1
|
Yin D, Zhong Z, Zeng F, Xu Z, Li J, Ren W, Yang G, Wang H, Xu S. Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation. PLoS Genet 2025; 21:e1011598. [PMID: 40101169 PMCID: PMC11919277 DOI: 10.1371/journal.pgen.1011598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.
Collapse
Affiliation(s)
- Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Fan Zeng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhikang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
3
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
4
|
Yin D, Zhang B, Chong Y, Ren W, Xu S, Yang G. Adaptive changes in BMAL2 with increased locomotion associated with the evolution of unihemispheric slow-wave sleep in mammals. Sleep 2024; 47:zsae018. [PMID: 38289699 PMCID: PMC11009019 DOI: 10.1093/sleep/zsae018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Marine mammals, especially cetaceans, have evolved a very special form of sleep characterized by unihemispheric slow-wave sleep (USWS) and a negligible amount or complete absence of rapid-eye-movement sleep; however, the underlying genetic mechanisms remain unclear. Here, we detected unique, significant selection signatures in basic helix-loop-helix ARNT like 2 (BMAL2; also called ARNTL2), a key circadian regulator, in marine mammal lineages, and identified two nonsynonymous amino acid substitutions (K204E and K346Q) in the important PER-ARNT-SIM domain of cetacean BMAL2 via sequence comparison with other mammals. In vitro assays revealed that these cetacean-specific mutations specifically enhanced the response to E-box-like enhancer and consequently promoted the transcriptional activation of PER2, which is closely linked to sleep regulation. The increased PER2 expression, which was further confirmed both in vitro and in vivo, is beneficial for allowing cetaceans to maintain continuous movement and alertness during sleep. Concordantly, the locomotor activities of zebrafish overexpressing the cetacean-specific mutant bmal2 were significantly higher than the zebrafish overexpressing the wild-type gene. Subsequently, transcriptome analyses revealed that cetacean-specific mutations caused the upregulation of arousal-related genes and the downregulation of several sleep-promoting genes, which is consistent with the need to maintain hemispheric arousal during USWS. Our findings suggest a potential close relationship between adaptive changes in BMAL2 and the remarkable adaptation of USWS and may provide novel insights into the genetic basis of the evolution of animal sleep.
Collapse
Affiliation(s)
- Daiqing Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Biao Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yujie Chong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Xu S, Suttapitugsakul S, Tong M, Wu R. Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep 2023; 42:112796. [PMID: 37453062 PMCID: PMC10530397 DOI: 10.1016/j.celrep.2023.112796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Hosseini K, Beirami SM, Forouhandeh H, Vahed SZ, Eyvazi S, Ramazani F, Tarhriz V, Ardalan M. The role of circadian gene timeless in gastrointestinal cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr Biol 2021; 31:502-514.e7. [PMID: 33217322 PMCID: PMC7878342 DOI: 10.1016/j.cub.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS. Organisms in all domains of life exhibit circadian rhythms. Cai et al. reveal that phosphorylation of TIMELESS modulates kinase accessibility to CLOCK in the nucleus. This mechanism is important in controlling daily phosphorylation rhythm of CLOCK, which is critical for its function as a key regulator of circadian rhythms.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jose Del Carmen-Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher Ochoa
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Katherine A Murphy
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ying H Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben L Kunimoto
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
8
|
It's about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology. PLoS Comput Biol 2020; 16:e1007982. [PMID: 32598362 PMCID: PMC7351226 DOI: 10.1371/journal.pcbi.1007982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/10/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.
Collapse
|
9
|
Keshvari M, Nejadtaghi M, Hosseini-Beheshti F, Rastqar A, Patel N. Exploring the role of circadian clock gene and association with cancer pathophysiology. Chronobiol Int 2019; 37:151-175. [PMID: 31791146 DOI: 10.1080/07420528.2019.1681440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body's internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.
