1
|
Skowronska-Krawczyk D, Finnemann SC, Grant MB, Held K, Hu Z, Lu YR, Malek G, Sennlaub F, Sparrow J, D'Amore PA. Features that distinguish age-related macular degeneration from aging. Exp Eye Res 2025; 254:110303. [PMID: 39986366 PMCID: PMC11975485 DOI: 10.1016/j.exer.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial retinal degenerative disease that is influenced by both genetic and environmental factors. However, the strongest risk factor for AMD is advanced age. Several physiological processes are observed in aging tissues including a low level of chronic inflammation (inflammaging), changed lipid and energy metabolism, and senescence. Nevertheless, whereas everyone ages, only a subset of the population develops AMD. The purpose of this review is to delineate the differences on a cellular and molecular level between natural aging changes and those observed in AMD. We provide a unique perspective on how genetic and environmental components modulate aging in the eye, as well as the specific role of the aging RPE and retina in the pathogenesis of AMD. Topics discussed include the mechanism of aging and its relation to the mechanism of AMD, current animal models that can be used to recapitulate some aspects of the pathology, and potential interventions that shift the balance towards healthy aging and therefore attenuate, prevent or delay the initiation of the disease.
Collapse
Affiliation(s)
| | | | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Marnix E. Heersink School of Medicine University of Alabama at Birmingham, Alabama, USA
| | - Katherine Held
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Goldis Malek
- Duke University, Departments of Ophthalmology, Pathology, and Cell Biology, Albert Eye Research Institute, Durham, NC, USA
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Janet Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Feldman TB, Yakovleva MA, Ostrovsky MA. Retinoids in lipofuscin granules from retinal pigment epithelium as biomarkers of the damaging effect of ionizing radiation. Exp Eye Res 2025; 252:110270. [PMID: 39922526 DOI: 10.1016/j.exer.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium with age, especially in patients with visual diseases, including progressive age-related macular degeneration. Retinoids (bisretinoids and their oxidation products) are major sources of lipofuscin granule fluorescence. The aim of this work was to analyze the radiation-mediated oxidation of retinoids in lipofuscin granules obtained from the human cadaver eye retinal pigment epithelium. Fluorescent and chromatographic analyses of retinoids were performed before and after irradiation of lipofuscin granules with accelerated protons. The fluorescent properties of chloroform extracts from irradiated lipofuscin granules exhibited an increase in fluorescence intensity in the short-wavelength region of 555 nm. This change is associated with an increase in the quantity of retinoid oxidation cytotoxic products after accelerated proton exposure. The radiation-induced oxidation of retinoids caused a noticeable change in its fluorescent properties allows us to consider this phenomenon as a potential opportunity for non-invasively assessment of the degree of radiation exposure and its relative biological effect in humans. Thus, this research proposes a new strategy for assessing the extent of radiation exposure to humans, which evaluates the effects of ionizing radiation on human eye tissues. This approach is based on the principles of the modern non-invasive method of fundus autofluorescence used in ophthalmology for the diagnosis of the retina and retinal pigment epithelium degenerative diseases.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia.
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| | - Mikhail A Ostrovsky
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| |
Collapse
|
3
|
Yang B, Yang K, Chen Y, Li Q, Chen J, Li S, Wu Y. Exposure of A2E to blue light promotes ferroptosis in the retinal pigment epithelium. Cell Mol Biol Lett 2025; 30:22. [PMID: 39984833 PMCID: PMC11846388 DOI: 10.1186/s11658-025-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) is closely related to the etiology of autosomal recessive Stargardt's disease (STGD1) and dry age-related macular degeneration (AMD). N-retinylidene-N-retinylethanolamine (A2E) is a leading component of RPE lipofuscin that is highly susceptible to blue light. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid peroxides to a lethal level, which plays an important role in retinal diseases. However, it remains unknown whether A2E functions as a physiological trigger for eliciting blue light-induced ferroptosis of RPE cells. METHODS A2E-loaded RPE cells and Abca4-/-Rdh8-/- mice were exposed to blue light, respectively. Western blotting, immunofluorescence staining, reactive oxygen species (ROS) staining, intracellular iron staining, lipid peroxidation staining, fundus imaging, optical coherence tomography (OCT), hematoxylin-eosin (HE) staining, and electroretinography (ERG) were utilized to elucidate the role of blue light in A2E induced ferroptosis in the RPE and its potential mechanisms. RESULTS Exposure of A2E to blue light promoted ferroptotic cell death in RPE cells by elevating ferrous ion (Fe2+) levels and inhibiting the solute carrier family 7 membrane 11 (SLC7A11)-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis. GPX4 inactivation and ROS generated by Fe2+ overload and GSH depletion precipitated lipid peroxidation and subsequent ferroptosis in A2E-containing RPE cells upon exposure to blue light. In addition to GSH supplement, repressing either Fe2+ by deferiprone (DFP) or lipid peroxidation with ferrostatin-1 (Fer-1) significantly protected RPE cells against ferroptosis caused by blue light illumination of A2E. Abca4-/-Rdh8-/- mice featured by an accelerated deposition of A2E in the RPE is an animal model for STGD1 and dry AMD. It was observed that ferroptosis was indeed present in the RPE of Abca4-/-Rdh8-/- mice following exposure to blue light. Notably, alleviating ferroptosis by intraperitoneally injected Fer-1 effectively rescued retinal function and ameliorated RPE/photoreceptor degeneration in blue light-exposed Abca4-/-Rdh8-/- mice. CONCLUSIONS Our results suggest the importance of blue light in A2E-mediated ferroptosis in the RPE, and deeply broaden the understanding of mechanisms underlying RPE atrophy arising from lipofuscin accumulation in STGD1 and dry AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kunhuan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuling Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingjian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Yalin Wu
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
Tao L, He D, Chen Y, Yang K, He B, Cai P, Cai B, Liao C, Liu Z, Li S, Chen J, Wu Y. Transferrin ameliorates retinal degeneration by mediating the dimerization of all-trans-retinal. J Biol Chem 2025; 301:108054. [PMID: 39653244 PMCID: PMC11742617 DOI: 10.1016/j.jbc.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024] Open
Abstract
High levels of all-trans-retinal (atRAL) in the retina is considered to be responsible for the development of autosomal recessive Stargardt's disease (STGD1) and dry age-related macular degeneration (dAMD). Two bisretinoids, all-trans-retinal dimer (atRAL-dimer) and N-retinyl-N-retinylidene ethanolamine (A2E), form from the dimerization of atRAL in the retina but they possess much lower toxicity and phototoxicity toward retinal pigment epithelium (RPE) cells than atRAL. Here, we introduced a novel function of transferrin (TRF) in mediating the conversion of atRAL into atRAL-dimer and A2E, which effectively protected the retina from damage by atRAL and prevented retinal function decline in mice, and rescued atRAL-loaded RPE cells. Moreover, TRF-mediated conversion of atRAL to atRAL-dimer and A2E required the help of bicarbonate ions (HCO3-). atRAL had the capacity to stimulate the expression of TRF in RPE and photoreceptor cells as well as RPE/choroid and neural retina of mice, reflecting that the elevation of TRF levels by atRAL is most likely to help defy level increase and cytotoxicity of atRAL through facilitating its dimerization and thereby serves as a mechanism of retinal self-protection. Our findings offer a promising avenue for the treatment of retinopathies characterized by disrupted clearance of atRAL.
Collapse
Affiliation(s)
- Lei Tao
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Danxue He
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuling Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kunhuan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Beiting He
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Peixin Cai
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Binxiang Cai
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen, Fujian, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China
| | - Yalin Wu
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Zhao J, Kim HJ, Montenegro D, Dunaief JL, Sparrow JR. Iron overload and chelation modulates bisretinoid levels in the retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305864. [PMID: 38983013 PMCID: PMC11182296 DOI: 10.3389/fopht.2023.1305864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 07/11/2024]
Abstract
Aim Iron dysregulation in conjunction with other disease processes may exacerbate retinal degeneration. We employed models of iron overload and iron chelation to explore the interactions between iron-catalyzed oxidation and photoreactive bisretinoid lipofuscin. Methods The mice were injected intravitreally with ferric ammonium citrate (FAC) or were treated using the iron chelator deferiprone (DFP) from birth to 2 months of age. Short-wavelength fundus autofluorescence (SW-AF) and spectral-domain optical coherence tomography (SD-OCT) scans were acquired. The bisretinoid levels were quantified using ultra performance liquid chromatography (UPLC) and in vivo through quantitative fundus autofluorescence (qAF). In histologic sections, the photoreceptor cell viability was assessed by measuring the thickness of the outer nuclear layer (ONL). Results The levels of bisretinoids, all-trans-retinal dimers, and A2PE were significantly increased in the FAC-injected eyes of C57BL/6J mice. Seven days after FAC injection, hyperautofluorescent foci were visible in fundus autofluorescence (488 nm) images, and in SD-OCT scans, aberrant hyperreflectivity was present in the outer retina and ONL thinning was observed. In FAC-injected Abca4-/- mice with pronounced RPE bisretinoid lipofuscin accumulation, the hyperautofluorescent puncta were more abundant than in the wild-type mice, and the extent of ONL thinning was greater. Conversely, the intravitreal injection of FAC in Mertk-/- mice led to a more modest increase in A2PE after 2 days. In contrast to the effect of iron accumulation, chelation with DFP resulted in significantly increased levels of A2E and A2-GPE and qAF due to the reduced iron-catalyzed oxidation of bisretinoids. In Mertk-/- mice, the A2E level was significantly lower and the ONL area was smaller than in DFP-treated mice. DFP chelation did not impair the visual cycle in BALB/cJ mice. Conclusion Iron accumulation was associated with progressive impairment in photoreceptor cells that was associated with the increased formation of a bisretinoid species known to form in photoreceptor outer segments as a precursor to A2E. Additionally, disease features such as the development of hyperautofluorescence puncta in fundus AF images, hyperreflectivity in the outer retina of SD-OCT scans, and ONL thinning were more pronounced when iron was delivered to Abca4-/- mice with a greater propensity for bisretinoid formation. Higher bisretinoid levels and enhanced qAF are indicative of lesser bisretinoid loss due to oxidation.
