1
|
Gerdes K. Mono- and multidomain defense toxins of the RelE/ParE superfamily. mBio 2025; 16:e0025825. [PMID: 39998207 PMCID: PMC11980606 DOI: 10.1128/mbio.00258-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Toxin-antitoxin (TA) modules are widely distributed across prokaryotes, often existing in large numbers despite their associated fitness costs. Most type II TA modules are bicistronic operons encoding a monodomain toxin and its cognate protein antitoxin. The RelE/ParE superfamily encompasses toxins with a conserved Barnase-EndoU-ColicinE5/D-RelE (BECR) fold. Yet, their cellular targets differ remarkably: RelE toxins function as ribosome-dependent RNases, while ParE toxins act as DNA gyrase inhibitors. Using a comprehensive bioinformatics approach, this study analyzed 13 BECR-fold toxin families as classified in the Pfam database. Intriguingly, the ParE family was found to include a subcluster of mRNA-cleaving toxins, challenging its conventional role as solely DNA-targeting. This study identified a novel tripartite operon encoding a PtuA-like defense ATPase, a homolog of type IV restriction endonucleases, and a RelE homolog, suggesting a coordinated role in defense mechanisms. Multidomain BECR-fold toxins, including transmembrane variants, were also discovered, extending the functional repertoire of type II TA modules to membrane-associated systems. These findings clarify the evolutionary relationships and functional diversity within the RelE/ParE superfamily and discover novel, putative defense systems that can now be investigated experimentally.IMPORTANCEToxin-antitoxin modules play critical roles in prokaryotic survival and adaptation, contributing to genome stabilization and defense against phages and invading plasmids. The RelE/ParE superfamily exemplifies the structural and functional diversity of these systems, with members targeting distinct cellular processes, such as translation and DNA supercoiling. By elucidating the relationships among the 13 BECR-fold toxin families, this study enhances our understanding of microbial resistance mechanisms and reveals potential new opportunities for research into prokaryotic defense and regulation. These insights may have significant implications for medical and biotechnological applications, particularly in understanding bacterial responses to genetic invaders.
Collapse
|
2
|
Zhang H, Tao S, Chen H, Fang Y, Xu Y, Han AX, Ma F, Liang W. Type II Toxin-Antitoxin Systems in Escherichia coli. Infect Drug Resist 2025; 18:1083-1096. [PMID: 40027916 PMCID: PMC11869752 DOI: 10.2147/idr.s501485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
The toxin-antitoxin (TA) system is widespread in prokaryotes and archaea, comprising toxins and antitoxins that counterbalance each other. Based on the nature and mode of action of antitoxins, they are classified into eight groups (type I to VIII). Both the toxins and the antitoxins are proteins in type II TA systems, and the antitoxin gene is usually upstream of the toxin gene. Both genes are organized in an operon and expression of which is regulated at the transcriptional level by the antitoxin-toxin complex, which binds the operon DNA through the DNA-binding domain of the antitoxin. The TA system plays a crucial role in various cellular processes, such as programmed cell death, cell growth, persistence, and virulence. Currently, Type II TA systems have been used as a target for developing new antibacterial agents for treatment. Therefore, the focus of this review is to understand the unique response of Type II TA in Escherichia coli to stress and its contribution to the maintenance of resistant strains. Here, we review the Type II TA system in E. coli and describe their regulatory mechanisms and biological functions. Understanding how TA promotes phenotypic heterogeneity and pathogenesis mechanisms may help to develop new treatments for infections caused by pathogens rationally.
Collapse
Affiliation(s)
- He Zhang
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - A-Xiang Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Fang Ma
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Živič Z, Lipoglavšek L, Lah J, Hadži S. A single vector system for tunable and homogeneous dual gene expression in Escherichia coli. Sci Rep 2025; 15:99. [PMID: 39747401 PMCID: PMC11695612 DOI: 10.1038/s41598-024-83628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration. We show that modifications of positive feedback loops related to inducer uptake result in homogeneous gene expression in both the T7 lactose and pBAD arabinose systems. Furthermore, these two modified systems were combined into a single vector, pRAT-sfGFP that provides the desired tunable expression of two genes of interest. Finally, we test this single-vector system as a tool for studying two-component genetic circuits, using toxin-antitoxin modules as model systems. This novel low-copy single vector expression system opens up new possibilities for investigating the function of two-component bacterial genetic circuits.
Collapse
Affiliation(s)
- Z Živič
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - L Lipoglavšek
- Chair of Microbial Diversity, Microbiomics and Biotechnology, Biotechnical Faculty, University of Ljubljana, Groblje, Slovenia
| | - J Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - S Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Mets T, Kurata T, Ernits K, Johansson MJO, Craig SZ, Evora GM, Buttress JA, Odai R, Wallant KC, Nakamoto JA, Shyrokova L, Egorov AA, Doering CR, Brodiazhenko T, Laub MT, Tenson T, Strahl H, Martens C, Harms A, Garcia-Pino A, Atkinson GC, Hauryliuk V. Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems. Cell Host Microbe 2024; 32:1059-1073.e8. [PMID: 38821063 DOI: 10.1016/j.chom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.
Collapse
Affiliation(s)
- Toomas Mets
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Sophie Z Craig
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gabriel Medina Evora
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Roni Odai
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | | | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Alexander Harms
- ETH Zurich, Institute of Food, Nutrition and Health, 8092 Zürich, Switzerland
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Virus Centre, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Virus Centre, Lund University, Lund, Sweden; Science for Life Laboratory, Lund, Sweden.
| |
Collapse
|
5
|
Okabe T, Aoi R, Yokota A, Tamiya-Ishitsuka H, Jiang Y, Sasaki A, Tsuneda S, Noda N. Arg-73 of the RNA endonuclease MazF in Salmonella enterica subsp. arizonae contributes to guanine and uracil recognition in the cleavage sequence. J Biol Chem 2024; 300:105636. [PMID: 38199572 PMCID: PMC10864209 DOI: 10.1016/j.jbc.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.