Collapse
Affiliation(s)
- Mahtab Keshvari
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mahdieh Nejadtaghi
- Department of Medical Genetics, faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Rastqar
- Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| | - Niraj Patel
- Centre de Recherche CERVO, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
11
|
Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:29-38. [PMID: 28441545 DOI: 10.1016/j.jchromb.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Following the rapid expansion of the proteomics field, the investigation of post translational modifications (PTM) has become extremely popular changing our perspective of how proteins constantly fine tune cellular functions. Reversible protein phosphorylation plays a pivotal role in virtually all biological processes in the cell and it is one the most characterized PTM up to date. During the last decade, the development of phosphoprotein/phosphopeptide enrichment strategies and mass spectrometry (MS) technology has revolutionized the field of phosphoproteomics discovering thousands of new site-specific phosphorylations and unveiling unprecedented evidence about their modulation under distinct cellular conditions. The field has expanded so rapidly that the use of traditional methods to validate and characterize the biological role of the phosphosites is not feasible any longer. Targeted MS holds great promise for becoming the method of choice to study with high precision and sensitivity already known site-specific phosphorylation events. This review summarizes the contribution of large-scale unbiased MS analyses and highlights the need of targeted MS-based approaches for follow-up investigation. Additionally, the article illustrates the biological relevance of protein phosphorylation by providing examples of disease-related phosphorylation events and emphasizes the benefits of applying targeted MS in clinics for disease diagnosis, prognosis and drug-response evaluation.
Collapse
|
12
|
Maurer C, Winter T, Chen S, Hung HC, Weber F. The CREB-binding protein affects the circadian regulation of behaviour. FEBS Lett 2016; 590:3213-20. [DOI: 10.1002/1873-3468.12336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Christian Maurer
- Biochemistry Center Heidelberg; University of Heidelberg; Germany
| | - Tobias Winter
- Biochemistry Center Heidelberg; University of Heidelberg; Germany
| | - Siwei Chen
- Biochemistry Center Heidelberg; University of Heidelberg; Germany
| | - Hsiu-Cheng Hung
- Biochemistry Center Heidelberg; University of Heidelberg; Germany
| | - Frank Weber
- Biochemistry Center Heidelberg; University of Heidelberg; Germany
| |
Collapse
|
13
|
Kwok RS, Li YH, Lei AJ, Edery I, Chiu JC. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila. PLoS Genet 2015; 11:e1005307. [PMID: 26132408 PMCID: PMC4488936 DOI: 10.1371/journal.pgen.1005307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. The circadian clock is an endogenous timing system that enables organisms to anticipate daily changes in their external environment and temporally coordinate key biological functions that are important to their survival. Central to Drosophila clockwork is a key transcription factor CLOCK (CLK). CLK activates expression of target genes only during specific parts of the day, thereby orchestrating rhythmic expression of hundreds of clock-controlled genes, which consequently manifest into daily rhythms in physiology and behavior. In this study, we demonstrated that the Brahma (Brm) chromatin-remodeling protein interacts with CLK and fine-tune the levels of CLK-dependent transcription to maintain the robustness of the circadian clock. Specifically, we uncovered two distinct but collaborative functions of Brm. Brm possesses a non-catalytic function that negatively regulates the binding of CLK to target genes and limits transcriptional output, likely by recruiting repressive protein complexes. Catalytically, Brm functions by condensing the chromatin at CLK target genes, specifically when transcription is active. This serves to precisely control the level of repressive factors likely recruited by Brm as well as other transcriptional regulators. By disentangling these two roles of Brm, our study uncovered a multi-layered mechanism in which a chromatin remodeler regulates the circadian clock.
Collapse
Affiliation(s)
- Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Anna J. Lei
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Andreazza S, Bouleau S, Martin B, Lamouroux A, Ponien P, Papin C, Chélot E, Jacquet E, Rouyer F. Daytime CLOCK Dephosphorylation Is Controlled by STRIPAK Complexes in Drosophila. Cell Rep 2015; 11:1266-79. [PMID: 25981041 DOI: 10.1016/j.celrep.2015.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/23/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022] Open
Abstract
In the Drosophila circadian oscillator, the CLOCK/CYCLE complex activates transcription of period (per) and timeless (tim) in the evening. PER and TIM proteins then repress CLOCK (CLK) activity during the night. The pace of the oscillator depends upon post-translational regulation that affects both positive and negative components of the transcriptional loop. CLK protein is highly phosphorylated and inactive in the morning, whereas hypophosphorylated active forms are present in the evening. How this critical dephosphorylation step is mediated is unclear. We show here that two components of the STRIPAK complex, the CKA regulatory subunit of the PP2A phosphatase and its interacting protein STRIP, promote CLK dephosphorylation during the daytime. In contrast, the WDB regulatory PP2A subunit stabilizes CLK without affecting its phosphorylation state. Inhibition of the PP2A catalytic subunit and CKA downregulation affect daytime CLK similarly, suggesting that STRIPAK complexes are the main PP2A players in producing transcriptionally active hypophosphorylated CLK.