Collapse
Affiliation(s)
- Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Hye Jin Kim
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Diego Montenegro
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
| | - Josh L Dunaief
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, NY, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Kim HJ, Zhao J, Walewski JL, Sparrow JR. A High Fat Diet Fosters Elevated Bisretinoids. J Biol Chem 2023; 299:104784. [PMID: 37146972 DOI: 10.1016/j.jbc.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
High dietary fat intake is associated with metabolic dysregulation, but little is known regarding the effects of a high fat diet (HFD) on photoreceptor cell functioning. We explored the intersection of a high fat diet (HFD) and the visual cycle adducts that form in photoreceptor cells by non-enzymatic reactions. In black C57BL/6J mice and albino C57BL/6Jc2j mice raised on a high fat diet until age 3, 6 or 12 months, chromatographically quantified bisretinoids were increased relative to mice on a standard diet. In vivo measurement of fundus autofluorescence, the source of which is bisretinoid, also revealed a significant increase in the HFD-mice. Additionally, mice provided with a diet high in fat presented with elevated retinol-binding protein 4 (RBP4) the protein responsible for transporting retinol in plasma. Vitamin A was elevated in plasma although not in ocular tissue. Bisretinoids form in photoreceptor cell outer segments by random reactions of retinaldehyde with phosphatidylethanolamine. We found that the latter phospholipid was significantly increased in mice fed a HFD versus mice on a control diet. In leptin-deficient ob/ob mice, a genetic model of obesity, plasma levels of Rbp4 protein were higher but bisretinoids in retina were not elevated. Photoreceptor cell viability measured as outer nuclear layer thickness was reduced in the ob/ob mice relative to wild-type. The accelerated formation of bisretinoid we observed in diet induced obese mice is related to the high fat intake and to increased delivery of vitamin A to the visual cycle.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jose L Walewski
- Departments of Medicine, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032.
| |
Collapse
|
9
|
Ortega JT, Parmar T, Jastrzebska B. Galanin receptor 3 - A new pharmacological target in retina degeneration. Pharmacol Res 2023; 188:106675. [PMID: 36693600 PMCID: PMC9918719 DOI: 10.1016/j.phrs.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The neuropeptide galanin receptor 3 (GALR3) is a class A G protein-coupled receptor (GPCR) broadly expressed in the nervous system, including the retina. GALR3 is involved in the modulation of immune and inflammatory responses. Tight control of these processes is critical for maintaining homeostasis in the retina and is required to sustain vision. Here, we investigated the role of GALR3 in retina pathologies triggered by bright light and P23H mutation in the rhodopsin (RHO) gene, associated with the activation of oxidative stress and inflammatory responses. We used a multiphase approach involving pharmacological inhibition of GALR3 with its antagonist SNAP-37889 and genetic depletion of GALR3 to modulate the GALR3 signaling. Our in vitro experiments in the retinal pigment epithelium-derived cells (ARPE19) susceptible to all-trans-retinal toxicity indicated that GALR3 could be involved in the cellular stress response to this phototoxic product. Indeed, blocking the GALR3 signaling in Abca4-/-/Rdh8-/- and wild-type Balb/cJ mice, sensitive to bright light-induced retina damage, protected retina health in these mice exposed to light. The retina morphology and function were substantially improved, and stress response processes were reduced in these mouse models compared to the controls. Furthermore, in P23H Rho knock-in mice, a model of retinitis pigmentosa (RP), both pharmacological inhibition and genetic ablation of GALR3 prolonged the survival of photoreceptors. These results indicate that GALR3 signaling contributes to acute light-induced and chronic RP-linked retinopathies. Together, this work provides the pharmacological knowledge base to evaluate GALR3 as a potential target for developing novel therapies to combat retinal degeneration.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Tanu Parmar
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Cui X, Kim HJ, Cheng CH, Jenny LA, Lima de Carvalho JR, Chang YJ, Kong Y, Hsu CW, Huang IW, Ragi SD, Lin CS, Li X, Sparrow JR, Tsang SH. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Hum Mol Genet 2022; 31:2438-2451. [PMID: 35195241 PMCID: PMC9307315 DOI: 10.1093/hmg/ddac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.
Collapse
Affiliation(s)
- Xuan Cui
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Laura A Jenny
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Ya-Ju Chang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Yang Kong
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sara D Ragi
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaorong Li
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
| | - Janet R Sparrow
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Kim HJ, Zhao J, Sparrow JR. Vitamin A aldehyde-taurine adducts function in photoreceptor cells. Redox Biol 2022; 54:102386. [PMID: 35809434 PMCID: PMC9287728 DOI: 10.1016/j.redox.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/12/2023] Open
Abstract
To facilitate the movement of retinoids through the visual cycle and to limit nonspecific chemical reaction, multiple mechanisms are utilized to handle these molecules when not contained within the binding pocket of opsin. Vitamin A aldehyde is sequestered by reversible Schiff base formation with phosphatidylethanolamine (PE) and subsequently undergoes NADPH-dependent reduction. Otherwise inefficient handling of retinaldehyde can lead to the formation of fluorescent di-retinal compounds within the outer segments of photoreceptor cells. These bisretinoid fluorophores initiate photooxidative processes having adverse consequences for retina. Various carrier proteins confer water solubility and maintain the 11-cis-retinoid configuration. Mechanisms for sequestration of retinoid include the formation of a reversible Schiff base between retinaldehyde and taurine (A1-taurine, A1T), the most abundant amino acid in photoreceptor cells. Here we have undertaken to examine the effects of taurine depletion using the transport inhibitors guanidinoethyl sulfonate (GES) and β-alanine. Oral treatment of BALB/cJ mice with β-alanine reduced ocular A1T and the mice exhibited significantly lower scotopic and photopic a-wave amplitudes. As a secondary effect of retinal degeneration, A1T was not detected and taurine was significantly reduced in mice carrying a P23H opsin mutation. The thinning of ONL that is indicative of reduced photoreceptor cell viability in albino Abca4-/- mice was more pronounced in β-alanine treated mice. Treatment of agouti and albino Abca4-/- mice with β-alanine and GES was associated with reduced bisretinoid measured chromatographically. Consistent with a reduction in carbonyl scavenging activity by taurine, methylglyoxal-adducts were also increased in the presence of β-alanine. Taken together these findings support the postulate that A1T serves as a reservoir of vitamin A aldehyde, with diminished A1T explaining reduced photoreceptor light-sensitivity, accentuated ONL thinning in Abca4-/- mice and attenuated bisretinoid formation.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology and Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin Zhao
- Departments of Ophthalmology and Columbia University Medical Center, New York, NY, 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology and Columbia University Medical Center, New York, NY, 10032, USA,Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA,Corresponding author. Departments of Ophthalmology and Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Kotnala A, Senthilkumari S, Wu G, Stewart TG, Curcio CA, Halder N, Singh SB, Kumar A, Velpandian T. Retinal Pigment Epithelium in Human Donor Eyes Contains Higher Levels of Bisretinoids Including A2E in Periphery than Macula. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35671050 PMCID: PMC9187938 DOI: 10.1167/iovs.63.6.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose With age, human retinal pigment epithelium (RPE) accumulates bisretinoid fluorophores that may impact cellular function and contribute to age-related macular degeneration (AMD). Bisretinoids are comprised of a central pyridinium, dihydropyridinium, or cyclohexadiene ring. The pyridinium bisretinoid A2E has been extensively studied, and its quantity in the macula has been questioned. Age-changes and distributions of other bisretinoids are not well characterized. We measured levels of three bisretinoids and oxidized A2E in macula and periphery in human donor eyes of different ages. Methods Eyes (N = 139 donors, 61 women and 78 men, aged 40–80 years) were dissected into 8 mm diameter macular and temporal periphery punches. Using liquid chromatography – electrospray ionization – mass spectrometry (LC-ESI-MS) and an authentic synthesized standard, we quantified A2E (ng). Using LC-ESI-MS and a 50-eye-extract of A2E, we semiquantified A2E and 3 other compounds (eye extract equivalent units [EEEUs): A2-glycerophosphoethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE), and monofuranA2E (MFA2E). Results A2E quantities in ng and EEEUs were highly correlated (r = 0.97, P < 0.001). From 262 eyes, 5 to 9-fold higher levels were observed in the peripheral retina than in the macula for all assayed compounds. A2E, A2DHPE, and MFA2E increased with age, whereas A2GPE remained unaffected. No significant right-left or male-female differences were detected. Conclusions Significantly higher levels were observed in the periphery than in the macula for all assayed compounds signifying biologic differences between these regions. Levels of oxidized A2E parallel native A2E and not the distribution of retinal illuminance. Data will assist with the interpretion of clinical trial outcomes of agents targeting bisretinoid-related pathways.