Collapse
Affiliation(s)
- Takuma Okabe
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hiroko Tamiya-Ishitsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yunong Jiang
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akira Sasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
6
|
Kinkar OU, Kumar A, Prashar A, Yadav B, Hadapad AB, Hire RS, Makde RD. The crystal structure of insecticidal protein Txp40 from Xenorhabdus nematophila reveals a two-domain unique binary toxin with homology to the toxin-antitoxin (TA) system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104045. [PMID: 38040266 DOI: 10.1016/j.ibmb.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Beena Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
7
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
8
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonika Sonika
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Mishra
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashikala Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Toxin-Antitoxin Systems Alter Adaptation of Mycobacterium smegmatis to Environmental Stress. Microbiol Spectr 2022; 10:e0281522. [PMID: 36318013 PMCID: PMC9769933 DOI: 10.1128/spectrum.02815-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in prokaryotes, but their biological importance is poorly understood. Mycobacterium smegmatis contains eight putative TA systems. Previously, seven TAs have been studied, with five of them being verified as functional. Here, we show that Ms0251-0252 is a novel TA system in that expression of the toxin Ms0251 leads to growth inhibition that can be rescued by the antitoxin Ms0252. To investigate the functional roles of TA systems in M. smegmatis, we deleted the eight putative TA loci and assayed the mutants for resistance to various stresses. Deletion of all eight TA loci resulted in decreased survival under starvation conditions and altered fitness when exposed to environmental stresses. Furthermore, we showed that deletion of the eight TA loci decreased resistance to phage infection in Sauton medium compared with the results using 7H10 medium, suggesting that TA systems might have different contributions depending on the nutrient environment. Furthermore, we found that MazEF specifically played a dominant role in resistance to phage infection. Finally, transcriptome analysis revealed that MazEF overexpression led to differential expression of multiple genes, including those related to iron acquisition. Altogether, we demonstrate that TA systems coordinately function to allow M. smegmatis to adapt to changing environmental conditions. IMPORTANCE Toxin-antitoxin (TA) systems are mechanisms for rapid adaptation of bacteria to environmental changes. Mycobacterium smegmatis, a model bacterium for studying Mycobacterium tuberculosis, encodes eight putative TA systems. Here, we constructed an M. smegmatis mutant with deletions of all eight TA-encoding genes and evaluated the resistance of these mutants to environmental stresses. Our results showed that different TA systems have overlapping and, in some cases, opposing functions in adaptation to various stresses. We suggest that complementary TA modules may function together to regulate the bacterial stress response, enabling adaptation to changing environments. Together, this study provides key insights into the roles of TA systems in resistance to various environmental stresses, drug tolerance, and defense against phage infection.
Collapse
|
10
|
Wachter S, Cockrell DC, Miller HE, Virtaneva K, Kanakabandi K, Darwitz B, Heinzen RA, Beare PA. The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system. Mol Microbiol 2022; 118:744-764. [PMID: 36385554 PMCID: PMC10098735 DOI: 10.1111/mmi.15001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Diane C Cockrell
- Vector-Pathogen-Host Interaction unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Kimmo Virtaneva
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
11
|
Yu V, Ronzone E, Lord D, Peti W, Page R. MqsR is a noncanonical microbial RNase toxin that is inhibited by antitoxin MqsA via steric blockage of substrate binding. J Biol Chem 2022; 298:102535. [PMID: 36162504 PMCID: PMC9636575 DOI: 10.1016/j.jbc.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
The MqsRA toxin-antitoxin system is a component of the Escherichia coli stress response. Free MqsR, a ribonuclease, cleaves mRNAs containing a 5′-GC-3′ sequence causing a global shutdown of translation and the cell to enter a state of dormancy. Despite a general understanding of MqsR function, the molecular mechanism(s) by which MqsR binds and cleaves RNA and how one or more of these activities is inhibited by its cognate antitoxin MqsA is still poorly understood. Here, we used NMR spectroscopy coupled with mRNA cleavage assays to identify the molecular mechanism of MqsR substrate recognition and the MqsR residues that are essential for its catalytic activity. We show that MqsR preferentially binds substrates that contain purines in the −2 and −1 position relative to the MqsR consensus cleavage sequence and that two residues of MqsR, Tyr81, and Lys56 are strictly required for mRNA cleavage. We also show that MqsA inhibits MqsR activity by sterically blocking mRNA substrates from binding while leaving the active site fully accessible to mononucleotides. Together, these data identify the residues of MqsR that mediate RNA cleavage and reveal a novel mechanism that regulates MqsR substrate specificity.
Collapse
Affiliation(s)
- Victor Yu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Erik Ronzone
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Dana Lord
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
12
|
Yusof TY, Ong EBB, Teh AH. RelEB3 toxin-antitoxin system of Salmonella Typhimurium with a ribosome-independent toxin and a mutated non-neutralising antitoxin. Int J Biol Macromol 2022; 219:1080-1086. [PMID: 36029963 DOI: 10.1016/j.ijbiomac.2022.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The RelEB3 toxin-antitoxin (TA) system of Salmonella enterica subsp. enterica serovar Typhimurium consists of a RelE3 toxin which suppresses bacterial growth, but its RelB3 antitoxin does not neutralise the toxin. The relEB3 operon is widespread in Proteobacteria and is related to higBA2 from Vibrio cholerae. In contrast to the ribosome-dependent HigB2 toxin, however, the RelE3 toxin degraded free RNA independently of the ribosome. A basic loop possibly involved in HigB2's binding to the ribosome is shortened in RelE3, which instead contains a uniquely conserved R51 important for RelE3's toxicity. The RelB3 antitoxin, meanwhile, specifically recognised the CACCTGGTG palindromic motif in the promoter site. RelB3 contains P14 which is conserved as Ala in most homologues, and mutating P14 to Ala enabled the antitoxin to bind to RelE3 and restored bacterial growth. The P14 RelB3 variant, which most likely arose by a point mutation in a recent ancestor of S. Typhimurium and closely related serovars, could have possibly provided the bacteria with a faster response to stress, and might have spread to other serovars through homologous recombination.
