substitutions of I and V residues, markedly enhanced affinity for AP-2 resulting in active betaarr mutants, which are constitutively targeted to CCPs in the absence of any GPCR activation. Conformational change and endocytic functions of betaarrs thus appear to be coordinated via the complex molecular interactions established by the IVF motif.
Collapse
Affiliation(s)
- Anne Burtey
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
43
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
44
|
Abstract
Because of the discovery of coated pits and vesicles more than 40 years ago and the identification of clathrin as a major component of the coat, it has been assumed that clathrin-coated pits (CCPs) are responsible for the uptake of most plasma membrane receptors undergoing internalization. The recent molecular characterization of clathrin-independent routes of endocytosis confirms that several alternative endocytic pathways operate at the plasma membrane of mammalian cells. This heterogeneous view of endocytosis has been expanded still further by recent studies, suggesting that different subpopulations of CCPs responsible for the internalization of specific sets of cargo may coexist. In the present review, we have discussed the experimental evidence in favor or against the existence of distinct parallel clathrin-dependent pathways at the plasma membrane.
Collapse
Affiliation(s)
- Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 75014 Paris, France, and INSERM, U567, 75014 Paris, France.
| | | |
Collapse
|
45
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
46
|
Kenakin T. Collateral efficacy as a pharmacological problem applied to new drug discovery. Expert Opin Drug Discov 2006; 1:635-52. [DOI: 10.1517/17460441.1.7.635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Jones KT, Echeverry M, Mosser VA, Gates A, Jackson DA. Agonist mediated internalization of M2 mAChR is beta-arrestin-dependent. J Mol Signal 2006; 1:7. [PMID: 17224084 PMCID: PMC1769497 DOI: 10.1186/1750-2187-1-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 12/05/2006] [Indexed: 02/08/2023] Open
Abstract
Background Muscarinic acetylcholine receptors (mAChRs) undergo agonist-promoted internalization, but evidence suggesting that the mechanism of internalization is β-arrestin dependent has been contradictory and unclear. Previous studies using heterologous over-expression of wild type or dominant-negative forms of β-arrestins have reported that agonist-promoted internalization of M2 mAChRs is a β-arrestin- and clathrin-independent phenomenon. In order to circumvent the complications associated with the presence of endogenous β-arrestin that may have existed in these earlier studies, we examined agonist-promoted internalization of the M2 mAChR in mouse embryonic fibroblasts (MEFs) derived from β-arrestin knockout mice that lack expression of either one or both isoforms of β-arrestin (β-arrestin 1 and 2). Results In wild type MEF cells transiently expressing M2 mAChRs, 40% of surface M2 mAChRs underwent internalization and sorted into intracellular compartments following agonist stimulation. In contrast, M2 mAChRs failed to undergo internalization and sorting into intracellular compartments in MEF β-arrestin double knockout cells following agonist stimulation. In double knockout cells, expression of either β-arrestin 1 or 2 isoforms resulted in rescue of agonist-promoted internalization. Stimulation of M2 mAChRs led to a stable co-localization with GFP-tagged β-arrestin within endocytic structures in multiple cell lines; the compartment to which β-arrestin localized was determined to be the early endosome. Agonist-promoted internalization of M2 mAChRs was moderately rescued in MEF β-arrestin 1 and 2 double knockout cells expressing exogenous arrestin mutants that were selectively defective in interactions with clathrin (β-arrestin 2 ΔLIELD), AP-2 (β-arrestin 2-F391A), or both clathrin/AP-2. Expression of a truncated carboxy-terminal region of β-arrestin 1 (319–418) completely abrogated agonist-promoted internalization of M2 mAChRs in wild type MEF cells. Conclusion In summary, this study demonstrates that agonist-promoted internalization of M2 mAChRs is β-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with β-arrestin in early endosomal vesicles.
