1
|
Jiang L, Lunding LP, Webber WS, Beckmann K, Azam T, Falkesgaard Højen J, Amo-Aparicio J, Dinarello A, Nguyen TT, Pessara U, Parera D, Orlicky DJ, Fischer S, Wegmann M, Dinarello CA, Li S. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front Immunol 2024; 15:1427100. [PMID: 38983847 PMCID: PMC11231367 DOI: 10.3389/fimmu.2024.1427100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
Affiliation(s)
- Liqiong Jiang
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Lars P. Lunding
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - William S. Webber
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | | | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Tom T. Nguyen
- Mucosal Inflammation Program and Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ulrich Pessara
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Daniel Parera
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Stephan Fischer
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
2
|
Núñez R, Rodríguez MJ, Lebrón-Martín C, Martín-Astorga MDC, Palomares F, Ramos-Soriano J, Rojo J, Torres MJ, Cañas JA, Mayorga C. Methylation changes induced by a glycodendropeptide immunotherapy and associated to tolerance in mice. Front Immunol 2022; 13:1094172. [PMID: 36643916 PMCID: PMC9832389 DOI: 10.3389/fimmu.2022.1094172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Allergen-specific immunotherapy (AIT) is applied as treatment to rise tolerance in patients with food allergies. Although AIT is thoroughly used, the underlying epigenetic events related to tolerant induction are still unknown. Thus, we aim to investigate epigenetic changes that could be related to tolerance in dendritic cells (DCs) from anaphylactic mice to lipid transfer proteins, Pru p 3, in the context of a sublingual immunotherapy (SLIT) with a glycodendropeptide (D1ManPrup3) that has demonstrated tolerant or desensitization responses depending on the treatment dose. Methods Changes in DNA methylation in CpG context were determined comparing Sensitized (Antigen-only) animals and two groups receiving SLIT with the D1ManPrup3 nanostructure (D1ManPrup3-SLIT): Tolerant (2nM D1ManPrup3) and Desensitized (5nM D1ManPrup3), against anaphylactic animals. DNA from lymph nodes-DCs were isolated and then, Whole Genome Bisulphite Sequencing was performed to analyze methylation. Results Most differentially methylated regions were found on the area of influence of gene promoters (DMPRs). Compared to the Anaphylactic group, the highest value was found in Desensitized mice (n = 7,713 DMPRs), followed by Tolerant (n = 4,091 DMPRs) and Sensitized (n = 3,931 DMPRs) mice. Moreover, many of these epigenetic changes were found in genes involved in immune and tolerance responses (Il1b, Il12b, Il1a, Ifng, and Tnf) as shown by functional enrichment (DCs regulation, B cell-mediated immunity, and effector mechanisms). Discussion In conclusion, different doses of D1ManPrup3-SLIT induce different DNA methylation changes, which are reflected in the induction of distinct responses, tolerance, or desensitization.
Collapse
Affiliation(s)
- Rafael Núñez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María J. Rodríguez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Clara Lebrón-Martín
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
| | - Francisca Palomares
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Javier Ramos-Soriano
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - María J. Torres
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Antonio Cañas
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Cristobalina Mayorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain,*Correspondence: Cristobalina Mayorga,
| |
Collapse
|
3
|
Yang B, Zhang G, Qin X, Huang Y, Ren X, Sun J, Ma S, Liu Y, Song D, Liu Y, Cui Y, Wang H, Wang J. Negative Regulation of RNF90 on RNA Virus-Triggered Antiviral Immune Responses Targeting MAVS. Front Immunol 2021; 12:730483. [PMID: 34512666 PMCID: PMC8429505 DOI: 10.3389/fimmu.2021.730483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
The antiviral innate immunity is the first line of host defense against viral infection. Mitochondrial antiviral signaling protein (MAVS, also named Cardif/IPS-1/VISA) is a critical protein in RNA virus-induced antiviral signaling pathways. Our previous research suggested that E3 ubiquitin-protein ligases RING-finger protein (RNF90) negatively regulate cellular antiviral responses by targeting STING for degradation, though its role in RNA virus infection remains unknown. This study demonstrated that RNF90 negatively regulated RNA virus-triggered antiviral innate immune responses in RNF90-silenced PMA-THP1 cells, RNF90-deficient cells (including HaCaTs, MEFs, and BMDMs), and RNF90-deficient mice. However, RNF90 regulated RNA virus-triggered antiviral innate immune responses independent of STING. RNF90 promoted K48-linked ubiquitination of MAVS and its proteasome-dependent degradation, leading to the inhibition of innate immune responses. Altogether, our findings suggested a novel function and mechanism of RNF90 in antiviral innate immunity.