Collapse
Affiliation(s)
- Simonetta Andreazza
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sylvina Bouleau
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Annie Lamouroux
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, 91190 Gif-sur-Yvette, France
| | - Christian Papin
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, 91190 Gif-sur-Yvette, France
| | - François Rouyer
- Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Tataroglu O, Emery P. The molecular ticks of the Drosophila circadian clock. CURRENT OPINION IN INSECT SCIENCE 2015; 7:51-57. [PMID: 26120561 PMCID: PMC4480617 DOI: 10.1016/j.cois.2015.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drosophila is a powerful model to understand the mechanisms underlying circadian rhythms. The Drosophila molecular clock is comprised of transcriptional feedback loops. The expressions of the critical transcriptional activator CLK and its repressors PER and TIM are under tight transcriptional control. However, posttranslational modification of these proteins and regulation of their stability are critical to their function and to the generation of 24-hr period rhythms. We review here recent progress made in our understanding of PER, TIM and CLK posttranslational control. We also review recent studies that are uncovering the importance of novel regulatory mechanisms that affect mRNA stability and translation of circadian pacemaker proteins and their output.
Collapse
|
16
|
Mahesh G, Jeong E, Ng FS, Liu Y, Gunawardhana K, Houl JH, Yildirim E, Amunugama R, Jones R, Allen DL, Edery I, Kim EY, Hardin PE. Phosphorylation of the transcription activator CLOCK regulates progression through a ∼ 24-h feedback loop to influence the circadian period in Drosophila. J Biol Chem 2014; 289:19681-93. [PMID: 24872414 DOI: 10.1074/jbc.m114.568493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Circadian (≅ 24 h) clocks control daily rhythms in metabolism, physiology, and behavior in animals, plants, and microbes. In Drosophila, these clocks keep circadian time via transcriptional feedback loops in which clock-cycle (CLK-CYC) initiates transcription of period (per) and timeless (tim), accumulating levels of PER and TIM proteins feed back to inhibit CLK-CYC, and degradation of PER and TIM allows CLK-CYC to initiate the next cycle of transcription. The timing of key events in this feedback loop are controlled by, or coincide with, rhythms in PER and CLK phosphorylation, where PER and CLK phosphorylation is high during transcriptional repression. PER phosphorylation at specific sites controls its subcellular localization, activity, and stability, but comparatively little is known about the identity and function of CLK phosphorylation sites. Here we identify eight CLK phosphorylation sites via mass spectrometry and determine how phosphorylation at these sites impacts behavioral and molecular rhythms by transgenic rescue of a new Clk null mutant. Eliminating phosphorylation at four of these sites accelerates the feedback loop to shorten the circadian period, whereas loss of CLK phosphorylation at serine 859 increases CLK activity, thereby increasing PER levels and accelerating transcriptional repression. These results demonstrate that CLK phosphorylation influences the circadian period by regulating CLK activity and progression through the feedback loop.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843
| | - EunHee Jeong
- the Department of Brain Science, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Fanny S Ng
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843
| | - Yixiao Liu
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843
| | - Kushan Gunawardhana
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843
| | - Jerry H Houl
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843
| | - Evrim Yildirim
- the Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway New Jersey 08854
| | | | | | | | - Isaac Edery
- the Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway New Jersey 08854
| | - Eun Young Kim
- the Department of Brain Science, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Paul E Hardin
- From the Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843,
| |
Collapse
|
17
|
Meireles-Filho ACA, Bardet AF, Yáñez-Cuna JO, Stampfel G, Stark A. cis-regulatory requirements for tissue-specific programs of the circadian clock. Curr Biol 2013; 24:1-10. [PMID: 24332542 DOI: 10.1016/j.cub.2013.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/24/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Broadly expressed transcriptions factors (TFs) control tissue-specific programs of gene expression through interactions with local TF networks. A prime example is the circadian clock: although the conserved TFs CLOCK (CLK) and CYCLE (CYC) control a transcriptional circuit throughout animal bodies, rhythms in behavior and physiology are generated tissue specifically. Yet, how CLK and CYC determine tissue-specific clock programs has remained unclear. RESULTS Here, we use a functional genomics approach to determine the cis-regulatory requirements for clock specificity. We first determine CLK and CYC genome-wide binding targets in heads and bodies by ChIP-seq and show that they have distinct DNA targets in the two tissue contexts. Computational dissection of CLK/CYC context-specific binding sites reveals sequence motifs for putative partner factors, which are predictive for individual binding sites. Among them, we show that the opa and GATA motifs, differentially enriched in head and body binding sites respectively, can be bound by OPA and SERPENT (SRP). They act synergistically with CLK/CYC in the Drosophila feedback loop, suggesting that they help to determine their direct targets and therefore orchestrate tissue-specific clock outputs. In addition, using in vivo transgenic assays, we validate that GATA motifs are required for proper tissue-specific gene expression in the adult fat body, midgut, and Malpighian tubules, revealing a cis-regulatory signature for enhancers of the peripheral circadian clock. CONCLUSIONS Our results reveal how universal clock circuits can regulate tissue-specific rhythms and, more generally, provide insights into the mechanism by which universal TFs can be modulated to drive tissue-specific programs of gene expression.