Collapse
Affiliation(s)
- Tengku Yasmin Yusof
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia; University Hospital Development Centre, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
13
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
14
|
Mansour M, Giudice E, Xu X, Akarsu H, Bordes P, Guillet V, Bigot DJ, Slama N, D'urso G, Chat S, Redder P, Falquet L, Mourey L, Gillet R, Genevaux P. Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nat Commun 2022; 13:2641. [PMID: 35552387 PMCID: PMC9098466 DOI: 10.1038/s41467-022-30373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target. Toxin-antitoxin systems are widespread in bacteria. Here the authors present structures of M. tuberculosis HigBTAC alone and bound to the ribosome in the presence of native cspA mRNA, shedding light on its mechanism of translation inhibition.
Collapse
Affiliation(s)
- Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giudice
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hatice Akarsu
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland.,Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Donna-Joe Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nawel Slama
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gaetano D'urso
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Sophie Chat
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Peter Redder
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Reynald Gillet
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
15
|
Choi E, Huh A, Oh C, Oh JI, Kang HY, Hwang J. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642. J Microbiol 2022; 60:192-206. [PMID: 35102526 DOI: 10.1007/s12275-022-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Changmin Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
16
|
Artuso I, Lucidi M, Visaggio D, Capecchi G, Lugli GA, Ventura M, Visca P. Genome diversity of domesticated Acinetobacter baumannii ATCC 19606 T strains. Microb Genom 2022; 8. [PMID: 35084299 PMCID: PMC8914354 DOI: 10.1099/mgen.0.000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
17
|
Kandel PP, Naumova M, Fautt C, Patel RR, Triplett LR, Hockett KL. Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Front Microbiol 2022; 12:815911. [PMID: 35095819 PMCID: PMC8790059 DOI: 10.3389/fmicb.2021.815911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.
Collapse
Affiliation(s)
- Prem P. Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,*Correspondence: Prem P. kandel,
| | - Marina Naumova
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Ravikumar R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Kevin L. Hockett,
| |
Collapse
|
18
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
19
|
Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParE SO-CopA SO by Structure-Function Studies. Microorganisms 2021; 9:microorganisms9122506. [PMID: 34946107 PMCID: PMC8706911 DOI: 10.3390/microorganisms9122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
ParESO-CopASO is a new type II toxin–antitoxin (TA) system in prophage CP4So that plays an essential role in circular CP4So maintenance after the excision in Shewanella oneidensis. The toxin ParESO severely inhibits cell growth, while CopASO functions as an antitoxin to neutralize ParESO toxicity through direct interactions. However, the molecular mechanism of the neutralization and autoregulation of the TA operon transcription remains elusive. In this study, we determined the crystal structure of a ParESO-CopASO complex that adopted an open V-shaped heterotetramer with the organization of ParESO-(CopASO)2-ParESO. The structure showed that upon ParESO binding, the intrinsically disordered C-terminal domain of CopASO was induced to fold into a partially ordered conformation that bound into a positively charged and hydrophobic groove of ParESO. Thermodynamics analysis showed the DNA-binding affinity of CopASO was remarkably higher than that of the purified TA complex, accompanied by the enthalpy change reversion from an exothermic reaction to an endothermic reaction. These results suggested ParESO acts as a de-repressor of the TA operon transcription at the toxin:antitoxin level of 1:1. Site-directed mutagenesis of ParESO identified His91 as the essential residue for its toxicity by cell toxicity assays. Our structure-function studies therefore elucidated the transcriptional regulation mechanism of the ParESO-CopASO pair, and may help to understand the regulation of CP4So maintenance in S. oneidensis.
Collapse
|
20
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
21
|
A minimal model for gene expression dynamics of bacterial type II toxin-antitoxin systems. Sci Rep 2021; 11:19516. [PMID: 34593858 PMCID: PMC8484670 DOI: 10.1038/s41598-021-98570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Toxin-antitoxin (TA) modules are part of most bacteria's regulatory machinery for stress responses and general aspects of their physiology. Due to the interplay of a long-lived toxin with a short-lived antitoxin, TA modules have also become systems of interest for mathematical modelling. Here we resort to previous modelling efforts and extract from these a minimal model of type II TA system dynamics on a timescale of hours, which can be used to describe time courses derived from gene expression data of TA pairs. We show that this model provides a good quantitative description of TA dynamics for the 11 TA pairs under investigation here, while simpler models do not. Our study brings together aspects of Biophysics with its focus on mathematical modelling and Computational Systems Biology with its focus on the quantitative interpretation of 'omics' data. This mechanistic model serves as a generic transformation of time course information into kinetic parameters. The resulting parameter vector can, in turn, be mechanistically interpreted. We expect that TA pairs with similar mechanisms are characterized by similar vectors of kinetic parameters, allowing us to hypothesize on the mode of action for TA pairs still under discussion.
Collapse
|
22
|
Li Z, Cai Z, Cai Z, Zhang Y, Fu T, Jin Y, Cheng Z, Jin S, Wu W, Yang L, Bai F. Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. J Antimicrob Chemother 2021; 75:1443-1452. [PMID: 32129854 DOI: 10.1093/jac/dkaa063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES A group of ST664 XDR Pseudomonas aeruginosa strains have been isolated from a burn clinic. Here we decipher their resistomes and likely mechanisms of resistance acquisition. METHODS The complete nucleotide sequences of representative isolates were determined, by PacBio and Illumina MiSeq sequencing, and analysed for antimicrobial resistance (AMR) genes as well as sequence variations. S1-PFGE was used to determine the sizes and numbers of plasmids harboured by the isolates. Purified plasmid DNA was further sequenced by PacBio technology, closed manually and annotated by RAST. The mobility of plasmids was determined by conjugation assays. RESULTS The XDR P. aeruginosa ST664 clone carries 11 AMR genes, including a blaKPC-2 gene that confers resistance to carbapenems. Most of the ST664 isolates carry three coexisting plasmids. blaKPC-2 and a cluster of three AMR genes (aadB-cmlA1-sul1) are encoded on a 475 kb megaplasmid pNK546a, which codes for an IncP-3-like replication and partitioning mechanism, but has lost the conjugative transfer system. Interestingly, however, pNK546a is mobilizable and can be transferred to P. aeruginosa PAO1 with the help of a co-residing IncP-7 conjugative plasmid. The blaKPC-2 gene is carried by an IS6100-ISKpn27-blaKPC-2-ΔISKpn6-Tn1403 mobile element, which might be brought into the ST664 clone by another co-resident IncP-1α plasmid, which is inclined to be lost. Moreover, pNK546a harbours multiple heavy metal (mercury, tellurite and silver) resistance modules. CONCLUSIONS To the best of our knowledge, pNK546a is the first fully sequenced blaKPC-2-carrying megaplasmid from P. aeruginosa. These results give new insights into bacterial adaptation and evolution during nosocomial infections.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanhong Zhang
- Affiliated Hospital of Nankai University, Tianjin, China
| | - Tongtong Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
24
|
Abstract
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.