Collapse
Affiliation(s)
- Bo Yang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ge Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Xiao Qin
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Yulu Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Xiaowen Ren
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Jingliang Sun
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Shujun Ma
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Yanzi Liu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Di Song
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
- Department of Laboratory Medicine, Fuwai Center China Cardiovascular Hospital, Zhengzhou, China
| | - Yue Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Yuhan Cui
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Jia C, Zhuge Y, Zhang S, Ni C, Wang L, Wu R, Niu C, Wen Z, Rong X, Qiu H, Chu M. IL-37b alleviates endothelial cell apoptosis and inflammation in Kawasaki disease through IL-1R8 pathway. Cell Death Dis 2021; 12:575. [PMID: 34083516 PMCID: PMC8174541 DOI: 10.1038/s41419-021-03852-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Kawasaki disease (KD) is an acute vasculitis of pediatric populations that may develop coronary artery aneurysms if untreated. It has been regarded as the principal cause of acquired heart disease in children of the developed countries. Interleukin (IL)-37, as one of the IL-1 family members, is a natural suppressor of inflammation that is caused by activation of innate and adaptive immunity. However, detailed roles of IL-37 in KD are largely unclear. Sera from patients with KD displayed that IL-37 level was significantly decreased compared with healthy controls (HCs). QRT-PCR and western blot analyses showed that the expression level of IL-37 variant, IL-37b, was remarkably downregulated in human umbilical vein endothelial cells (HUVECs) exposed to KD sera-treated THP1 cells. Therefore, we researched the role of IL-37b in the context of KD and hypothesized that IL-37b may have a powerful protective effect in KD patients. We first observed and substantiated the protective role of IL-37b in a mouse model of KD induced by Candida albicans cell wall extracts (CAWS). In vitro experiments demonstrated that IL-37b alleviated endothelial cell apoptosis and inflammation via IL-1R8 receptor by inhibiting ERK and NFκB activation, which were also recapitulated in the KD mouse model. Together, our findings suggest that IL-37b play an effective protective role in coronary endothelial damage in KD, providing new evidence that IL-37b is a potential candidate drug to treat KD.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yingzhi Zhuge
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuchi Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Ni
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Linlin Wang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Rongzhou Wu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huixian Qiu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
5
|
He Y, Xiong T, Guo F, Du Z, Fan Y, Sun H, Feng Z, Zhang G. Interleukin-37b inhibits the growth of murine endometriosis-like lesions by regulating proliferation, invasion, angiogenesis and inflammation. Mol Hum Reprod 2021; 26:240-255. [PMID: 32119739 DOI: 10.1093/molehr/gaaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a gynecological disease with abnormal expression of interleukin (IL)-37 which can suppress inflammation and the immune system. Here we investigated the role of the IL-37b splice variant in endometriosis in vivo and in vitro. In a murine model of endometriosis, in vivo administration of IL-37b significantly inhibited the development of lesions judged by the number (P = 0.0213), size (P = 0.0130) and weight (P = 0.0152) of lesions. IL-37b had no effect on the early stage of lesion formation, however administration in the growth stage of lesions decreased the number (P = 0.0158), size (P = 0.0158) and weight (P = 0.0258) of lesions compared with PBS control, an effect that was not reversed by macrophage depletion. Expressions of inflammatory factors, matrix metalloproteinases and vascular endothelial growth factor-A mRNA/protein were significantly inhibited in ectopic lesions following IL-37b administration, and in uterine segments treated in vitro. In vitro treatment of uterine segments with IL-37b inhibited phosphorylation of Akt and Erk1/2 in uterine segments. Isolated mouse endometrial stromal treated with IL-37b and transfected with pIL-37b plasmid got suppressed cell proliferation, invasion, angiogenesis and the expression of inflammatory factors. In addition, transfection with pIL-37b significantly decreased the phosphorylation of Akt and Erk1/2. IL-37b also inhibited proliferation and the expression of inflammatory and angiogenesis factors in epithelial cell line RL95-2. These findings suggest that IL-37b may inhibit the growth of lesions by regulating proliferation, invasion, angiogenesis and inflammation through Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yongpei He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Ting Xiong
- Department of Gynaecology and Obstetrics, Reproductive Medical center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Yixian Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Huanhuan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Guimei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| |
Collapse
|
6
|
A novel anti-human IL-1R7 antibody reduces IL-18-mediated inflammatory signaling. J Biol Chem 2021; 296:100630. [PMID: 33823154 PMCID: PMC8018910 DOI: 10.1016/j.jbc.2021.100630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans–induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
|
7
|
Liu S, Miersch S, Li P, Bai B, Liu C, Qin W, Su J, Huang H, Pan J, Sidhu SS, Wu D. A Synthetic Human Antibody Antagonizes IL-18Rβ Signaling Through an Allosteric Mechanism. J Mol Biol 2020; 432:1169-1182. [PMID: 31954129 DOI: 10.1016/j.jmb.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
The interleukin-18 subfamily belongs to the interleukin-1 family and plays an important role in modulating innate and adaptive immune responses. Dysregulation of IL-18 has been implicated in or correlated with numerous diseases, including inflammatory diseases, autoimmune disorders, and cancer. Thus, blockade of IL-18 signaling may offer therapeutic benefits in many pathological settings. Here, we report the development of synthetic human antibodies that target human IL-18Rβ and block IL-18-mediated IFN-γ secretion by inhibiting NF-κB and MAPK dependent pathways. The crystal structure of a potent antagonist antibody in complex with IL-18Rβ revealed inhibition through an unexpected allosteric mechanism. Our findings offer a novel means for therapeutic intervention in the IL-18 pathway and may provide a new strategy for targeting cytokine receptors.
Collapse
Affiliation(s)
- Shusu Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Shane Miersch
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ping Li
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, China
| | - Bingxin Bai
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chunchun Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wenming Qin
- National Facility for Protein Science (Shanghai), Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, China
| | - Jie Su
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haiming Huang
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Shanghai Asian United Antibody Medical Co., Shanghai, China
| | - James Pan
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Nozaki Y, Ri J, Sakai K, Niki K, Kinoshita K, Funauchi M, Matsumura I. Inhibition of the IL-18 Receptor Signaling Pathway Ameliorates Disease in a Murine Model of Rheumatoid Arthritis. Cells 2019; 9:E11. [PMID: 31861496 PMCID: PMC7017073 DOI: 10.3390/cells9010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-18 expression in synovial tissue correlates with the severity of joint inflammation and the levels of pro-inflammatory cytokines. However, the role of the IL-18/IL-18 receptor-alpha (Rα) signaling pathway in autoimmune arthritis is unknown. Wild-type (WT) and IL-18Rα knockout (KO) mice were immunized with bovine type II collagen before the onset of arthritis induced by lipopolysaccharide injection. Disease activity was evaluated by semiquantitative scoring and histologic assessment. Serum inflammatory cytokine and anticollagen antibody levels were quantified by an enzyme-linked immunosorbent assay. Joint cytokine and matrix metalloproteinases-3 levels were determined by a quantitative polymerase chain reaction. Splenic suppressors of cytokine signaling (SOCS) were determined by Western blot analysis as indices of systemic immunoresponse. IL-18Rα KO mice showed lower arthritis and histological scores in bone erosion and synovitis due to reductions in the infiltration of CD4+ T cells and F4/80+ cells and decreased serum IL-6, -18, TNF, and IFN-γ levels. The mRNA expression and protein levels of SOCS3 were significantly increased in the IL-18Rα KO mice. By an up-regulation of SOCS, pro-inflammatory cytokines were decreased through the IL-18/IL-18Rα signaling pathway. These results suggest that inhibitors of the IL-18/IL-18Rα signaling pathway could become new therapeutic agents for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine; Osaka-sayama, Osaka 589-8511, Japan; (J.R.); (K.S.); (K.N.); (K.K.); (M.F.); (I.M.)