Collapse
Affiliation(s)
- Ankita Kotnala
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation (AMRF), Dr. G. Venkataswamy Eye Research Institute, #1, Anna Nagar, Madurai -20, Tamilnadu, India
| | - Gong Wu
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Thomas G Stewart
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | | | - Atul Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Yakovleva MA, Feldman TB, Lyakhova KN, Utina DM, Kolesnikova IA, Vinogradova YV, Molokanov AG, Ostrovsky MA. Ionized Radiation-Mediated Retinoid Oxidation in the Retina and Retinal Pigment Epithelium of the Murine Eye. Radiat Res 2021; 197:270-279. [PMID: 34879150 DOI: 10.1667/rade-21-00069.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
The present study evaluated the effects of proton and gamma-ray ionizing radiation on the mouse eye. The aim of this work was to analyze radiation-mediated retinoid oxidation in the retina and retinal pigment epithelium (RPE). The findings from this analysis can be used to develop a noninvasive method for rapid assessment of the effects of ionizing radiation. Comparative fluorescence and chromatographic analyses of retinoids before and after irradiations were performed. The fluorescent properties of chloroform extracts from irradiated mouse retina and RPE exhibited an increase in fluorescence intensity in the short-wave region of the spectrum (λ < 550 nm). This change is due to increased retinal and RPE retinoid oxidation and degradation products after radiation exposure. Comparative analyses of radiation effects demonstrated that the effect of proton exposure on the retina and RPE was higher than that of gamma-ray exposure. The present study revealed a new approach to assessing the level of radiation exposure in ocular tissues.
Collapse
Affiliation(s)
- Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Kristina N Lyakhova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Dina M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Inna A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Yuliya V Vinogradova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Alexander G Molokanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia.,Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| |
Collapse
|
14
|
Kim HJ, Montenegro D, Zhao J, Sparrow JR. Bisretinoids of the Retina: Photo-Oxidation, Iron-Catalyzed Oxidation, and Disease Consequences. Antioxidants (Basel) 2021; 10:antiox10091382. [PMID: 34573014 PMCID: PMC8467448 DOI: 10.3390/antiox10091382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
The retina and, in particular, retinal pigment epithelial cells are unusual for being encumbered by exposure to visible light, while being oxygen-rich, and also amassing photoreactive molecules. These fluorophores (bisretinoids) are generated as a byproduct of the activity of vitamin A aldehyde-the chromophore necessary for vision. Bisretinoids form in photoreceptor cells due to random reactions of two molecules of vitamin A aldehyde with phosphatidylethanolamine; bisretinoids are subsequently transferred to retinal pigment epithelial (RPE) cells, where they accumulate in the lysosomal compartment with age. Bisretinoids can generate reactive oxygen species by both energy and electron transfer, and they become photo-oxidized and photolyzed in the process. While these fluorescent molecules are accrued by RPE cells of all healthy eyes, they are also implicated in retinal disease.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA; (H.J.K.); (D.M.); (J.Z.)
- Department of Pathology and Cell Biology, Columbia University Medical Center, 635 W., 165th Str., New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-9944
| |
Collapse
|
15
|
Arunkumar R, Gorusupudi A, Li B, Blount JD, Nwagbo U, Kim HJ, Sparrow JR, Bernstein PS. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4 -/-/Bco2 -/- double knockout mice. Exp Eye Res 2021; 209:108680. [PMID: 34161819 PMCID: PMC8595537 DOI: 10.1016/j.exer.2021.108680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Accumulation of bisretinoids such as A2E and its isomer iso-A2E is thought to mediate blue light-induced oxidative damage associated with age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1). We hypothesize that increasing dietary intake of the macular carotenoids lutein and zeaxanthin in individuals at risk of AMD and STGD1 can inhibit the formation of bisretinoids A2E and iso-A2E, which can potentially ameliorate macular degenerative diseases. To study the beneficial effect of macular carotenoids in a retinal degenerative diseases model, we used ATP-binding cassette, sub-family A member 4 (Abca4-/-)/β,β-carotene-9',10'-oxygenase 2 (Bco2-/-) double knockout (KO) mice that accumulate elevated levels of A2E and iso-A2E in the retinal pigment epithelium (RPE) and macular carotenoids in the retina. Abca4-/-/Bco2-/- and Abca4-/- mice were fed a lutein-supplemented chow, zeaxanthin-supplemented chow or placebo chow (~2.6 mg of carotenoid/mouse/day) for three months. Visual function and electroretinography (ERG) were measured after one month and three months of carotenoid supplementation. The lutein and zeaxanthin supplemented Abca4-/-/Bco2-/- mice had significantly lower levels of RPE/choroid A2E and iso-A2E compared to control mice fed with placebo chow and improved visual performance. Carotenoid supplementation in Abca4-/- mice minimally raised retinal carotenoid levels and did not show much difference in bisretinoid levels or visual function compared to the control diet group. There was a statistically significant inverse correlation between carotenoid levels in the retina and A2E and iso-A2E levels in the RPE/choroid. Supplementation with retinal carotenoids, especially zeaxanthin, effectively inhibits bisretinoid formation in a mouse model of STGD1 genetically enhanced to accumulate carotenoids in the retina. These results provide further impetus to pursue oral carotenoids as therapeutic interventions for STGD1 and AMD.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Binxing Li
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - J David Blount
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 2021; 62:100042. [PMID: 32371567 PMCID: PMC7933493 DOI: 10.1194/jlr.tr120000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate [N-retinylidene-PE (NRPE)] through a Schiff base linkage with PE. The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde, a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family, some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial cells, their fluorescence characters, and new findings related to light- and iron-associated oxidation of bisretinoids.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Comment and response to the article "The clinical relevance of visualizing the peripheral retina"by Nicola Quinn, Lajos Csincsik, Erin Flynn, Christine A. Curcio, Szilard Kiss, SriniVas R. Sadda, Ruth Hogg, Tunde Peto & Imre Lengyel. Prog Retin Eye Res 2021; 83:100939. [PMID: 33453363 DOI: 10.1016/j.preteyeres.2020.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Zhao J, Kim HJ, Ueda K, Zhang K, Montenegro D, Dunaief JL, Sparrow JR. A vicious cycle of bisretinoid formation and oxidation relevant to recessive Stargardt disease. J Biol Chem 2021; 296:100259. [PMID: 33837742 PMCID: PMC7948646 DOI: 10.1016/j.jbc.2021.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The ability of iron to transfer electrons enables the contribution of this metal to a variety of cellular activities even as the redox properties of iron are also responsible for the generation of hydroxyl radicals (•OH), the most destructive of the reactive oxygen species. We previously showed that iron can promote the oxidation of bisretinoid by generating highly reactive hydroxyl radical (•OH). Now we report that preservation of iron regulation in the retina is not sufficient to prevent iron-induced bisretinoid oxidative degradation when blood iron levels are elevated in liver-specific hepcidin knockout mice. We obtained evidence for the perpetuation of Fenton reactions in the presence of the bisretinoid A2E and visible light. On the other hand, iron chelation by deferiprone was not associated with changes in postbleaching recovery of 11-cis-retinal or dark-adapted ERG b-wave amplitudes indicating that the activity of Rpe65, a rate-determining visual cycle protein that carries an iron-binding domain, is not affected. Notably, iron levels were elevated in the neural retina and retinal pigment epithelial (RPE) cells of Abca4−/− mice. Consistent with higher iron content, ferritin-L immunostaining was elevated in RPE of a patient diagnosed with ABCA4-associated disease and in RPE and photoreceptor cells of Abca4−/− mice. In neural retina of the mutant mice, reduced Tfrc mRNA was also an indicator of retinal iron overload. Thus iron chelation may defend retina when bisretinoid toxicity is implicated in disease processes.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Kevin Zhang
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
20
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Yakovleva MA, Radchenko AS, Feldman TB, Kostyukov AA, Arbukhanova PM, Borzenok SA, Kuzmin VA, Ostrovsky MA. Fluorescence characteristics of lipofuscin fluorophores from human retinal pigment epithelium. Photochem Photobiol Sci 2020; 19:920-930. [PMID: 32441276 DOI: 10.1039/c9pp00406h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium (RPE) with age, especially in patients with visual diseases, including progressive age-related macular degeneration (AMD). Bisretinoids and their photooxidation and photodegradation products are major sources of lipofuscin granule fluorescence. The present study focused on examining the fluorescence decay characteristics of bisretinoid photooxidation and photodegradation products to evaluate the connection between fluorescence lifetime and spectral characteristics of target fluorophore groups. The primary objective of the study was to apply experimental spectral analysis results of lipofuscin granule fluorescence properties to interpretation of fluorescence lifetime imaging ophthalmoscopy data. Fluorescence analysis of the lipofuscin granule fluorophores in RPE collected from cadaver eyes was performed. The fluorescence lifetimes were measured by picosecond-resolved time correlated single photon counting technique. A global analytical method was applied to analyze data sets. The photooxidation and photodegradation products of bisretinoids exhibited a longer fluorescence lifetime (average value approximately 6 ns) and a shorter wavelength maximum (530-580 nm). Further, these products significantly contributed (more than 30%), to total fluorescence compared to the other fluorophores in lipofuscin granules. Thus, the contribution of oxidized lipofuscin bisretinoids to autofluorescence decay kinetics is an important characteristic for fluorescence lifetime imaging microscopy data analysis. The higher average fluorescence lifetime in AMD eyes was likely due to the higher abundance of oxidized bisretinoids compared with non-oxidized bisretinoids. Because higher level of oxidized bisretinoids is indicative of pathological processes in the retina and RPE, the present findings have the potential to improve fluorescence lifetime imaging approaches for early diagnosis of degenerative processes in the retina and RPE.