Collapse
Affiliation(s)
- Yoontak Han
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| |
Collapse
|
25
|
2.09 Å Resolution structure of E. coli HigBA toxin-antitoxin complex reveals an ordered DNA-binding domain and intrinsic dynamics in antitoxin. Biochem J 2020; 477:4001-4019. [PMID: 33000860 DOI: 10.1042/bcj20200363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
The toxin-antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.
Collapse
|
26
|
Chen R, Zhou J, Sun R, Du C, Xie W. Conserved Conformational Changes in the Regulation of Mycobacterium tuberculosis MazEF-mt1. ACS Infect Dis 2020; 6:1783-1795. [PMID: 32485099 DOI: 10.1021/acsinfecdis.0c00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toxin-antitoxin (TA) systems, which regulate many important cellular processes, are abundantly present in prokaryotic organisms. MazEF is a common type of TA system implicated in the formation of "persisters cells" of the pathogen Mycobacterium tuberculosis, which contains 10 such systems. However, the exact function and inhibition mode of each MazF protein are not quite understood. Here, we report four high-resolution crystal structures of MazF-mt1 in various forms, including one in complex with MazE-mt1. The toxin displayed two unique interlocked loops that allow the formation of a tight dimer. These loops would open upon interacting with the MazE-mt1 antitoxin mediated by the last two helices of MazE-mt1. With our structure-based design, a mutant that could bind to the antitoxin with an enhanced affinity was produced. Combined crystallographic and biochemical studies further revealed that the binding affinity of MazE-mt1 to MazF-mt1 was mainly attributed to its α3 helical region, while the terminal helix η1 contributes very little or even negatively to the association of the pair, in stark contrast to the MazEF-mt9 system. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F-mt1 TA pair, which may reflect the functional differences between different TA systems.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Runlin Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Chaochao Du
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 E. Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
27
|
Park JY, Kim HJ, Pathak C, Yoon HJ, Kim DH, Park SJ, Lee BJ. Induced DNA bending by unique dimerization of HigA antitoxin. IUCRJ 2020; 7:748-760. [PMID: 32695421 PMCID: PMC7340258 DOI: 10.1107/s2052252520006466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The bacterial toxin-antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the β-lid, and diverse orientations of two helix-turn-helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The β-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.
Collapse
Affiliation(s)
- Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Leicester Institute of Structural and Chemical Biology, University of Leicester, United Kingdom
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong,Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Ames JR, McGillick J, Murphy T, Reddem E, Bourne CR. Identifying a Molecular Mechanism That Imparts Species-Specific Toxicity to YoeB Toxins. Front Microbiol 2020; 11:959. [PMID: 32528435 PMCID: PMC7256200 DOI: 10.3389/fmicb.2020.00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
The ribosome-dependent E. coli (Ec) mRNase toxin YoeB has been demonstrated to protect cells during thermal stress. Agrobacterium tumefaciens (At), a plant pathogen, also encodes a YoeB toxin. Initial studies indicated that AtYoeB does not impact the growth of Ec, but its expression is toxic to the native host At. The current work examines this species-specific effect. We establish the highly similar structure and function of Ec and AtYoeB toxins, including the ability of the AtYoeB toxin to inhibit Ec ribosomes in vitro. Comparison of YoeB sequences and structures highlights a four-residue helix between β-strands 2 and 3 that interacts with mRNA bases within the ribosome. This helix sequence is varied among YoeB toxins, and this variation correlates with bacterial classes of proteobacteria. When the four amino acid sequence of this helix is transplanted from EcYoeB onto AtYoeB, the resulting chimera gains toxicity to Ec cells and lessens toxicity to At cells. The reverse is also true, such that EcYoeB with the AtYoeB helix sequence is less toxic to Ec and gains toxicity to At cultures. We suggest this helix sequence directs mRNA sequence-specific degradation, which varies among proteobacterial classes, and thus controls growth inhibition and YoeB toxicity.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Julia McGillick
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Eswar Reddem
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
29
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
30
|
Chimal-Cázares F, Hernández-Martínez G, Pacheco S, Ares MA, Soria-Bustos J, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Ibarra JA, González-Y-Merchand JA, Gorvel JP, Méresse S, De la Cruz MA. Molecular Characterization of SehB, a Type II Antitoxin of Salmonella enterica Serotype Typhimurium: Amino Acid Residues Involved in DNA-Binding, Homodimerization, Toxin Interaction, and Virulence. Front Microbiol 2020; 11:614. [PMID: 32328049 PMCID: PMC7160566 DOI: 10.3389/fmicb.2020.00614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of S. Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin. It was previously reported that the absence of the SehB antitoxin affects the growth of S. Typhimurium. In addition, the SehB antitoxin can interact directly with the SehA toxin neutralizing its toxic effect as well as repressing its own expression. We identified conserved residues on SehB homologous proteins. Point mutations were introduced at both N- and C-terminal of SehB antitoxin to analyze the effect of these changes on its transcription repressor function, on its ability to form homodimers and on the virulence of S. Typhimurium. All changes in amino acid residues at both the N- and C-terminal affected the repressor function of SehB antitoxin and they were required for DNA-binding activity. Mutations in the amino acid residues at the N-terminal showed a lower capacity for homodimer formation of the SehB protein. However, none of the SehB point mutants were affected in the interaction with the SehA toxin. In terms of virulence, the eight single-amino acid mutations were attenuated for virulence in the mouse model. In agreement with our results, the eight amino acid residues of SehB antitoxin were required for its repressor activity, affecting both homodimerization and DNA-binding activity, supporting the notion that both activities of SehB antitoxin are required to confer virulence to Salmonella enterica.