| | | | | | | | | | | | | |
Collapse
|
9
|
D'Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune "players" of the human endometrium. Am J Reprod Immunol 2018; 80:e13065. [PMID: 30375712 DOI: 10.1111/aji.13065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, extended scientific works shed light on the important role played by the endometrium in early pregnancy. This review examines our current knowledge about the delicate balance between microbial and cellular immune agents at endometrial level: All of them might affect endometrial receptivity. In contrast to the classical thinking of human endometrium as a sterile tissue, several recent studies have drawn attention to a resident population of microorganisms, which reaches only a 30% of concordance with those of the cervical-vaginal flora. At present, the understanding of the microbiome in relation to human reproduction is in its infancy and further studies are needed to clarify the activity of endometrial microbiome and the possible effects of a "reproductive tract dysbiosis" on fertility. Moreover, in the human endometrium, there is a complex system works preventing the risk of infection as well as enabling, when pregnancy occurs, the acceptance of the blastocyst. In this way, the endometrium plays a central role in the uterine immune surveillance. A better understanding of the different agents that may affect endometrial receptivity would improve the diagnosis and treatment of obstetric complications related to defective implantation and placentation.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Fiorella Di Nicuolo
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia.,Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Area Endocrino-Metabolica e Dermo-Reumatologica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Matteo Gratta
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| |
Collapse
|
10
|
Wang L, Wang Y, Xia L, Shen H, Lu J. Elevated frequency of IL-37- and IL-18Rα-positive T cells in the peripheral blood of rheumatoid arthritis patients. Cytokine 2018; 110:291-297. [DOI: 10.1016/j.cyto.2018.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/05/2023]
|
11
|
Abstract
Initially described as an interferon (IFN)γ‐inducing factor, interleukin (IL)‐18 is indeed involved in Th1 and NK cell activation, but also in Th2, IL‐17‐producing γδ T cells and macrophage activation. IL‐18, a member of the IL‐1 family, is similar to IL‐1β for being processed by caspase 1 to an 18 kDa‐biologically active mature form. IL‐18 binds to its specific receptor (IL‐18Rα, also known as IL‐1R7) forming a low affinity ligand chain. This is followed by recruitment of the IL‐18Rβ chain. IL‐18 then uses the same signaling pathway as IL‐1 to activate NF‐kB and induce inflammatory mediators such as adhesion molecules, chemokines and Fas ligand. IL‐18 also binds to the circulating high affinity IL‐18 binding protein (BP), such as only unbound free IL‐18 is active. IL‐18Rα may also bind IL‐37, another member of the IL‐1 family, but in association with the negative signaling chain termed IL‐1R8, which transduces an anti‐inflammatory signal. IL‐18BP also binds IL‐37 and this acts as a sink for the anti‐inflammatory properties of IL‐37. There is now ample evidence for a role of IL‐18 in various infectious, metabolic or inflammatory diseases such as influenza virus infection, atheroma, myocardial infarction, chronic obstructive pulmonary disease, or Crohn's disease. However, IL‐18 plays a very specific role in the pathogenesis of hemophagocytic syndromes (HS) also termed Macrophage Activation Syndrome. In children affected by NLRC4 gain‐of‐function mutations, IL‐18 circulates in the range of tens of nanograms/mL. HS is treated with the IL‐1 Receptor antagonist (anakinra) but also specifically with IL‐18BP. Systemic juvenile idiopathic arthritis or adult‐onset Still's disease are also characterized by high serum IL‐18 concentrations and are treated by IL‐18BP.
Collapse
Affiliation(s)
- Gilles Kaplanski
- Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire Conception, Service de Médecine Interne et Immunologie Clinique, Aix-Marseille Université, Marseille, France.,Vascular Research Center Marseille, Faculté de Pharmacie, Aix-Marseille Université, INSERM UMR_S1076, Marseille, France
| |
Collapse
|
12
|
Abstract
IL-37 is a unique member of the IL-1 family of cytokines, which functions as a natural suppressor of inflammatory and immune responses. Immune and non-immune cells produce IL-37 precursor following pro-inflammatory stimuli. Following activating cleavage by caspase-1, mature IL-37 translocates to the nucleus, where it suppresses transcription of pro-inflammatory genes. Both precursor and mature IL-37 are also secreted in the extracellular space, where they bind IL-18Rα and recruit the IL-1R8 (formerly TIR8 or SIGIRR), which transduces anti-inflammatory signals by suppressing NF-kB and MAPK and by activating Mer-PTEN-DOK pathways. During inflammation, IL-37 restores the metabolism of the cell by reducing succinate, inhibiting mTOR, and activating AMPK. Transgenic mice expressing human IL-37 and wild type mice treated with recombinant human IL-37 are protected from several experimental models of inflammation, including endotoxin shock, colitis, lung and spinal cord injury, coronary artery disease, arthritis and inflammation-induced fatigue, while also exhibiting reduced adaptive immune responses. In humans, IL-37 likely functions to limit excessive inflammation: accordingly, IL-37 levels are abnormal in patients with inflammatory and autoimmune diseases. In this review, we provide an overview of the discovery and biology of IL-37, and discuss the potential for development of this cytokine as a therapeutic agent.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
13
|
The Role, Involvement and Function(s) of Interleukin-35 and Interleukin-37 in Disease Pathogenesis. Int J Mol Sci 2018; 19:ijms19041149. [PMID: 29641433 PMCID: PMC5979316 DOI: 10.3390/ijms19041149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022] Open
Abstract
The recently identified cytokines-interleukin (IL)-35 and interleukin (IL)-37-have been described for their anti-inflammatory and immune-modulating actions in numerous inflammatory diseases, auto-immune disorders, malignancies, infectious diseases and sepsis. Either cytokine has been reported to be reduced and in some cases elevated and consequently contributed towards disease pathogenesis. In view of the recent advances in utilizing cytokine profiles for the development of biological macromolecules, beneficial in the management of certain intractable immune-mediated disorders, these recently characterized cytokines (IL-35 and IL-37) offer potential as reasonable targets for the discovery of novel immune-modulating anti-inflammatory therapies. A detailed comprehension of their sophisticated regulatory mechanisms and patterns of expression may provide unique opportunities for clinical application as highly selective and target specific therapeutic agents. This review seeks to summarize the recent advancements in discerning the dynamics, mechanisms, immunoregulatory and anti-inflammatory actions of IL-35 and IL-37 as they relate to disease pathogenesis.