Collapse
Affiliation(s)
- Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Alexandra Sh Radchenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Patimat M Arbukhanova
- Sv. Fyodorov Eye Microsurgery Complex, Beskudnikovsky bld. 59a, 127486, Moscow, Russia
| | - Sergey A Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, Beskudnikovsky bld. 59a, 127486, Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| |
Collapse
|
22
|
Yakovleva MA, Lyakhova KN, Utina DM, Vinogradova UV, Kolesnikova IA, Feldman TB, Ostrovsky MA. Changes in the Composition and Fluorescent Properties of Bisretinoids in the Retina and the Retinal Pigment Epithelium of the Mouse Eye under Exposure to Ionizing Radiation. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Kim DH, Choi YR, Shim J, Choi YS, Kim YT, Kim MK, Kim MJ. Suppressive Effect of Arctium Lappa L. Leaves on Retinal Damage Against A2E-Induced ARPE-19 Cells and Mice. Molecules 2020; 25:molecules25071737. [PMID: 32283798 PMCID: PMC7180975 DOI: 10.3390/molecules25071737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible loss of vision with 80–90% of patients demonstrating dry type AMD. Dry AMD could possibly be prevented by polyphenol-rich medicinal foods by the inhibition of N-retinylidene-N-retinylethanolamine (A2E)-induced oxidative stress and cell damage. Arctium lappa L. (AL) leaves are medicinal and have antioxidant activity. The purpose of this study was to elucidate the protective effects of the extract of AL leaves (ALE) on dry AMD models, including in vitro A2E-induced damage in ARPE-19 cells, a human retinal pigment epithelial cell line, and in vivo light-induced retinal damage in BALB/c mice. According to the total phenolic contents (TPCs), total flavonoid contents (TFCs) and antioxidant activities, ALE was rich in polyphenols and had antioxidant efficacies on 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2′,7′-dichlorofluorescin diacetate (DCFDA) assays. The effects of ALE on A2E accumulation and A2E-induced cell death were also monitored. Despite continued exposure to A2E (10 μM), ALE attenuated A2E accumulation in APRE-19 cells with levels similar to lutein. A2E-induced cell death at high concentration (25 μM) was also suppressed by ALE by inhibiting the apoptotic signaling pathway. Furthermore, ALE could protect the outer nuclear layer (ONL) in the retina from light-induced AMD in BALB/c mice. In conclusion, ALE could be considered a potentially valuable medicinal food for dry AMD.
Collapse
Affiliation(s)
- Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Yae Rim Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jaewon Shim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
| | - Yun-Sang Choi
- Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju 55365, Korea;
| | - Yun Tai Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea
| | - Mina Kyungmin Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Correspondence: ; Tel.: +82-63-219-9380
| |
Collapse
|
25
|
Lima de Carvalho JR, Kim HJ, Ueda K, Zhao J, Owji AP, Yang T, Tsang SH, Sparrow JR. Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. J Biol Chem 2020; 295:6767-6780. [PMID: 32188692 PMCID: PMC7212638 DOI: 10.1074/jbc.ra120.012695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency.
Collapse
Affiliation(s)
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Aaron P Owji
- Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10032
| | - Tingting Yang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032 .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
26
|
Calabro KR, Boye SL, Choudhury S, Fajardo D, Peterson JJ, Li W, Crosson SM, Kim MJ, Ding D, Salvi R, Someya S, Boye SE. A Novel Mouse Model of MYO7A USH1B Reveals Auditory and Visual System Haploinsufficiencies. Front Neurosci 2019; 13:1255. [PMID: 31824252 PMCID: PMC6883748 DOI: 10.3389/fnins.2019.01255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Usher’s syndrome is the most common combined blindness–deafness disorder with USH1B, caused by mutations in MYO7A, resulting in the most severe phenotype. The existence of numerous, naturally occurring shaker1 mice harboring variable MYO7A mutations on different genetic backgrounds has complicated the characterization of MYO7A knockout (KO) and heterozygote mice. We generated a novel MYO7A KO mouse (Myo7a–/–) that is easily genotyped, maintained, and confirmed to be null for MYO7A in both the eye and inner ear. Like USH1B patients, Myo7a–/– mice are profoundly deaf, and display near complete loss of inner and outer cochlear hair cells (HCs). No gross structural changes were observed in vestibular HCs. Myo7a–/– mice exhibited modest declines in retinal function but, unlike patients, no loss of retinal structure. We attribute the latter to differential expression of MYO7A in mouse vs. primate retina. Interestingly, heterozygous Myo7a+/– mice had reduced numbers of cochlear HCs and concomitant reductions in auditory function relative to Myo7a+/+ controls. Notably, this is the first report that loss of a single Myo7a allele significantly alters auditory structure and function and suggests that audiological characterization of USH1B carriers is warranted. Maintenance of vestibular HCs in Myo7a–/– mice suggests that gene replacement could be used to correct the vestibular dysfunction in USH1B patients. While Myo7a–/– mice do not exhibit sufficiently robust retinal phenotypes to be used as a therapeutic outcome measure, they can be used to assess expression of vectored MYO7A on a null background and generate valuable pre-clinical data toward the treatment of USH1B.
Collapse
Affiliation(s)
- Kaitlyn R Calabro
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Sanford L Boye
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Shreyasi Choudhury
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Diego Fajardo
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - James J Peterson
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Wei Li
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Sean M Crosson
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| | - Dalian Ding
- Department of Communicative Disorders and Sciences, The State University of New York at Buffalo, Buffalo NY, United States
| | - Richard Salvi
- Department of Communicative Disorders and Sciences, The State University of New York at Buffalo, Buffalo NY, United States
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
28
|
Milenkovic A, Schmied D, Tanimoto N, Seeliger MW, Sparrow JR, Weber BHF. The Y227N mutation affects bestrophin-1 protein stability and impairs sperm function in a mouse model of Best vitelliform macular dystrophy. Biol Open 2019; 8:bio.041335. [PMID: 31201163 PMCID: PMC6679414 DOI: 10.1242/bio.041335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human bestrophin-1 (BEST1) is an integral membrane protein known to function as a Ca2+-activated and volume-regulated chloride channel. The majority of disease-associated mutations in BEST1 constitute missense mutations and were shown in vitro to lead to a reduction in mutant protein half-life causing Best disease (BD), a rare autosomal dominant macular dystrophy. To further delineate BEST1-associated pathology in vivo and to provide an animal model useful to explore experimental treatment efficacies, we have generated a knock-in mouse line (Best1Y227N). Heterozygous and homozygous mutants revealed no significant ocular abnormalities up to 2 years of age. In contrast, knock-in animals demonstrated a severe phenotype in the male reproductive tract. In heterozygous Best1Y227N males, Best1 protein was significantly reduced in testis and almost absent in homozygous mutant mice, although mRNA transcription of wild-type and knock-in allele is present and similar in quantity. Degradation of mutant Best1 protein in testis was associated with adverse effects on sperm motility and the capability to fertilize eggs. Based on these results, we conclude that mice carrying the Best1 Y227N mutation reveal a reproducible pathologic phenotype and thus provide a valuable in vivo tool to evaluate efficacy of drug therapies aimed at restoring Best1 protein stability and function.