Collapse
Affiliation(s)
- Kymry T Jones
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Maria Echeverry
- Laboratorio de Parasitologia (301), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Columbia
| | - Valerie A Mosser
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812 USA
| | - Alicia Gates
- Department of Anatomy and Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310 USA
| | - Darrell A Jackson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812 USA
| |
Collapse
|
48
|
Puthenveedu MA, von Zastrow M. Cargo Regulates Clathrin-Coated Pit Dynamics. Cell 2006; 127:113-24. [PMID: 17018281 DOI: 10.1016/j.cell.2006.08.035] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/02/2006] [Accepted: 08/01/2006] [Indexed: 11/15/2022]
Abstract
Clathrin-coated pits (CCPs) are generally considered a uniform population of endocytic machines containing mixed constitutive and regulated membrane cargo. Contrary to this view, we show that regulated endocytosis of G protein-coupled receptors (GPCRs) occurs preferentially through a subset of CCPs. Significantly, GPCR-containing CCPs are also functionally distinct, as their surface residence time is regulated locally by GPCR cargo via PDZ-dependent linkage to the actin cytoskeleton. Such cargo-regulated CCPs show delayed recruitment of dynamin and can undergo an abortive event in which clathrin coats separate from the plasma membrane without concomitant receptor endocytosis. Segregation of cargo into CCP subsets, combined with cargo-dependent control of CCP dynamics, suggests a simple kinetic mechanism to generate functional specialization early in the endocytic pathway and reduce competition between diverse endocytic cargo.
Collapse
Affiliation(s)
- Manojkumar A Puthenveedu
- Department of Psychiatry, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
49
|
Jacquier V, Prummer M, Segura JM, Pick H, Vogel H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci U S A 2006; 103:14325-30. [PMID: 16980412 PMCID: PMC1599963 DOI: 10.1073/pnas.0603942103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of trafficking for regulating G protein-coupled receptor signaling, for many members of the seven transmembrane helix protein family, such as odorant receptors, little is known about this process in live cells. Here, the complete life cycle of the human odorant receptor OR17-40 was directly monitored in living cells by ensemble and single-molecule imaging, using a double-labeling strategy. While the overall, intracellular trafficking of the receptor was visualized continuously by using a GFP tag, selective imaging of cell surface receptors was achieved by pulse-labeling an acyl carrier protein tag. We found that OR17-40 efficiently translocated to the plasma membrane only at low expression, whereas at higher biosynthesis the receptor accumulated in intracellular compartments. Receptors in the plasma membrane showed high turnover resulting from constitutive internalization along the clathrin pathway, even in the absence of ligand. Single-molecule microscopy allowed monitoring of the early, dynamic processes in odorant receptor signaling. Although mobile receptors initially diffused either freely or within domains of various sizes, binding of an agonist or an antagonist increased partitioning of receptors into small domains of approximately 190 nm, which likely are precursors of clathrin-coated pits. The binding of a ligand, therefore, resulted in modulation of the continuous, constitutive internalization. After endocytosis, receptors were directed to early endosomes for recycling. This unique mechanism of continuous internalization and recycling of OR17-40 might be instrumental in allowing rapid recovery of odor perception.
Collapse
Affiliation(s)
- V. Jacquier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Prummer
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J.-M. Segura
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H. Pick
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H. Vogel
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Schmid EM, Ford MGJ, Burtey A, Praefcke GJK, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT. Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 2006; 4:e262. [PMID: 16903783 PMCID: PMC1540706 DOI: 10.1371/journal.pbio.0040262] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 06/06/2006] [Indexed: 11/19/2022] Open
Abstract
Adaptor protein complex 2 alpha and beta-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of beta-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the beta-appendage (the "top" and "side" sites) that bind motifs distinct from those previously identified on the alpha-appendage. We solved the structure of the beta-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor beta-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the beta-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability ("matricity"). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as beta-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors.
Collapse
Affiliation(s)
- Eva M Schmid
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marijn G. J Ford
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anne Burtey
- Department of Infectious Diseases, Institut Cochin, Paris, France
| | - Gerrit J. K Praefcke
- Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Köln, Germany
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ian G Mills
- The Oncology Department, University of Cambridge Hutchison/MRC Cancer Research Centre, Cambridge, United Kingdom
| | | | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|