Collapse
|
14
|
Gao CJ, Ding PJ, Yang LL, He XF, Chen MJ, Wang DM, Tian YX, Zhang HM. Oxymatrine Sensitizes the HaCaT Cells to the IFN-γ Pathway and Downregulates MDC, ICAM-1, and SOCS1 by Activating p38, JNK, and Akt. Inflammation 2017; 41:606-613. [DOI: 10.1007/s10753-017-0716-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S, Bufler P. Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol 2017; 46:1067-81. [PMID: 27060871 DOI: 10.1002/eji.201545828] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/04/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023]
Abstract
IL-37 is unique in the IL-1 family in that unlike other members of the family, IL-37 broadly suppresses innate immunity. IL-37 can be elevated in humans with inflammatory and autoimmune diseases where it likely functions to limit inflammation. Transgenic mice expressing human IL-37 (IL37-tg) exhibit less severe inflammation in models of endotoxin shock, colitis, myocardial infarction, lung, and spinal cord injury. IL37-tg mice have reduced antigen-specific responses and dendritic cells (DCs) from these mice exhibit characteristics of tolerogenic DCs. Compared to aging wild-type (WT) mice, aging IL37-tg mice are protected against B-cell leukemogenesis and heart failure. Treatment of WT mice with recombinant human IL-37 has been shown to be protective in several models of inflammation and injury. IL-37 binds to the IL-18 receptor but then recruits the orphan IL-1R8 (formerly TIR8 or SIGIRR) in order to function as an inhibitor. Here, we review the discovery of IL-37, its production, release, and mechanisms by which IL-37 reduces inflammation and suppresses immune responses. The data reviewed here suggest a therapeutic potential for IL-37.
Collapse
Affiliation(s)
- Charles A Dinarello
- University of Colorado Denver, Aurora, CO, USA.,Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Suzhao Li
- University of Colorado Denver, Aurora, CO, USA
| | - Soohyun Kim
- University of Colorado Denver, Aurora, CO, USA.,Konkuk University, Seoul, Republic of Korea
| | | |
Collapse
|
16
|
Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response. PLoS One 2017; 12:e0180642. [PMID: 28704412 PMCID: PMC5507516 DOI: 10.1371/journal.pone.0180642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.
Collapse
|
17
|
Conti P, Ronconi G, Caraffa A, Lessiani G, Duraisamy K. IL-37 a New IL-1 Family Member Emerges as a Key Suppressor of Asthma Mediated by Mast Cells. Immunol Invest 2016; 46:239-250. [PMID: 27982737 DOI: 10.1080/08820139.2016.1250220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 1986, we reported a multiple biological effect of IL-1 including immunological, inflammatory, and tumor killing activity. Since then other IL-1 family cytokines have been discovered, some with inflammatory and other with anti-inflammatory activity. In this review article, we speculate on the possible inhibitory effect of IL-37 in the light of new findings. IL-37, formerly termed IL-1 family member 7 (IL-1F7), binding IL-18 receptor α chain, acts as a cytokine with intracellular as well as extracellular functionality and as a natural inhibitor of immune responses and inflammation. IL-37 inhibits many pro-inflammatory cytokine and increases anti-inflammatory cytokines such as IL-10. Asthma pathogenesis involves multiple cell types including mast cells, which are important cellular constituents of the human innate and adaptive immunity. IL-37 has an impact on inflammatory cytokines generated by mast cells and is beneficial for and protective in asthma. However, the precise mechanism(s), safety, and tolerability of IL-37 are unclear and still remain a mystery. ABBREVIATIONS GBP (Guanylate Binding Proteins); HMGB1 (High Mobility Group Box protein 1); NLRP (Nucleotide-like Receptor Pyrin domain 1); ASC (Apoptosis-associated Speck-like protein containing CARD, Caspase Recruitment Domain); FGF2 (Fibroblast Growth Factor 2).