Collapse
Affiliation(s)
- Andrea Milenkovic
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Denise Schmied
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany.,Department of Ophthalmology, University of Kiel, 24105 Kiel, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany
| | - Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University Medical Center, 10032 New York, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Investigation of Blood Characteristics in Nonsyndromic Retinitis Pigmentosa: A Retrospective Study. J Ophthalmol 2019; 2019:1902915. [PMID: 31191992 PMCID: PMC6525908 DOI: 10.1155/2019/1902915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/10/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the characteristics of blood in nonsyndromic retinitis pigmentosa (RP) and reveal the pathogenesis of blood cells involved in blood stasis in RP. Design This is a retrospective observational study. Methods We collected vein blood from 101 cases of patients with nonsyndromic RP and 120 cases of normal individuals according to a single-blind study and used routine clinical examination to detect the indicators of blood. All the subjects were mainly from the central south of China. Data were analyzed statistically between the RP group and normal control. Results The indicator of platelet distribution width (PDW) in patients with RP was higher than that in the normal group; the indicators of red blood cell (RBCs), hemoglobin (HGB), hematocrit (HCT), basophils (BASs), platelets (PLTs), and plateletcrit (PCT) in the RP group were lower than those in the normal control. The differences were statistically very significant between the RP group and normal group (p < 0.01). There were no statistical differences in the other indicators between the RP and normal group. Conclusions The changes in RBCs and PLTs in patients with RP implied that RP induces RBC aggregation and platelet activation, leading to blood stasis which in turn initiates more apoptosis.
Collapse
|
30
|
Bittencourt MG, Hassan M, Halim MS, Afridi R, Nguyen NV, Plaza C, Tran ANT, Ahmed MI, Nguyen QD, Sepah YJ. Blue light versus green light fundus autofluorescence in normal subjects and in patients with retinochoroidopathy secondary to retinal and uveitic diseases. J Ophthalmic Inflamm Infect 2019; 9:1. [PMID: 30617430 PMCID: PMC6325057 DOI: 10.1186/s12348-018-0167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to evaluate the differences in the fundus autofluorescence (FAF) signal between the blue light autofluorescence (BAF) from Spectralis® (Heidelberg, CA) and green light autofluorescence (GAF) 200TxTM (OPTOS, UK, in normal subjects and in patients with retinochoroidopathies (RC). METHODS In this prospective study, FAF was performed using BL (λ = 488 nm) and GL (λ = 532 nm) on normal subjects and patients with RC. The corresponding pairs of BAF and GAF images from both groups were analyzed using Photoshop. The strength of the FAF signal was measured on a gray scale, where optic disc was a standard to indicate absence of AF. In addition, gray values obtained from three identical points (foveal center, and points of hypo and hyper autofluorescence) in the corresponding BAF and GAF images of normal and RC subjects were divided by the optic disc value to calculate autofluorescence signal ratio (R). The R values at fovea (R1), hypoautofluorescent point (R2), and hyperautofluorescent point (R3) were compared between BAF and GAF modalities, in normal and in RC subjects separately. RESULTS One hundred six pairs (106 eyes) of FAF images analyzed (37 pairs: normal and 69 pairs: RC subjects). In normal subjects, the mean R1, R2, and R3 values for BAF were (1.5 ± 0.88, 1.23 ± 0.58, and 4.73 ± 2.85, respectively) and for GAF were (0.78 ± 0.20, 0.78 ± 0.20, and 1.62 ± 0.39, respectively). Similarly, in subjects with RC, the mean R1, R2, and R3 values for BAF were (1.68 ± 1.02, 1.66 ± 1.15, and 7.75 ± 6.82, respectively) and for GAF were (0.95 ± 0.59, 0.79 ± 0.45, and 2.50 ± 1.65, respectively). The mean difference in the R1, R2, and R3 ratios between BAF and GAF in normal and in RC subjects was statistically significant (p < 0.001). The strength of the correlation (r) between ratios for BAF and GAF was weak or not statistically significant in both normal and RC subjects (p > 0.05). CONCLUSION The distribution and intensity of the AF signal differ in BAF and GAF and cannot be used interchangeably. In BAF, optic disc signal is always weaker than in other areas, which was not true for GAF where optic disc signal was stronger than fovea and hypoautofluorescent point in both groups.
Collapse
Affiliation(s)
| | - Muhammad Hassan
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Muhammad Sohail Halim
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Rubbia Afridi
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Nam V Nguyen
- Ocular Imaging Research and Reading Center, Menlo Park, CA, USA.,Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Carlos Plaza
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Anh N T Tran
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | | | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Yasir Jamal Sepah
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.
| |
Collapse
|
31
|
Zhao J, Ueda K, Riera M, Kim HJ, Sparrow JR. Bisretinoids mediate light sensitivity resulting in photoreceptor cell degeneration in mice lacking the receptor tyrosine kinase Mer. J Biol Chem 2018; 293:19400-19410. [PMID: 30352873 DOI: 10.1074/jbc.ra118.005949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
The receptor tyrosine kinase Mer is expressed by retinal pigment epithelial (RPE) cells and participates in photoreceptor outer-segment phagocytosis, a process enabling membrane renewal. Mutations in the gene encoding MERTK cause blinding retinitis pigmentosa in humans. Targeted Mertk disruption in mice causes defective RPE-mediated phagocytosis of the outer segments, leading to deposition of autofluorescent debris at the RPE-photoreceptor cell interface, followed by photoreceptor cell degeneration. Here, we show that retinaldehyde adducts (bisretinoid fluorophores) that form in photoreceptor outer segments occupy the unphagocytosed outer-segment debris that accumulates in Mertk -/- mice. Bisretinoids measured by HPLC were elevated in Mertk -/- mice compared with WT animals. Bisretinoids were also more abundant in albino Mertk -/- mice expressing leucine at position 450 of the isomerase RPE65 (Rpe65-Leu450) rather than the variant methionine (Rpe65-450Met) that yields lower bisretinoid levels. In Royal College of Surgeons rats having dysfunctional Mertk, bisretinoids were higher than in WT rats. Intensities of in vivo fundus autofluorescence were higher in Mertk -/- mice than in WT mice and peaked earlier in albino Mertk -/-/Rpe65-Leu450 mice than in albino Mertk -/-/Rpe65-450Met mice. Of note, the rate of photoreceptor cell degeneration was more rapid in albino Mertk -/- mice exposed to higher levels of intraocular light (albino versus pigmented mice) and in mice carrying Rpe65-Leu450 than in Rpe65-450Met mice, revealing a link between bisretinoid accumulation and light-mediated acceleration of photoreceptor cell degeneration. In conclusion, the light sensitivity of photoreceptor cell degeneration arising from Mertk deficiency is consistent with the known phototoxicity of bisretinoids.
Collapse
Affiliation(s)
- Jin Zhao
- From the Departments of Ophthalmology and
| | - Keiko Ueda
- From the Departments of Ophthalmology and
| | | | | | - Janet R Sparrow
- From the Departments of Ophthalmology and .,Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
32
|
Gao S, Parmar T, Palczewska G, Dong Z, Golczak M, Palczewski K, Jastrzebska B. Protective Effect of a Locked Retinal Chromophore Analog against Light-Induced Retinal Degeneration. Mol Pharmacol 2018; 94:1132-1144. [PMID: 30018116 PMCID: PMC6108575 DOI: 10.1124/mol.118.112581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment rhodopsin are typical early signs of this condition. Excessive concentrations of unliganded, constitutively active opsin and increased levels of all-trans-retinal and its byproducts in photoreceptors also accelerate retinal degeneration after light exposure. Exogenous 9-cis-retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup of retinoid photoproducts when their clearance is defective in human retinopathies, such as Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked chromophore analog, 11-cis-6-membered ring-retinal against bright light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Using in vivo imaging techniques, optical coherence tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro histologic analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-retinal before light stimulation prevented rod and cone photoreceptor degradation and preserved functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-retinal measured in the eyes of these mice by quantitative liquid chromatography-mass spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in Abca4-/-Rdh8-/- mice.
Collapse
Affiliation(s)
- Songqi Gao
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Tanu Parmar
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Grazyna Palczewska
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Zhiqian Dong
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| |
Collapse
|
33
|
Gao Z, Liao Y, Chen C, Liao C, He D, Chen J, Ma J, Liu Z, Wu Y. Conversion of all- trans-retinal into all- trans-retinal dimer reflects an alternative metabolic/antidotal pathway of all- trans-retinal in the retina. J Biol Chem 2018; 293:14507-14519. [PMID: 30049796 DOI: 10.1074/jbc.ra118.002447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Indexed: 01/05/2023] Open
Abstract
Free all-trans-retinal (atRAL) and retinal pigment epithelium (RPE) lipofuscin are both considered to play etiological roles in Stargardt disease and age-related macular degeneration. A2E and all-trans-retinal dimer (atRAL-dimer) are two well characterized bisretinoid constituents of RPE lipofuscin. In this study, we found that, after treatment of primary porcine RPE (pRPE) cells with atRAL, atRAL-dimer readily formed and accumulated in a concentration- and time-dependent manner, but A2E was barely detected. Cell-based assays revealed that atRAL, the precursor of atRAL-dimer, significantly altered the morphology of primary pRPE cells and decreased cell viability at a concentration of 80 μm regardless of light exposure. By contrast, atRAL-dimer was not cytotoxic and phototoxic to primary pRPE cells. Compared with atRAL and A2E, atRAL-dimer was more vulnerable to light, followed by the generation of its photocleaved products. Moreover, we observed the presence of atRAL-dimer in reaction mixtures of atRAL with porcine rod outer segments (ROS), RPE/choroid, or neural retina. Taken together, we here proposed an alternative metabolic/antidotal pathway of atRAL in the retina: atRAL that evades participation of the visual (retinoid) cycle undergoes a condensation reaction to yield atRAL-dimer in both ROS and RPE. Translocation of atRAL, all-trans N-retinylidene-phosphatidylethanolamine (NR-PE), atRAL-dimer, and photocleavage products of atRAL-dimer from ROS into RPE is accomplished by phagocytosing shed ROS on a daily basis. Without causing damage to RPE cells, light breaks up total atRAL-dimer within RPE cells to release low-molecular-weight photocleavage fragments. The latter, together with ROS-atRAL-dimer photocleavage products, may easily move across membranes and thereby be metabolically eliminated.