Collapse
Affiliation(s)
- Fernando Chimal-Cázares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Hernández-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Jose Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
31
|
Liu Y, Gao Z, Liu G, Geng Z, Dong Y, Zhang H. Structural Insights Into the Transcriptional Regulation of HigBA Toxin-Antitoxin System by Antitoxin HigA in Pseudomonas aeruginosa. Front Microbiol 2020; 10:3158. [PMID: 32038588 PMCID: PMC6987408 DOI: 10.3389/fmicb.2019.03158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
HigB-HigA is a bacterial toxin-antitoxin (TA) system in which the antitoxin HigA can mask the endoribonuclease activity of toxin HigB and repress the transcription of the TA operon by binding to its own promoter region. The opportunistic pathogen Pseudomonas aeruginosa HigBA (PaHigBA) is closely associated with the pathogenicity by reducing the production of multiple virulence factors and biofilm formation. However, the molecular mechanism underlying HigBA TA operon transcription by PaHigA remains elusive. Here, we report the crystal structure of PaHigA binding to the promoter region of higBA operon containing two identical palindromic sequences at 3.14 Å resolution. The promoter DNA is bound by two cooperative dimers to essentially encircle the intact palindrome region. The helix-turn-helix (HTH) motifs from the two dimers insert into the major grooves of the DNA at the opposite sides. The DNA adopts a canonical B-DNA conformation and all the hydrogen bonds between protein and DNA are mediated by the DNA phosphate backbone. A higher resolution structure of PaHigA-DNA complex at 2.50 Å further revealed three water molecules bridged the DNA-binding interface and mediated the interactions between the bases of palindromic sequences and PaHigA (Thr40, Asp43, and Arg49). Structure-based mutagenesis confirmed these residues are essential for the specific DNA-binding ability of PaHigA. Our structure-function studies therefore elucidated the cooperative dimer-dimer transcription repression mechanism, and may help to understand the regulation of multiple virulence factors by PaHigA in P. aeruginosa.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ, Dunham CM. Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Nucleic Acids Res 2019; 47:10400-10413. [PMID: 31501867 PMCID: PMC6821326 DOI: 10.1093/nar/gkz760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
Chromosomally-encoded toxin-antitoxin complexes are ubiquitous in bacteria and regulate growth through the release of the toxin component typically in a stress-dependent manner. Type II ribosome-dependent toxins adopt a RelE-family RNase fold and inhibit translation by degrading mRNAs while bound to the ribosome. Here, we present biochemical and structural studies of the Escherichia coli YoeB toxin interacting with both a UAA stop and an AAU sense codon in pre- and post-mRNA cleavage states to provide insights into possible mRNA substrate selection. Both mRNAs undergo minimal changes during the cleavage event in contrast to type II ribosome-dependent RelE toxin. Further, the 16S rRNA decoding site nucleotides that monitor the mRNA in the aminoacyl(A) site adopt different orientations depending upon which toxin is present. Although YoeB is a RelE family member, it is the sole ribosome-dependent toxin that is dimeric. We show that engineered monomeric YoeB is active against mRNAs bound to both the small and large subunit. However, the stability of monomeric YoeB is reduced ∼20°C, consistent with potential YoeB activation during heat shock in E. coli as previously demonstrated. These data provide a molecular basis for the ability of YoeB to function in response to thermal stress.
Collapse
Affiliation(s)
- Ian J Pavelich
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Stacey J Miles
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Schureck MA, Meisner J, Hoffer ED, Wang D, Onuoha N, Ei Cho S, Lollar P, Dunham CM. Structural basis of transcriptional regulation by the HigA antitoxin. Mol Microbiol 2019; 111:1449-1462. [PMID: 30793388 DOI: 10.1111/mmi.14229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2019] [Indexed: 01/16/2023]
Abstract
Bacterial toxin-antitoxin systems are important factors implicated in growth inhibition and plasmid maintenance. Type II toxin-antitoxin pairs are regulated at the transcriptional level by the antitoxin itself. Here, we examined how the HigA antitoxin regulates the expression of the Proteus vulgaris higBA toxin-antitoxin operon from the Rts1 plasmid. The HigBA complex adopts a unique architecture suggesting differences in its regulation as compared to classical type II toxin-antitoxin systems. We find that the C-terminus of the HigA antitoxin is required for dimerization and transcriptional repression. Further, the HigA structure reveals that the C terminus is ordered and does not transition between disorder-to-order states upon toxin binding. HigA residue Arg40 recognizes a TpG dinucleotide in higO2, an evolutionary conserved mode of recognition among prokaryotic and eukaryotic transcription factors. Comparison of the HigBA and HigA-higO2 structures reveals the distance between helix-turn-helix motifs of each HigA monomer increases by ~4 Å in order to bind to higO2. Consistent with these data, HigBA binding to each operator is twofold less tight than HigA alone. Together, these data show the HigB toxin does not act as a co-repressor suggesting potential novel regulation in this toxin-antitoxin system.