Collapse
Affiliation(s)
- P Conti
- a Immunology Division, Postgraduate Medical School, University of Chieti-Pescara , Chieti , Italy
| | - G Ronconi
- b UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli , Roma , Italy
| | - A Caraffa
- c Department of Pharmacology , University of Perugia , Perugia , Italy
| | - G Lessiani
- d Center of Intensive Rehabilitation, "S. Agnese" , Pineto ( TE ), Italy
| | - Kempuraj Duraisamy
- e Department of Neurology , Carver College of Medicine, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
18
|
D'Ippolito S, Tersigni C, Marana R, Di Nicuolo F, Gaglione R, Rossi ED, Castellani R, Scambia G, Di Simone N. Inflammosome in the human endometrium: further step in the evaluation of the "maternal side". Fertil Steril 2015; 105:111-8.e1-4. [PMID: 26474737 DOI: 10.1016/j.fertnstert.2015.09.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the expression of inflammosome components (NALP-3, associated speck-like protein containing a CARD [ASC]) and their activation (caspase-1, interleukin [IL]-1β, and IL-18 secretion) in the human endometrium from fertile and women with history of recurrent pregnancy loss (RPL). DESIGN Experimental study. SETTING University hospital. PATIENT(S) Ten fertile women (control group [CTR]) and 30 women with RPL. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Endometrial samples were collected by hysteroscopy during the putative window of implantation and evaluated for chronic endometrial inflammation by hystopathological analysis. Inflammosome expression was analysed by immunohystochemical staining (27 RPL and 10 CTR women). The expression of NALP-3 and ASC protein was quantified by Western blot (30 RPL and 10 CTR women). Caspase-1 activation and IL-1β and IL-18 secretion was quantified by ELISA (30 RPL and 10 CTR women). RESULT(S) We observed a significantly increased expression of inflammasome NALP-3 and ASC protein, an increased activation of caspase-1, and increased levels of IL-1β and IL-18 in RPL endometrium compared with CTR. CONCLUSION(S) Abnormal activation of endometrial innate immunity by means of inflammosome, stimulated by pathogen- or damage-associated molecular patterns, may represent an additional mechanism, currently not investigated, negatively interfering with endometrial receptivity. More studies are required [1] to identify the primary trigger of endometrial inflammosome activation and its clinical impact in the occurrence of RPL; and [2] to validate the inflammosome components as a novel family of endometrial biomarkers and promising therapeutic targets in RPL.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Chiara Tersigni
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Riccardo Marana
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy; International Scientific Institute Paolo VI, ISI, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Fiorella Di Nicuolo
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Raffaele Gaglione
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Roberta Castellani
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy
| | - Nicoletta Di Simone
- Department of Obstetrics and Gynecology, Università Cattolica Del Sacro Cuore, A. Gemelli Universitary Hospital, Rome, Italy.
| |
Collapse
|
19
|
Sustained interleukin-1β exposure modulates multiple steps in glucocorticoid receptor signaling, promoting split-resistance to the transactivation of prominent anti-inflammatory genes by glucocorticoids. Mediators Inflamm 2015; 2015:347965. [PMID: 25977599 PMCID: PMC4421076 DOI: 10.1155/2015/347965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Clinical treatment with glucocorticoids (GC) can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR), a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR-) driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GR(Ser203) and GR(Ser211) phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the "split GCR" model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.
Collapse
|
20
|
Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, Ellisdon AM, Rotter B, Azam T, Mangan NE, Rossello FJ, Whisstock JC, Bufler P, Garlanda C, Mantovani A, Dinarello CA, Nold MF. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015; 16:354-65. [PMID: 25729923 DOI: 10.1038/ni.3103] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Paediatrics, Monash University, Melbourne, Australia
| | - Camden Y Lo
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Ina Rudloff
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Michael P Gantier
- 1] Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | | | - Søren W Gersting
- Molecular Pediatrics, Ludwig-Maximilians University, Munich, Germany
| | - Steven X Cho
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Paediatrics, Monash University, Melbourne, Australia
| | - Jason C Lao
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Paediatrics, Monash University, Melbourne, Australia
| | - Andrew M Ellisdon
- 1] Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia. [2] Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | | | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Niamh E Mangan
- 1] Department of Molecular and Translational Science, Monash University, Melbourne, Australia. [2] Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Melbourne, Australia
| | - Fernando J Rossello
- Victorian Bioinformatics Consortium, Monash University, Melbourne, Australia
| | - James C Whisstock
- 1] Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia. [2] Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Philip Bufler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | | | - Alberto Mantovani
- 1] Humanitas Clinical and Research Center, Rozzano, Italy. [2] Humanitas University, Rozzano, Italy
| | - Charles A Dinarello
- 1] Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA. [2] Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marcel F Nold
- 1] Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia. [2] Department of Paediatrics, Monash University, Melbourne, Australia. [3] Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
21
|
Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci U S A 2015; 112:2497-502. [PMID: 25654981 DOI: 10.1073/pnas.1424626112] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Collapse
|
22
|
The pathological role of IL-18Rα in renal ischemia/reperfusion injury. J Transl Med 2015; 95:78-91. [PMID: 25329004 DOI: 10.1038/labinvest.2014.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-18 is a proinflammatory cytokine produced by leukocytes and parenchymal cells (eg, tubular epithelial cells (TECs), mesangial cells, and podocytes). IL-18 receptor (IL-18R) is expressed on these cells in the kidney during ischemia/reperfusion injury (IRI), but its role in this injury is unknown. Fas/Fas ligand (FasL) is also involved in the pathogenesis of renal IRI via tubular apoptosis. In addition, IL-18 enhances the expression of FasL on TECs, but the mechanism underlying this enhancement is not known. Here we used IL-18Rα-deficient mice to explore the pathological role of IL-18Rα in renal IRI. We found that compared to wild-type (WT) mice with renal IRI as an acute kidney injury (AKI), the IL-18Rα-deficient mice demonstrated decreased renal function (as represented by blood urea nitrogen), tubular damage, an increased accumulation of leukocytes (CD4+ T cells, neutrophils, and macrophages), upregulated early AKI biomarkers (ie, urinary kidney injury molecule-1 levels), and increased mRNA expressions of proinflammatory cytokines (IL-1β, IL-12p40, and IL-18) and chemokines (intercellular adhesion molecule-1 and CCL2/monocyte chemoattractant protein-1). The mRNA expression of FasL in the kidney was increased in the IL-18Rα-deficient mice compared to the WT mice. The adoptive transfer of splenocytes by WT mice led to decreased renal IRI compared to the IL-18Rα-deficient mice. In vitro, the mRNA expression of FasL on TECs was promoted in the presence of recombinant IL-18. These data reveal that IL-18Rα has an anti-inflammatory effect in IRI-induced AKI. Above all, IL-18 enhanced the inflammatory mechanisms and the apoptosis of TECs through the Fas/FasL pathway by blocking IL-18Rα.