Collapse
Affiliation(s)
- Zhan Gao
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Yi Liao
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Chao Chen
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Liao
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Danxue He
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingmeng Chen
- the Clinical Skills Training Center, College of Medicine, Xiamen University, Xiamen 361102, China, and
| | - Jianxing Ma
- the Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zuguo Liu
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Yalin Wu
- From the Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen 361102, China,
| |
Collapse
|
34
|
Kim HJ, Sparrow JR. Novel bisretinoids of human retina are lyso alkyl ether glycerophosphoethanolamine-bearing A2PE species. J Lipid Res 2018; 59:1620-1629. [PMID: 29986955 DOI: 10.1194/jlr.m084459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Bisretinoids are a family of fluorophores that form in photoreceptor cells' outer segments by nonenzymatic reaction of two vitamin A aldehydes (A2) with phosphatidylethanolamine (PE). Bisretinoid fluorophores are the major constituents of the lipofuscin of retinal pigment epithelium (RPE) that accumulate with age and contribute to some retinal diseases. Here, we report the identification of a previously unknown fluorescent bisretinoid. By ultra-performance LC (UPLC) coupled to photodiode array detection, fluorescence (FLR), and ESI-MS, we determined that this novel bisretinoid is 1-octadecyl-2-lyso-sn-glycero A2PE (alkyl ether lysoA2PE). This structural assignment was based on molecular mass (m/z 998), UV-visible absorbance maxima (340 and 440 nm), and retention time (73 min) and was corroborated by biomimetic synthesis using all-trans-retinal and glycerophosphoethanolamine analogs as starting materials. UPLC profiles of ocular extracts acquired from human donor eyes revealed that alkyl ether lysoA2PE was detectable in RPE, but not neural retina. LysoA2PE FLR spectra exhibited a significant hyperchromic shift in hydrophobic environments. The propensity for lysoA2PE to undergo photooxidation/degradation was less pronounced than A2E. In mechanistic studies, A2PE was hydrolyzed by phospholipase A2 and plasmalogen lysoA2PE was cleaved under acidic conditions. The characterization of these additional members of the bisretinoid family advances our understanding of the mechanisms underlying bisretinoid biogenesis.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology Columbia University Medical Center, New York, NY 10032
| | - Janet R Sparrow
- Departments of Ophthalmology Columbia University Medical Center, New York, NY 10032; Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032.
| |
Collapse
|
35
|
Spectral analysis of fundus autofluorescence pattern as a tool to detect early stages of degeneration in the retina and retinal pigment epithelium. Eye (Lond) 2018; 32:1440-1448. [PMID: 29786089 DOI: 10.1038/s41433-018-0109-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aim of this work is the determination of quantitative diagnostic criteria based on the spectral characteristics of fundus autofluorescence to detect early stages of degeneration in the retina and retinal pigment epithelium (RPE). METHODS RPE cell suspension samples were obtained from the cadaver eyes with and without signs of age-related macular degeneration (AMD). Fluorescence analysis at an excitation wavelength of 488 nm was performed. The fluorescence lifetimes of lipofuscin-granule fluorophores were measured by counting time-correlated photon method. RESULTS Comparative analysis of fluorescence spectra of RPE cell suspensions from the cadaver eyes with and without signs of AMD showed a significant difference in fluorescence intensity at 530-580 nm in response to fluorescence excitation at 488 nm. It was notably higher in eyes with visual pathology than in normal eyes regardless of the age of the eye donor. Measurements of fluorescence lifetimes of lipofuscin fluorophores showed that the contribution of photooxidation and photodegradation products of bisretinoids to the total fluorescence at 530-580 nm of RPE cell suspensions was greater in eyes with visual pathology than in normal eyes. CONCLUSION Because photooxidation and photodegradation products of bisretinoids are markers of photodestructive processes, which can cause RPE cell death and initiate degenerative processes in the retina, quantitative determination of increases in these bisretinoid products in lipofuscin granules may be used to establish quantitative diagnostic criteria for degenerative processes in the retina and RPE.
Collapse
|
36
|
Paavo M, Lee W, Allikmets R, Tsang S, Sparrow JR. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease. J Neurosci Res 2018; 97:98-106. [PMID: 29701254 DOI: 10.1002/jnr.24252] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 11/08/2022]
Abstract
Bisretinoid fluorophores form in photoreceptor outer segments from nonenzymatic reactions of vitamin A aldehyde. The short-wavelength autofluorescence (SW-AF) of fundus flecks in recessive Stargardt disease (STGD1) suggests a connection to these fluorophores. Through multimodal imaging, we sought to elucidate this link. Flecks observed in SW-AF images often colocalized with foci exhibiting reduced or absent near-infrared autofluorescence signal, the source of which is melanin in retinal pigment epithelial (RPE) cells. With serial imaging, changes in near-infrared autofluorescence (NIR-AF) preceded the onset of fleck hyperautofluorescence in SW-AF images and fleck profiles in NIR-AF images tended to be larger. Flecks in SW-AF and NIR-AF images also corresponded to hyperreflective lesions traversing photoreceptor-attributable bands in horizontal SD-OCT scans. The hyperreflective lesions interrupted adjacent OCT reflectivity bands and were associated with thinning of the outer nuclear layer. These SD-OCT findings are attributable to photoreceptor cell degeneration. Progressive increases and decreases in the SW-AF intensity of flecks were evident in color-coded quantitative fundus autofluorescence maps. In some cases, flecks appeared to spread radially from the fovea to approximately 8° of eccentricity, beyond which a circumferential spread characterized the distribution. Since the NIR-AF signal is derived from melanin and loss of this autofluorescence is indicative of RPE atrophy, the SW-AF of flecks cannot be accounted for by bisretinoid lipofuscin in RPE. Instead, we suggest that the bisretinoid serving as the source of the SW-AF signal, resides in photoreceptors, the cell that is also the site of bisretinoid synthesis.
Collapse
Affiliation(s)
- Maarjaliis Paavo
- Department of Ophthalmology, Columbia University Medical Center, New York, New York
| | - Winston Lee
- Department of Ophthalmology, Columbia University Medical Center, New York, New York
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Stephen Tsang
- Department of Ophthalmology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
37
|
A Brief Review on the Pathological Role of Decreased Blood Flow Affected in Retinitis Pigmentosa. J Ophthalmol 2018; 2018:3249064. [PMID: 29682340 PMCID: PMC5845519 DOI: 10.1155/2018/3249064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa (RP) represents a clinically and genetically heterogeneous disease characterized by progressive photoreceptor loss. In recent years, research has been rarely made in blood flow affected in RP. The specific mechanism of blood flow affected in RP is not completely clear. A number of studies indicated that the decreased blood flow was related to RP. According to clinical observation and treatment experience, Chinese medicine considered that blood stasis runs throughout the RP disease progression, and the blood stasis corresponding to Chinese herbal medicine has a positive effect on the clinical treatment of RP. Therefore, we proposed that the decreased blood flow may participate in the lesion. In this article, we will review the findings on the decreased blood flow affected in RP from the perspective of modern medicine and Chinese medicine.
Collapse
|
38
|
Kotnala A, Senthilkumari S, Halder N, Kumar A, Velpandian T. Microwave assisted synthesis for A2E and development of LC-ESI-MS method for quantification of ocular bisretinoids in human retina. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:10-18. [PMID: 29232606 DOI: 10.1016/j.jchromb.2017.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop a microwave assisted method for the rapid synthesis of A2E and also to develop a method to quantify N-retinylidene-N-retinylethanolamine(A2E), all-trans retinal dimer (ATRD), A2-glycerophospho ethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE) and monofuran A2E (MFA2E) in age matched retina. METHODS The development of microwave assisted synthesis of A2E, its purification and characterization for its utility in quantification in human retina. The semi-quantitative method development using LC-ESI-MS, LC-ESI-MS/MS and LC-APCI-MS/MS from pooled macula and peripheral retina for the bisretinoid analysis has been done. RESULTS Maximum A2E conversion using microwave assisted process took place at 80°C for 45min with a yield of 55.01%. Highly sensitive and specific mass spectrometric method was developed using reverse phase C-18 separation with positive electrospray ionization and positive atmospheric phase chemical ionization of tandom mass spectrometry. A gradient mobile phase separation was achieved using water and methanol with 0.1% TFA. Multiple reaction monitoring acquisition for ESI and APCI was performed at ATRD m/z 551.2/522.2, A2GPE m/z 746.4/729.5, A2DHPEm/z 594.4/576.5, MFA2E m/z 608.2/591.2, A2E m/z 592.4/418.2. Method was validated using LC-ESI-SIM mode to determine selectivity, linearity, sensitivity, precision and accuracy. CONCLUSION An attempt towards optimization of the synthetic procedure of A2E was made so as to reduce the lengthy reaction time without compromising the yield. Developed method was capable enough for the detection of low level of bisretinids in retina.