Collapse
Affiliation(s)
- Marc A Schureck
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Meisner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nina Onuoha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shein Ei Cho
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
34
|
Yoon WS, Seok SH, Won HS, Cho T, Lee SJ, Seo MD. Structural changes of antitoxin HigA from Shigella flexneri by binding of its cognate toxin HigB. Int J Biol Macromol 2019; 130:99-108. [PMID: 30797012 DOI: 10.1016/j.ijbiomac.2019.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
In toxin-antitoxin systems, many antitoxin proteins that neutralize their cognate toxin proteins also bind to DNA to repress transcription, and the DNA-binding affinity of the antitoxin is affected by its toxin. We solved crystal structures of the antitoxin HigA (apo-SfHigA) and its complex with the toxin HigB (SfHigBA) from Shigella flexneri. The apo-SfHigA shows a distinctive V-shaped homodimeric conformation with sequestered N-domains having a novel fold. SfHigBA appears as a heterotetramer formed by N-terminal dimerization of SfHigB-bound SfHigA molecules. The conformational change in SfHigA upon SfHigB binding is mediated by rigid-body movements of its C-domains, which accompanied an overall conformational change from wide V-shaped to narrow V-shaped dimer. Consequently, the two putative DNA-binding helices (α7 in each subunit) are repositioned to a conformation more compatible with canonical homodimeric DNA-binding proteins containing HTH motifs. Collectively, this study demonstrates a conformational change in an antitoxin protein, which occurs upon toxin binding and is responsible for regulating antitoxin DNA binding.
Collapse
Affiliation(s)
- Won-Su Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Taehwan Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
35
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
36
|
Muthuramalingam M, White JC, Murphy T, Ames JR, Bourne CR. The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol Microbiol 2019; 111:441-454. [PMID: 30427086 PMCID: PMC6368863 DOI: 10.1111/mmi.14165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin systems are mediators of diverse activities in bacterial physiology. For the ParE-type toxins, their reported role of gyrase inhibition utilized during plasmid-segregation killing indicates they are toxic. However, their location throughout chromosomes leads to questions about function, including potential non-toxic outcomes. The current study has characterized a ParDE system from the opportunistic human pathogen Pseudomonas aeruginosa (Pa). We identified a protective function for this ParE toxin, PaParE, against effects of quinolone and other antibiotics. However, higher concentrations of PaParE are themselves toxic to cells, indicating the phenotypic outcome can vary based on its concentration. Our assays confirmed PaParE inhibition of gyrase-mediated supercoiling of DNA with an IC50 value in the low micromolar range, a species-specificity that resulted in more efficacious inhibition of Escherichia coli derived gyrase versus Pa gyrase, and overexpression in the absence of antitoxin yielded an expected filamentous morphology with multi-foci nucleic acid material. Additional data revealed that the PaParE toxin is monomeric and interacts with dimeric PaParD antitoxin with a KD in the lower picomolar range, yielding a heterotetramer. This work provides novel insights into chromosome-encoded ParE function, whereby its expression can impart partial protection to cultures from selected antibiotics.
Collapse
Affiliation(s)
- Meenakumari Muthuramalingam
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
- Present address:
Department of Pharmaceutical ChemistryUniversity of KansasLawrence66047 KSUSA
| | - John C. White
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Tamiko Murphy
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Jessica R. Ames
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Christina R. Bourne
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| |
Collapse
|
37
|
ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Proc Natl Acad Sci U S A 2018; 116:826-834. [PMID: 30598453 DOI: 10.1073/pnas.1814633116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems interfere with essential cellular processes and are implicated in bacterial lifestyle adaptations such as persistence and the biofilm formation. Here, we present structural, biochemical, and functional data on an uncharacterized TA system, the COG5654-COG5642 pair. Bioinformatic analysis showed that this TA pair is found in 2,942 of the 16,286 distinct bacterial species in the RefSeq database. We solved a structure of the toxin bound to a fragment of the antitoxin to 1.50 Å. This structure suggested that the toxin is a mono-ADP-ribosyltransferase (mART). The toxin specifically modifies phosphoribosyl pyrophosphate synthetase (Prs), an essential enzyme in nucleotide biosynthesis conserved in all organisms. We propose renaming the toxin ParT for Prs ADP-ribosylating toxin and ParS for the cognate antitoxin. ParT is a unique example of an intracellular protein mART in bacteria and is the smallest known mART. This work demonstrates that TA systems can induce bacteriostasis through interference with nucleotide biosynthesis.
Collapse
|
38
|
Habib G, Zhu Q, Sun B. Bioinformatics and Functional Assessment of Toxin-Antitoxin Systems in Staphylococcus aureus. Toxins (Basel) 2018; 10:toxins10110473. [PMID: 30441856 PMCID: PMC6266405 DOI: 10.3390/toxins10110473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a nosocomial pathogen that can cause chronic to persistent infections. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. These systems are frequently studied in Escherichia coli and Mycobacterial species but rarely explored in S. aureus. In the present study, we thoroughly analyzed the S. aureus genome and screened all possible TA systems using the Rasta bacteria and toxin-antitoxin database. We further searched E. coli and Mycobacterial TA homologs and selected 67 TA loci as putative TA systems in S. aureus. The host inhibition of growth (HigBA) TA family was predominantly detected in S. aureus. In addition, we detected seven pathogenicity islands in the S. aureus genome that are enriched with virulence genes and contain 26 out of 67 TA systems. We ectopically expressed multiple TA genes in E. coli and S. aureus that exhibited bacteriostatic and bactericidal effects on cell growth. The type I Fst toxin created holes in the cell wall while the TxpA toxin reduced cell size and induced cell wall septation. Besides, we identified a new TA system whose antitoxin functions as a transcriptional autoregulator while the toxin functions as an inhibitor of autoregulation. Altogether, this study provides a plethora of new as well as previously known TA systems that will revitalize the research on S. aureus TA systems.