Collapse
|
23
|
Booker CS, Grattan DR. Identification of a truncated splice variant of IL-18 receptor alpha in the human and rat, with evidence of wider evolutionary conservation. PeerJ 2014; 2:e560. [PMID: 25250214 PMCID: PMC4168765 DOI: 10.7717/peerj.560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Interleukin-18 (IL-18) is a pro-inflammatory cytokine which stimulates activation of the nuclear factor kappa beta (NF-κB) pathway via interaction with the IL-18 receptor. The receptor itself is formed from a dimer of two subunits, with the ligand-binding IL-18Rα subunit being encoded by the IL18R1 gene. A splice variant of murine IL18r1, which has been previously described, is formed by transcription of an unspliced intron (forming a ‘type II’ IL18r1 transcript) and is predicted to encode a receptor with a truncated intracellular domain lacking the capacity to generate downstream signalling. In order to examine the relevance of this finding to human IL-18 function, we assessed the presence of a homologous transcript by reverse transcription-polymerase chain reaction (RT-PCR) in the human and rat as another common laboratory animal. We present evidence for type II IL18R1 transcripts in both species. While the mouse and rat transcripts are predicted to encode a truncated receptor with a novel 5 amino acid C-terminal domain, the human sequence is predicted to encode a truncated protein with a novel 22 amino acid sequence bearing resemblance to the ‘Box 1’ motif of the Toll/interleukin-1 receptor (TIR) domain, in a similar fashion to the inhibitory interleukin-1 receptor 2. Given that transcripts from these three species are all formed by inclusion of homologous unspliced intronic regions, an analysis of homologous introns across a wider array of 33 species with available IL18R1 gene records was performed, which suggests similar transcripts may encode truncated type II IL-18Rα subunits in other species. This splice variant may represent a conserved evolutionary mechanism for regulating IL-18 activity.
Collapse
Affiliation(s)
- Chris S Booker
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago , Dunedin , New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
24
|
Chao Y, Kaliaperumal N, Chretien AS, Tang S, Lee B, Poidinger M, Fairhurst AM, Connolly JE. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol 2014; 96:1037-46. [PMID: 25170117 DOI: 10.1189/jlb.2a0813-465rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN-α production by pDCs regulates host protection against viruses and is implicated in autoimmune pathology. Human pDCs express high levels of IL-18R, but little is known of its role in pDC function. We report that IL-18R signaling negatively regulates IFN-α production through activation-induced splicing of IL-18Rα in human pDCs. Our data reveal two distinct isoforms of IL-18Rα in human pDCs: the known, full-length receptor (IL-18Rα1) and a novel, truncated variant (IL-18Rα2), which functions as a molecular decoy that competitively inhibits the canonical IL-18Rα1/IL-18Rβ signaling pathway. Whereas NK cells and pDCs both express IL-18Rα1, pDCs express significantly higher levels of IL-18Rα2, resulting in differential responses of these populations to IL-18. Flu exposure increases IL-18Rα1 expression in pDCs, and the blocking of IL-18R enhances pDC production of IFN-α and IP-10; thus, pDCs use activation-induced splicing to regulate IFN-α production in response to flu. These data demonstrate that IL-18R modulates IFN-α release by human pDCs and suggest that IL-18R signaling may represent a promising therapeutic target.
Collapse
Affiliation(s)
| | - Nivashini Kaliaperumal
- Singapore Immunology Network and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore
| | | | | | | | | | - Anna-Marie Fairhurst
- Singapore Immunology Network and Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Texas, USA; and
| | - John E Connolly
- Singapore Immunology Network and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore; Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
25
|
Toldo S, Mezzaroma E, O'Brien L, Marchetti C, Seropian IM, Voelkel NF, Van Tassell BW, Dinarello CA, Abbate A. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 2014; 306:H1025-31. [PMID: 24531812 PMCID: PMC3962640 DOI: 10.1152/ajpheart.00795.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/12/2014] [Indexed: 12/15/2022]
Abstract
Patients with heart failure (HF) have enhanced systemic IL-1 activity, and, in the experimental mouse model, IL-1 induces left ventricular (LV) systolic dysfunction. Whether the effects of IL-1 are direct or mediated by an inducible cytokine, such as IL-18, is unknown. Recombinant human IL-18-binding protein (IL-18BP) or an IL-18-blocking antibody (IL-18AB) was used to neutralize endogenous IL-18 after challenge with the plasma of patients with HF or with recombinant murine IL-1β in adult male mice. Plasma levels of IL-18 and IL-6 (a key mediator of IL-1-induced systemic effects) and LV fractional shortening were measured in mice sedated with pentobarbital sodium (30-50 mg/kg). Mice with genetic deletion of IL-18 or IL-18 receptors were compared with matching wild-type mice. A group of mice received murine IL-18 to evaluate the effects on LV fractional shortening. Plasma from HF patients and IL-1β induced LV systolic dysfunction that was prevented by pretreatment with IL-18AB or IL-18BP. IL-1β failed to induce LV systolic dysfunction in mice with genetic deletion of IL-18 signaling. IL-1β induced a significant increase in plasma IL-18 and IL-6 levels. Genetic or pharmacological inhibition of IL-18 signaling failed to block the induction of IL-6 by IL-1β. In conclusion, IL-1 induces a release of active IL-18 in the mouse that mediates the LV systolic dysfunction but not the induction of IL-6. IL-18 blockade may therefore represent a novel and more targeted therapeutic approach to treat HF.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity 2014; 39:1003-18. [PMID: 24332029 DOI: 10.1016/j.immuni.2013.11.010] [Citation(s) in RCA: 1436] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
Interleukin-1 (IL-1) is a central mediator of innate immunity and inflammation. The IL-1 family includes seven ligands with agonist activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ), three receptor antagonists (IL-1Ra, IL-36Ra, IL-38), and an anti-inflammatory cytokine (IL-37). Members of the IL-1 Receptor (IL-1R) family include six receptor chains forming four signaling receptor complexes, two decoy receptors (IL-1R2, IL-18BP), and two negative regulators (TIR8 or SIGIRR, IL-1RAcPb). A tight regulation via receptor antagonists, decoy receptors, and signaling inhibitors ensures a balance between amplification of innate immunity and uncontrolled inflammation. All cells of the innate immune system express and/or are affected by IL-1 family members. Moreover, IL-1 family members play a key role in the differentiation and function of polarized innate and adaptive lymphoid cells. Here we will review the key properties of IL-1 family members, with emphasis on pathways of negative regulation and orchestration of innate and adaptive immunity.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Italy