Collapse
Affiliation(s)
- A Kotnala
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - S Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, Madurai, Tamilnadu, India
| | - N Halder
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - A Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - T Velpandian
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
39
|
Sears AE, Bernstein PS, Cideciyan AV, Hoyng C, Charbel Issa P, Palczewski K, Rosenfeld PJ, Sadda S, Schraermeyer U, Sparrow JR, Washington I, Scholl HPN. Towards Treatment of Stargardt Disease: Workshop Organized and Sponsored by the Foundation Fighting Blindness. Transl Vis Sci Technol 2017; 6:6. [PMID: 28920007 PMCID: PMC5599228 DOI: 10.1167/tvst.6.5.6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 01/13/2023] Open
Abstract
Accumulation of fluorescent metabolic byproducts of the visual (retinoid) cycle is associated with photoreceptor and retinal pigment epithelial cell death in both Stargardt disease and atrophic (nonneovascular) age-related macular degeneration (AMD). As a consequence of this observation, small molecular inhibitors of enzymes in the visual cycle were recently tested in clinical trials as a strategy to protect the retina and retinal pigment epithelium in patients with atrophic AMD. To address the clinical translational needs for therapies aimed at both diseases, a workshop organized by the Foundation Fighting Blindness was hosted by the Department of Pharmacology at Case Western Reserve University on February 17, 2017, at the Tinkham Veale University Center, Cleveland, OH, USA. Invited speakers highlighted recent advances in the understanding of the pathophysiology of Stargardt disease, in terms of its clinical characterization and the development of endpoints for clinical trials, and discussed the comparability of therapeutic strategies between atrophic age-related macular degeneration (AMD) and Stargardt disease. Investigators speculated that reducing the concentrations of visual cycle precursor substances and/or their byproducts may provide valid therapeutic options for the treatment of Stargardt disease. Here we review the workshop's presentations in the context of published literature to help shape the aims of ongoing research endeavors and aid the development of therapies for Stargardt disease.
Collapse
Affiliation(s)
- Avery E Sears
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carel Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and the Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - SriniVas Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, USA
| | - Ulrich Schraermeyer
- Institute of Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Janet R Sparrow
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - Ilyas Washington
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland.,Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A 2017; 114:3987-3992. [PMID: 28348233 DOI: 10.1073/pnas.1620299114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recessive Stargardt macular degeneration (STGD1) is caused by mutations in the gene for the ABCA4 transporter in photoreceptor outer segments. STGD1 patients and Abca4-/- (STGD1) mice exhibit buildup of bisretinoid-containing lipofuscin pigments in the retinal pigment epithelium (RPE), increased oxidative stress, augmented complement activation and slow degeneration of photoreceptors. A reduction in complement negative regulatory proteins (CRPs), possibly owing to bisretinoid accumulation, may be responsible for the increased complement activation seen on the RPE of STGD1 mice. CRPs prevent attack on host cells by the complement system, and complement receptor 1-like protein y (CRRY) is an important CRP in mice. Here we attempted to rescue the phenotype in STGD1 mice by increasing expression of CRRY in the RPE using a gene therapy approach. We injected recombinant adeno-associated virus containing the CRRY coding sequence (AAV-CRRY) into the subretinal space of 4-wk-old Abca4-/- mice. This resulted in sustained, several-fold increased expression of CRRY in the RPE, which significantly reduced the complement factors C3/C3b in the RPE. Unexpectedly, AAV-CRRY-treated STGD1 mice also showed reduced accumulation of bisretinoids compared with sham-injected STGD1 control mice. Furthermore, we observed slower photoreceptor degeneration and increased visual chromophore in 1-y-old AAV-CRRY-treated STGD1 mice. Rescue of the STGD1 phenotype by AAV-CRRY gene therapy suggests that complement attack on the RPE is an important etiologic factor in STGD1. Modulation of the complement system by locally increasing CRP expression using targeted gene therapy represents a potential treatment strategy for STGD1 and other retinopathies associated with complement dysregulation.
Collapse
|
41
|
HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36 Suppl 1:S127-S136. [PMID: 28005671 DOI: 10.1097/iae.0000000000001325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To elucidate the molecular pathogenesis of age-related macular degeneration (AMD) and interpretation of fundus autofluorescence imaging, the authors identified spectral autofluorescence characteristics of drusen and retinal pigment epithelium (RPE) in donor eyes with AMD. METHODS Macular RPE/Bruch membrane flat mounts were prepared from 5 donor eyes with AMD. In 12 locations (1-3 per eye), hyperspectral autofluorescence images in 10-nm-wavelength steps were acquired at 2 excitation wavelengths (λex 436, 480 nm). A nonnegative tensor factorization algorithm was used to recover 5 abundant emission spectra and their corresponding spatial localizations. RESULTS At λex 436 nm, the authors consistently localized a novel spectrum (SDr) with a peak emission near 510 nm in drusen and sub-RPE deposits. Abundant emission spectra seen previously (S0 in Bruch membrane and S1, S2, and S3 in RPE lipofuscin/melanolipofuscin, respectively) also appeared in AMD eyes, with the same shapes and peak wavelengths as in normal tissue. Lipofuscin/melanolipofuscin spectra localizations in AMD eyes varied widely in their overlap with drusen, ranging from none to complete. CONCLUSION An emission spectrum peaking at ∼510 nm (λex 436 nm) appears to be sensitive and specific for drusen and sub-RPE deposits. One or more abundant spectra from RPE organelles exhibit characteristic relationships with drusen.
Collapse
|
42
|
Adler L, Chen C, Koutalos Y. All-trans retinal levels and formation of lipofuscin precursors after bleaching in rod photoreceptors from wild type and Abca4 -/- mice. Exp Eye Res 2017; 155:121-127. [PMID: 28219732 DOI: 10.1016/j.exer.2017.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 11/16/2022]
Abstract
The accumulation of lipofuscin in the cells of the retinal pigment epithelium (RPE) is thought to play an important role in the development and progression of degenerative diseases of the retina. The bulk of RPE lipofuscin originates in reactions of the rhodopsin chromophore, retinal, with components of the photoreceptor outer segment. The 11-cis retinal isomer is generated in the RPE and supplied to rod photoreceptor outer segments where it is incorporated as the chromophore of rhodopsin. It is photoisomerized during light detection to all-trans and subsequently released by photoactivated rhodopsin as all-trans retinal, which is removed through reduction to all-trans retinol in a reaction requiring metabolic input in the form of NADPH. Both 11-cis and all-trans retinal can form lipofuscin precursor fluorophores in rod photoreceptor outer segments. Increased accumulation of lipofuscin has been suggested to result from excess formation of lipofuscin precursors due to buildup of all-trans retinal released by light exposure. In connection with this suggestion, the Abca4 transporter protein, an outer segment protein defects in which result in recessive Stargardt disease, has been proposed to promote the removal of all-trans retinal by facilitating its availability for reduction. To examine this possibility, we have measured the outer segment levels of all-trans retinal, all-trans retinol, and of lipofuscin precursors after bleaching by imaging the fluorescence of single rod photoreceptors isolated from wild type and Abca4-/- mice. We found that all-trans retinol and all-trans retinal levels increased after bleaching in both wild type and Abca4-/- rods. At all times after bleaching, there was no significant difference in all-trans retinal levels between the two strains. All-trans retinol levels were not significantly different between the two strains at early times, but were lower in Abca4-/- rods at times longer than 20 min after bleaching. Bleaching in the presence of lower metabolic substrate concentrations resulted in higher all-trans retinal levels and increased formation of lipofuscin precursors in both wild type and Abca4-/- rods. The results show that conditions that result in buildup of all-trans retinal levels result in increased generation of lipofuscin precursors in both wild type and Abca4-/- rods. The results are consistent with the proposal that Abca4 facilitates the reduction of all-trans retinal to retinol; absence of Abca4 however does not appear to be associated with higher all-trans retinal levels compared to wild type.
Collapse
Affiliation(s)
- Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
43
|
Kang JH, Choung SY. Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res 2016; 39:1703-1715. [PMID: 27659166 DOI: 10.1007/s12272-016-0839-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 09/11/2016] [Indexed: 12/13/2022]
Abstract
Damage of retinal pigment epithelial (RPE) cells by A2E may be critical for age-related macular degeneration (AMD) management. Accumulation and photooxidation of A2E are known to be one of the critical causes in AMD. Here, we evaluated the protective effect of resveratrol (RES), piceatannol (PIC) and RES glycones on blue-light-induced RPE cell death caused by A2E photooxidation. A2E treatment followed by blue light exposure caused significant damages on human RPE cells (ARPE-19). But the damages were attenuated by post- and pre-treatment of RES and PIC in our in vitro models. The results of cell free system and FAB-MS analysis clearly showed that the reduction of A2E by blue light exposure was significantly rescued, and that oxidized forms of A2E were significantly reduced by RES or PIC treatment. Besides, RES or PIC inhibited the intracellular accumulation of A2E. Not only RES and PIC but RES glycones showed protection of ARPE-19 cells against A2E and blue-light-induced photo-damage. These findings demonstrate that RES and its analogs may have protective effects against A2E and blue-light-induced ARPE-19 cell death through regulation of A2E accumulation as well as photooxidation of A2E. Thus RES and its analogs may be beneficial for AMD treatment.