Collapse
Affiliation(s)
- Gul Habib
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
39
|
Zhang Y, Xia B, Li M, Shi J, Long Y, Jin Y, Bai F, Cheng Z, Jin S, Wu W. HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins (Basel) 2018; 10:toxins10110424. [PMID: 30355991 PMCID: PMC6265988 DOI: 10.3390/toxins10110424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems play important roles in bacteria persister formation. Increasing evidence demonstrate the roles of TA systems in regulating virulence factors in pathogenic bacteria. The toxin HigB in Pseudomonas aeruginosa contributes to persister formation and regulates the expression of multiple virulence factors and biofilm formation. However, the regulatory mechanism remains elusive. In this study, we explored the HigB mediated regulatory pathways. We demonstrate that HigB decreases the intracellular level of c-di-GMP, which is responsible for the increased expression of the type III secretion system (T3SS) genes and repression of biofilm formation. By analyzing the expression levels of the known c-di-GMP metabolism genes, we find that three c-di-GMP hydrolysis genes are up regulated by HigB, namely PA2133, PA2200 and PA3825. Deletion of the three genes individually or simultaneously diminishes the HigB mediated regulation on the expression of T3SS genes and biofilm formation. Therefore, our results reveal novel functions of HigB in P. aeruginosa.
Collapse
Affiliation(s)
- Yueying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mei Li
- Meishan Product Quality Supervision and Inspection Institute and National Pickle Quality Inspection Center, Meishan 620000, China.
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
40
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
41
|
Condon C, Piton J, Braun F. Distribution of the ribosome associated endonuclease Rae1 and the potential role of conserved amino acids in codon recognition. RNA Biol 2018; 15:683-688. [PMID: 29557713 DOI: 10.1080/15476286.2018.1454250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently identified a novel ribonuclease in Bacillus subtilis called Rae1 that cleaves mRNAs in a translation-dependent manner. Rae1 is a member of the NYN/PIN family of ribonucleases and is highly conserved in the Firmicutes, the Cyanobacteria and the chloroplasts of photosynthetic algae and plants. We have proposed a model in which Rae1 enters the A-site of ribosomes that are paused following translation of certain sequences that are still ill-defined. In the only case identified thus far, Rae1 cleaves between a conserved glutamate and lysine codon during translation of a short peptide called S1025. Certain other codons are also tolerated on either side of the cleavage site, but these are recognized less efficiently. The model of Rae1 docked in the A-site allows us to make predictions about which conserved residues may be important for recognition of mRNA, the tRNA in the adjacent P-site and binding to the 50S ribosome subunit.
Collapse
Affiliation(s)
- Ciarán Condon
- a UMR 8261 (CNRS - Univ. Paris Diderot), Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, Paris , France
| | | | - Frédérique Braun
- a UMR 8261 (CNRS - Univ. Paris Diderot), Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, Paris , France
| |
Collapse
|
42
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Hadži S, Garcia-Pino A, Haesaerts S, Jurenas D, Gerdes K, Lah J, Loris R. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Nucleic Acids Res 2017; 45:4972-4983. [PMID: 28334932 PMCID: PMC5416850 DOI: 10.1093/nar/gkx138] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 02/25/2017] [Indexed: 11/12/2022] Open
Abstract
Toxin–antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a β-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of β-strand β3, thereby flipping the catalytically important Arg64 out of the active site.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium.,Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Dukas Jurenas
- Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| |
Collapse
|
44
|
Talavera A, Tamman H, Ainelo A, Hadži S, Garcia-Pino A, Hõrak R, Konijnenberg A, Loris R. Production, biophysical characterization and crystallization of Pseudomonas putida GraA and its complexes with GraT and the graTA operator. Acta Crystallogr F Struct Biol Commun 2017; 73:455-462. [PMID: 28777088 PMCID: PMC5544002 DOI: 10.1107/s2053230x17009438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
The graTA operon from Pseudomonas putida encodes a toxin-antitoxin module with an unusually moderate toxin. Here, the production, SAXS analysis and crystallization of the antitoxin GraA, the GraTA complex and the complex of GraA with a 33 bp operator fragment are reported. GraA forms a homodimer in solution and crystallizes in space group P21, with unit-cell parameters a = 66.9, b = 48.9, c = 62.7 Å, β = 92.6°. The crystals are likely to contain two GraA dimers in the asymmetric unit and diffract to 1.9 Å resolution. The GraTA complex forms a heterotetramer in solution. Crystals of the GraTA complex diffracted to 2.2 Å resolution and are most likely to contain a single heterotetrameric GraTA complex in the asymmetric unit. They belong to space group P41 or P43, with unit-cell parameters a = b = 56.0, c = 128.2 Å. The GraA-operator complex consists of a 33 bp operator region that binds two GraA dimers. It crystallizes in space group P31 or P32, with unit-cell parameters a = b = 105.6, c = 149.9 Å. These crystals diffract to 3.8 Å resolution.
Collapse
Affiliation(s)
- Ariel Talavera
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hedvig Tamman
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Andres Ainelo
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - San Hadži
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Abel Garcia-Pino
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Albert Konijnenberg
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
45
|
Gupta A, Venkataraman B, Vasudevan M, Gopinath Bankar K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 2017; 7:5868. [PMID: 28724903 PMCID: PMC5517426 DOI: 10.1038/s41598-017-06003-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Department of Biochemistry and Centre for Innovation in Infectious Diseases Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, 110021, India.