| | - Charles A Dinarello
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen 6500 HC, The Netherlands
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Italy; BIOMETRA Department, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
27
|
Sedimbi SK, Hägglöf T, Karlsson MCI. IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci 2013; 70:4795-808. [PMID: 23892891 PMCID: PMC11113411 DOI: 10.1007/s00018-013-1425-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
Abstract
Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the 'inflammasome'. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Saikiran K. Sedimbi
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Thomas Hägglöf
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| |
Collapse
|
28
|
Abstract
IL-37 was formerly termed IL-1 family member 7. The cytokine was discovered by in silico research of human databases. Although there are no genes in the databases with an open reading frame for a murine homologue for IL-37, human IL-37 is functional in the mouse. Like others members of the IL-1 family, IL-37 lacks a signal peptide. The precursor form of IL-37 has a caspase-1 site, but the role of caspase-1 in the processing and secretion of IL-37 has not been documented with certainty. IL-37 is similar to IL-1α and IL-33, in that the cytokine is found in the nucleus where, like IL-1α and IL-33, functions in transcription. Translocation of IL-37 to the nucleus likely involves SMAD3, which is a component of the TGFβ anti-inflammatory signaling pathway. Also similar to IL-1α and IL-33, with loss of membrane integrity upon cell death, the IL-37 precursor exits from the cell where it binds to the IL-18 receptor alpha chain. However, this binding results in reduced inflammation. Without a murine form of IL-37, deletion studies were carried out with specific siRNA. In human monocytes deficient in IL-37, LPS and IL-1β induced cytokines increased 2-3 fold, suggesting that endogenous IL-37 serves as a break on inflammation. Indeed, in mice expressing human IL-37, inflammation is reduced in models of LPS shock, chemical colitis, cardiac ischemia and contact dermatitis.
Collapse
|
29
|
Lindegaard B, Matthews VB, Brandt C, Hojman P, Allen TL, Estevez E, Watt MJ, Bruce CR, Mortensen OH, Syberg S, Rudnicka C, Abildgaard J, Pilegaard H, Hidalgo J, Ditlevsen S, Alsted TJ, Madsen AN, Pedersen BK, Febbraio MA. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice. Diabetes 2013; 62:3064-74. [PMID: 23670974 PMCID: PMC3749341 DOI: 10.2337/db12-1095] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circulating interleukin (IL)-18 is elevated in obesity, but paradoxically causes hypophagia. We hypothesized that IL-18 may attenuate high-fat diet (HFD)-induced insulin resistance by activating AMP-activated protein kinase (AMPK). We studied mice with a global deletion of the α-isoform of the IL-18 receptor (IL-18R(-/-)) fed a standard chow or HFD. We next performed gain-of-function experiments in skeletal muscle, in vitro, ex vivo, and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation, and insulin resistance via mechanisms involving the activation of AMPK in skeletal muscle. IL-18R(-/-) mice display increased weight gain, ectopic lipid deposition, inflammation, and reduced AMPK signaling in skeletal muscle. Treating myotubes or skeletal muscle strips with IL-18 activated AMPK and increased fat oxidation. Moreover, in vivo electroporation of IL-18 into skeletal muscle activated AMPK and concomitantly inhibited HFD-induced weight gain. In summary, IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis.
Collapse
Affiliation(s)
- Birgitte Lindegaard
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Vance B. Matthews
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Claus Brandt
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - Tamara L. Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Matthew J. Watt
- Department of Physiology, Monash University, Clayton, Australia
| | - Clinton R. Bruce
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Physiology, Monash University, Clayton, Australia
| | - Ole H. Mortensen
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Syberg
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Osteoporosis Unit, Hvidovre Hospital, Hvidovre, Denmark
| | - Caroline Rudnicka
- University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Henriette Pilegaard
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan Hidalgo
- Institute of Neurosciences, Department of Cellular Biology, Physiology, and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas J. Alsted
- Department of Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N. Madsen
- Department of Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente K. Pedersen
- The Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - Mark A. Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Corresponding author: Mark A. Febbraio, , or Bente K. Pedersen,
| |
Collapse
|
30
|
Kratzer A, Salys J, Nold-Petry C, Cool C, Zamora M, Bowler R, Koczulla AR, Janciauskiene S, Edwards MG, Dinarello CA, Taraseviciene-Stewart L. Role of IL-18 in second-hand smoke-induced emphysema. Am J Respir Cell Mol Biol 2013; 48:725-32. [PMID: 23392573 DOI: 10.1165/rcmb.2012-0173oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic second-hand smoke (SHS) exposure comprises the main risk factor for nonsmokers to develop chronic obstructive pulmonary disease (COPD). However, the mechanisms behind the chronic inflammation and lung destruction remain incompletely understood. In this study, we show that chronic exposure of Sprague-Dawley rats to SHS results in a significant increase of proinflammatory cytokine IL-18 and chemokine (C-C motif) ligand 5 in the bronchoalveolar lavage fluid (BALF) and a significant decrease of vascular endothelial growth factor (VEGF) in the lung tissue. SHS exposure resulted in progressive alveolar airspace enlargement, cell death, pulmonary vessel loss, vessel muscularization, collagen deposition, and right ventricular hypertrophy. Alveolar macrophages displayed a foamy phenotype and a decreased expression of the natural inhibitor of IL-18, namely, IL-18 binding protein (IL-18BP). Moreover, IL-18 down-regulated the expression of VEGF receptor-1 and VEGFR receptor-2, and induced apoptosis in pulmonary microvascular endothelial cells in vitro. We also observed a trend toward increased concentrations of IL-18 in the BALF of patients with COPD. Our findings suggest that IL-18-mediated endothelial cell death may contribute to vascular destruction and disappearance in SHS-induced COPD. Moreover, IL-18 and IL-18BP are potential new targets for therapeutics.