Collapse
Affiliation(s)
- Jung-Hwan Kang
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea. .,Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
44
|
Yakovleva MA, Gulin AA, Feldman TB, Bel’skich YC, Arbukhanova PM, Astaf’ev AA, Nadtochenko VA, Borzenok SA, Ostrovsky MA. Time-of-flight secondary ion mass spectrometry to assess spatial distribution of A2E and its oxidized forms within lipofuscin granules isolated from human retinal pigment epithelium. Anal Bioanal Chem 2016; 408:7521-8. [DOI: 10.1007/s00216-016-9854-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
|
45
|
Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proc Natl Acad Sci U S A 2016; 113:6904-9. [PMID: 27274068 DOI: 10.1073/pnas.1524774113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adducts of retinaldehyde (bisretinoids) form nonenzymatically in photoreceptor cells and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin; these fluorophores are implicated in the pathogenesis of inherited and age-related macular degeneration (AMD). Here we demonstrate that bisretinoid photodegradation is ongoing in the eye. High-performance liquid chromatography (HPLC) analysis of eyes of dark-reared and cyclic light-reared wild-type mice, together with comparisons of pigmented versus albino mice, revealed a relationship between intraocular light and reduced levels of the bisretinoids A2E and A2-glycero-phosphoethanolamine (A2-GPE). Analysis of the bisretinoids A2E, A2-GPE, A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE), and all-trans-retinal dimer-phosphatidylethanolamine (all-trans-retinal dimer-PE) also decreases in albino Abca4(-/-) mice reared in cyclic light compared with darkness. In albino Abca4(-/-) mice receiving a diet supplemented with the antioxidant vitamin E, higher levels of RPE bisretinoid were evidenced by HPLC analysis and quantitation of fundus autofluorescence; this effect is consistent with photooxidative processes known to precede bisretinoid degradation. Amelioration of outer nuclear layer thinning indicated that vitamin E treatment protected photoreceptor cells. Conversely, in-cage exposure to short-wavelength light resulted in reduced fundus autofluorescence, decreased HPLC-quantified A2E, outer nuclear layer thinning, and increased methylglyoxal (MG)-adducted protein. MG was also released upon bisretinoid photodegradation in cells. We suggest that the lower levels of these diretinal adducts in cyclic light-reared and albino mice reflect photodegradative loss of bisretinoid. These mechanisms may underlie associations among AMD risk, oxidative mechanisms, and lifetime light exposure.
Collapse
|
46
|
Adler L, Boyer NP, Anderson DM, Spraggins JM, Schey KL, Hanneken A, Ablonczy Z, Crouch RK, Koutalos Y. Determination of N-retinylidene-N-retinylethanolamine (A2E) levels in central and peripheral areas of human retinal pigment epithelium. Photochem Photobiol Sci 2016; 14:1983-90. [PMID: 26323192 DOI: 10.1039/c5pp00156k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bis-retinoid N-retinylidene-N-retinylethanolamine (A2E) is one of the major components of lipofuscin, a fluorescent material that accumulates with age in the lysosomes of the retinal pigment epithelium (RPE) of the human eye. Lipofuscin, as well as A2E, exhibit a range of cytotoxic properties, which are thought to contribute to the pathogenesis of degenerative diseases of the retina such as Age-related Macular Degeneration. Consistent with such a pathogenic role, high levels of lipofuscin fluorescence are found in the central area of the human RPE, and decline toward the periphery. Recent reports have however suggested a surprising incongruence between the distributions of lipofuscin and A2E in the human RPE, with A2E levels being lowest in the central area and increasing toward the periphery. To appraise such a possibility, we have quantified the levels of A2E in the central and peripheral RPE areas of 10 eyes from 6 human donors (ages 75-91 years) with HPLC and UV/VIS spectroscopy. The levels of A2E in the central area were on average 3-6 times lower than in peripheral areas of the same eye. Furthermore, continuous accumulation of selected ions (CASI) imaging mass spectrometry showed the presence of A2E in the central RPE, and at lower intensities than in the periphery. We have therefore corroborated that in human RPE the levels of A2E are lower in the central area compared to the periphery. We conclude that the levels of A2E cannot by themselves provide an explanation for the higher lipofuscin fluorescence found in the central area of the human RPE.
Collapse
Affiliation(s)
- Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Nicholas P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - David M Anderson
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anne Hanneken
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
47
|
Ben Ami T, Tong Y, Bhuiyan A, Huisingh C, Ablonczy Z, Ach T, Curcio CA, Smith RT. Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging. Transl Vis Sci Technol 2016; 5:5. [PMID: 27226929 PMCID: PMC4874453 DOI: 10.1167/tvst.5.3.5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/28/2016] [Indexed: 01/31/2023] Open
Abstract
Purpose Discovery of candidate spectra for abundant fluorophore families in human retinal pigment epithelium (RPE) by ex vivo hyperspectral imaging. Methods Hyperspectral autofluorescence emission images were captured between 420 and 720 nm (10-nm intervals), at two excitation bands (436–460, 480–510 nm), from three locations (fovea, perifovea, near-periphery) in 20 normal RPE/Bruch's membrane (BrM) flatmounts. Mathematical factorization extracted a BrM spectrum (S0) and abundant lipofuscin/melanolipofuscin (LF/ML) spectra of RPE origin (S1, S2, S3) from each tissue. Results Smooth spectra S1 to S3, with perinuclear localization consistent with LF/ML at all three retinal locations and both excitations in 14 eyes (84 datasets), were included in the analysis. The mean peak emissions of S0, S1, and S2 at λex 436 nm were, respectively, 495 ± 14, 535 ± 17, and 576 ± 20 nm. S3 was generally trimodal, with peaks at either 580, 620, or 650 nm (peak mode, 650 nm). At λex 480 nm, S0, S1, and S2 were red-shifted to 526 ± 9, 553 ± 10, and 588 ± 23 nm, and S3 was again trimodal (peak mode, 620 nm). S1 often split into two spectra, S1A and S1B. S3 strongly colocalized with melanin. There were no significant differences across age, sex, or retinal location. Conclusions There appear to be at least three families of abundant RPE fluorophores that are ubiquitous across age, retinal location, and sex in this sample of healthy eyes. Further molecular characterization by imaging mass spectrometry and localization via super-resolution microscopy should elucidate normal and abnormal RPE physiology involving fluorophores. Translational Relevance Our results help establish hyperspectral autofluorescence imaging of the human retinal pigment epithelium as a useful tool for investigating retinal health and disease.
Collapse
Affiliation(s)
- Tal Ben Ami
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Yuehong Tong
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Alauddin Bhuiyan
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Carrie Huisingh
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital of Würzburg, Würzburg, Germany
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - R Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
48
|
Zhou J, Ueda K, Zhao J, Sparrow JR. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J Biol Chem 2015; 290:27215-27227. [PMID: 26400086 DOI: 10.1074/jbc.m115.680363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 01/10/2023] Open
Abstract
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4(-/-) and Rdh8(-/-)/Abca4(-/-) mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4(-/-) but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4(-/-) mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4(-/-) mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Jilin Zhou
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Keiko Ueda
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
49
|
Sparrow JR, Duncker T. Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration. J Clin Med 2015; 3:1302-21. [PMID: 25774313 PMCID: PMC4358814 DOI: 10.3390/jcm3041302] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that increase susceptibility to age-related macular degeneration (AMD) have been identified; however, since many individuals carrying these risk alleles do not develop disease, other contributors are involved. One additional factor, long implicated in the pathogenesis of AMD, is the lipofuscin of retinal pigment epithelium (RPE). The fluorophores that constitute RPE lipofuscin also serve as a source of autofluorescence (AF) that can be imaged by confocal laser ophthalmoscopy. The AF originating from lipofuscin is excited by the delivery of short wavelength (SW) light. A second autofluorescence is emitted from the melanin of RPE (and choroid) upon near-infrared (NIR-AF) excitation. SW-AF imaging is currently used in the clinical management of retinal disorders and the advantages of NIR-AF are increasingly recognized. Here we visit the damaging properties of RPE lipofuscin that could be significant when expressed on a background of genetic susceptibility. To advance interpretations of disease-related patterns of fundus AF in AMD, we also consider the photochemical and spectrophotometric features of the lipofuscin compounds responsible for generating the fluorescence emission.
Collapse
Affiliation(s)
- Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 168th Street, New York, NY 10032, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-305-0044
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
| |
Collapse
|
50
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|