| | - Balaji Venkataraman
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| | - Kiran Gopinath Bankar
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| |
Collapse
|
46
|
Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, Yoon MH, Park JH. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 2017; 591:1853-1861. [PMID: 28573789 DOI: 10.1002/1873-3468.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022]
Abstract
Many bacteria have toxin-antitoxin (TA) systems, where toxin gene expression inhibits their own cell growth. mRNA is one of the well-known targets of the toxins in the type II toxin-antitoxin systems. Here, we examined the ribosome dependency of the endoribonuclease activity of YhaV, one of the toxins in type II TA systems, on mRNA in vitro and in vivo. A polysome profiling assay revealed that YhaV is bound to the 70S ribosomes and 50S ribosomal subunits. Moreover, we found that while YhaV cleaves ompF and lpp mRNAs in a translation-dependent manner, they did not cleave the 5' untranslated region in primer extension experiments. From these results, we conclude that YhaV is a ribosome-dependent toxin that cleaves mRNA in a translation-dependent manner.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Yoshihiro Yamaguchi
- OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Japan
| | - Jae-Woo Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Kyung-Min Jang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Masayori Inouye
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Sung-Gun Kim
- Department of Biomedical Sicience, U1 University, Youngdong, South Korea
| | - Min-Ho Yoon
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| |
Collapse
|
47
|
Physical and Functional Interplay between MazF 1Bif and Its Noncognate Antitoxins from Bifidobacterium longum. Appl Environ Microbiol 2017; 83:AEM.03232-16. [PMID: 28213540 DOI: 10.1128/aem.03232-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum strain JDM301, a widely used commercial strain in China, encodes at least two MazEF-like modules and one RelBE-like toxin-antitoxin (TA) system in its chromosome, designated MazE1F1Bif, MazE2F2Bif, and RelBEBif, respectively. Bacterial TA systems play an important role in several stress responses, but the relationship between these TA systems is largely unknown. In this study, the interactions between MazF1Bif and MazE2Bif or RelBBif were assessed in B. longum strain JDM301. MazF1Bif caused the degradation of tufABif mRNA, and its toxicity was inhibited by forming a protein complex with its cognate antitoxin, MazE1Bif Notably, MazF1Bif toxicity was also partially neutralized when jointly expressed with noncognate antitoxin MazE2Bif or RelBBif Our results show that the two noncognate antitoxins also inhibited mRNA degradation caused by MazF1Bif toxin. Furthermore, the physical interplay between MazF1Bif and its noncognate antitoxins was confirmed by immunoprecipitation. These results suggest that MazF1Bif can arrest cell growth and that MazF1Bif toxicity can be neutralized by its cognate and noncognate antitoxins. These results imply that JDM301 uses a sophisticated toxin-antitoxin interaction network to alter its physiology when coping with environmental stress.IMPORTANCE Although toxin-antitoxin (TA) systems play an important role in several stress responses, the regulatory mechanisms of multiple TA system homologs in the bacterial genome remain largely unclear. In this study, the relationships between MazE1F1Bif and the other two TA systems of Bifidobacterium longum strain JDM301 were explored, and the interactions between MazF1Bif and MazE2Bif or RelBBif were characterized. In addition, the mRNA degradation activity of MazF1Bif was demonstrated. In particular, the interaction of the toxin with noncognate antitoxins was shown, even between different TA families (MazF1Bif toxin and RelBBif antitoxin) in JDM301. This work provides insight into the regulatory mechanisms of TA systems implicated in the stress responses of bifidobacteria.
Collapse
|
48
|
Leroy M, Piton J, Gilet L, Pellegrini O, Proux C, Coppée JY, Figaro S, Condon C. Rae1/YacP, a new endoribonuclease involved in ribosome-dependent mRNA decay in Bacillus subtilis. EMBO J 2017; 36:1167-1181. [PMID: 28363943 DOI: 10.15252/embj.201796540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
The PIN domain plays a central role in cellular RNA biology and is involved in processes as diverse as rRNA maturation, mRNA decay and telomerase function. Here, we solve the crystal structure of the Rae1 (YacP) protein of Bacillus subtilis, a founding member of the NYN (Nedd4-BP1/YacP nuclease) subfamily of PIN domain proteins, and identify potential substrates in vivo Unexpectedly, degradation of a characterised target mRNA was completely dependent on both its translation and reading frame. We provide evidence that Rae1 associates with the B. subtilis ribosome and cleaves between specific codons of this mRNA in vivo Critically, we also demonstrate translation-dependent Rae1 cleavage of this substrate in a purified translation assay in vitro Multiple lines of evidence converge to suggest that Rae1 is an A-site endoribonuclease. We present a docking model of Rae1 bound to the B. subtilis ribosomal A-site that is consistent with this hypothesis and show that Rae1 cleaves optimally immediately upstream of a lysine codon (AAA or AAG) in vivo.
Collapse
Affiliation(s)
- Magali Leroy
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Jérémie Piton
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Laetitia Gilet
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Olivier Pellegrini
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Caroline Proux
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Sabine Figaro
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
49
|
Hoffer ED, Miles SJ, Dunham CM. The structure and function of Mycobacterium tuberculosis MazF-mt6 toxin provide insights into conserved features of MazF endonucleases. J Biol Chem 2017; 292:7718-7726. [PMID: 28298445 DOI: 10.1074/jbc.m117.779306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in prokaryotic and archaeal genomes and regulate growth in response to stress. Escherichia coli contains at least 36 putative toxin-antitoxin gene pairs, and some pathogens such as Mycobacterium tuberculosis have over 90 toxin-antitoxin operons. E. coli MazF cleaves free mRNA after encountering stress, and nine M. tuberculosis MazF family members cleave mRNA, tRNA, or rRNA. Moreover, M. tuberculosis MazF-mt6 cleaves 23S rRNA Helix 70 to inhibit protein synthesis. The overall tertiary folds of these MazFs are predicted to be similar, and therefore, it is unclear how they recognize structurally distinct RNAs. Here we report the 2.7-Å X-ray crystal structure of MazF-mt6. MazF-mt6 adopts a PemK-like fold but lacks an elongated β1-β2 linker, a region that typically acts as a gate to direct RNA or antitoxin binding. In the absence of an elongated β1-β2 linker, MazF-mt6 is unable to transition between open and closed states, suggesting that the regulation of RNA or antitoxin selection may be distinct from other canonical MazFs. Additionally, a shortened β1-β2 linker allows for the formation of a deep, solvent-accessible, active-site pocket, which may allow recognition of specific, structured RNAs like Helix 70. Structure-based mutagenesis and bacterial growth assays demonstrate that MazF-mt6 residues Asp-10, Arg-13, and Thr-36 are critical for RNase activity and likely catalyze the proton-relay mechanism for RNA cleavage. These results provide further critical insights into how MazF secondary structural elements adapt to recognize diverse RNA substrates.
Collapse
Affiliation(s)
- Eric D Hoffer
- From the Biochemistry, Cell and Developmental Biology Program, Graduate Division of Biological and Biomedical Sciences and.,the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J Miles
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M Dunham
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
50
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|