Collapse
Affiliation(s)
- Adelheid Kratzer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nozaki Y, Kinoshita K, Yano T, Asato K, Shiga T, Hino S, Niki K, Nagare Y, Kishimoto K, Shimazu H, Funauchi M, Matsumura I. Signaling through the interleukin-18 receptor α attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int 2012; 82:892-902. [PMID: 22673883 DOI: 10.1038/ki.2012.226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-18 is produced by leukocytes and renal parenchymal cells (tubular epithelial cells, podocytes, and mesangial cells). The IL-18 receptor (IL-18R) is expressed on these cells in cisplatin-induced acute kidney injury, but the role of IL-18R is unknown. To help define this, we compared IL-18Rα knockout with wild-type mice in cisplatin-induced acute kidney injury and found deteriorated kidney function, tubular damage, increased accumulation of leukocytes (CD4(+) and CD8(+) T-cells, macrophages, and neutrophils), upregulation of early kidney injury biomarkers (serum TNF, urinary IL-18, and KIM-1 levels), and increased expression of pro-inflammatory molecules downstream of IL-18. In vitro, leukocytes from the spleen and kidneys of the knockout mice produced greater amounts of pro-inflammatory cytokines upon stimulation with concanavalin A compared to that in wild-type mice. Levels of the suppressor of cytokine signaling 1 and 3 (negative regulators of cytokine signaling) were reduced in the spleen and kidneys of IL-18Rα-deficient compared to wild-type mice. Adoptive transfer of wild-type splenocytes by IL-18Rα-deficient mice led to decreased cisplatin nephrotoxicity compared to control IL-18Rα-deficient mice. In contrast, anti-IL-18Rα and anti-IL-18Rβ antibody treatment tended to increase cisplatin nephrotoxicity in wild-type mice. Thus, signaling through IL-18Rα activates both inflammation-suppressing and pro-injury pathways in cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cytokines can be measured by enzyme-linked immunosorbent assay (ELISA) or multiplex assay. Both techniques are commonly used in immunology to detect the presence of antibody or antigen in a sample. However, multiplex bead array technology provides the means to simultaneously measure multiple analytes in a single reaction, thereby saving time and resources. This method can detect up to 30 proteins at once, using a relatively small sample volume, without losing sensitivity, accuracy, or reproducibility. In this chapter, we describe the cytometric bead array (CBA) approach to simultaneously measure multiple cytokines in biological samples such as spleen, kidney, or serum from mice infected with the human fungal pathogen Candida albicans.
Collapse
Affiliation(s)
- Luis Castillo
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Elqui, Chile
| | | |
Collapse
|
33
|
Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol 2011; 7:416-26. [PMID: 21647204 DOI: 10.1038/nrrheum.2011.68] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) has long been recognized as unique among childhood arthritides, because of its distinctive clinical and epidemiological features, including an association with macrophage activation syndrome. Here, we summarize research into sJIA pathogenesis. The triggers of disease are unknown, although infections are suspects. Once initiated, sJIA seems to be driven by innate proinflammatory cytokines. Endogenous Toll-like receptor ligands, including S100 proteins, probably synergize with cytokines to perpetuate inflammation. These and other findings support the hypothesis that sJIA is an autoinflammatory condition. Indeed, IL-1 is implicated as a pivotal cytokine, but the source of excess IL-1 activity remains obscure and the role of IL-1 in chronic arthritis is less clear. Another hypothesis is that a form of hemophagocytic lymphohistiocytosis underlies sJIA, with varying degrees of its expression across the spectrum of disease. Alternatively, sJIA with MAS might be a genetically distinct subtype. Yet another hypothesis proposes that inadequate downregulation of immune activation is central to sJIA, supporting evidence for which includes 'alternative activation' of monocyte and macrophages and possible deficiencies in IL-10 and T regulatory cells. Some altered immune phenotypes persist during clinically inactive disease, which suggests that this stage might represent compensated inflammation. Despite much progress being made, many questions remain, providing fertile ground for future research.
Collapse
|
34
|
Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4912-20. [PMID: 20855874 PMCID: PMC3104023 DOI: 10.4049/jimmunol.1002046] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a leading cause of cancer-related deaths worldwide. Chronic inflammation is recognized as a predisposing factor for the development of colon cancer, but the molecular mechanisms linking inflammation and tumorigenesis have remained elusive. Recent studies revealed a crucial role for the NOD-like receptor protein Nlrp3 in regulating inflammation through the assembly of proinflammatory protein complexes termed inflammasomes. However, its role in colorectal tumor formation remains unclear. In this study, we showed that mice deficient for Nlrp3 or the inflammasome effector caspase-1 were highly susceptible to azoxymethane/dextran sodium sulfate-induced inflammation and suffered from dramatically increased tumor burdens in the colon. This was a consequence of markedly reduced IL-18 levels in mice lacking components of the Nlrp3 inflammasome, which led to impaired production and activation of the tumor suppressors IFN-γ and STAT1, respectively. Thus, IL-18 production downstream of the Nlrp3 inflammasome is critically involved in protection against colorectal tumorigenesis.
Collapse
Affiliation(s)
- Md. Hasan Zaki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Mathilde Body-Malapel
- Department of Physiopathology of inflammatory bowel diseases, INSERM U995, Lille, France
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | |
Collapse
|