Collapse
Affiliation(s)
| | - Anaïs F Bardet
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - J Omar Yáñez-Cuna
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Gerald Stampfel
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria.
| |
Collapse
|
18
|
An S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, Mazuski C, Kim J, Doyle FJ, Petzold LR, Herzog ED. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A 2013; 110:E4355-61. [PMID: 24167276 PMCID: PMC3832006 DOI: 10.1073/pnas.1307088110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.
Collapse
Affiliation(s)
- Sungwon An
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Rich Harang
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | - Kirsten Meeker
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | | | - Connie A. Tsai
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Cristina Mazuski
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Jihee Kim
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Francis J. Doyle
- Department of Chemical Engineering, University of California, Santa Barbara CA 93106-5080
| | - Linda R. Petzold
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| |
Collapse
|
19
|
Szabó Á, Papin C, Zorn D, Ponien P, Weber F, Raabe T, Rouyer F. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 2013; 11:e1001645. [PMID: 24013921 PMCID: PMC3754892 DOI: 10.1371/journal.pbio.1001645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory β subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.
Collapse
Affiliation(s)
- Áron Szabó
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Christian Papin
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Daniela Zorn
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
- IMAGIF, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Frank Weber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Thomas Raabe
- University of Wuerzburg, Institute of Medical Radiation and Cell Research, Wuerzburg, Germany
| | - François Rouyer
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
20
|
Stakos DA, Gatsiou A, Stamatelopoulos K, Tselepis AD, Stellos K. Platelet microRNAs: From platelet biology to possible disease biomarkers and therapeutic targets. Platelets 2012; 24:579-89. [PMID: 22994623 DOI: 10.3109/09537104.2012.724483] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although anucleated, platelets contain megakaryocyte-derived messenger ribonucleic acid (mRNA) which can be translated to produce protein molecules. Recently, platelets have been found to contain small (∼23 base pair) non-coding microRNAs (miRNAs) derived from hairpin-like precursors. MiRNAs can specifically silence their mRNA targets regulating mRNA translation. Platelet miRNAs are reported to bind to important platelet target mRNAs involved in platelet reactivity including P2Y12 ADP receptor, GPIIb receptor, and cyclic AMP-dependent protein kinase A. They also regulate important functions such as platelet shape change, granules secretion, and platelet activation. Platelet miRNAs were also proposed as biomarkers of arteriosclerosis, although their role in vascular inflammation needs to be elucidated. Further, the possibility of using miRNAs as therapeutic tools has emerged. Using synthetic oligo-nucleotides that antagonize miRNAs binding to their mRNAs-targets or synthetic miRNAs mimics that enhance endogenous miRNAs function potentially will ultimately lead to the manipulation of platelet miRNAs expression and function with significant effects on specific protein levels and overall platelet reactivity.
Collapse
Affiliation(s)
- Dimitrios A Stakos
- Cardiology Clinic, Democritus University of Thrace , Alexandroupolis , Greece
| | | | | | | | | |
Collapse
|
21
|
Herrero E, Davis SJ. Time for a nuclear meeting: protein trafficking and chromatin dynamics intersect in the plant circadian system. MOLECULAR PLANT 2012; 5:554-565. [PMID: 22379122 DOI: 10.1093/mp/sss010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Circadian clocks mediate adaptation to the 24-h world. In Arabidopsis, most circadian-clock components act in the nucleus as transcriptional regulators and generate rhythmic oscillations of transcript accumulation. In this review, we focus on post-transcriptional events that modulate the activity of circadian-clock components, such as phosphorylation, ubiquitination and proteasome-mediated degradation, changes in cellular localization, and protein-protein interactions. These processes have been found to be essential for circadian function, not only in plants, but also in other circadian systems. Moreover, light and clock signaling networks are highly interconnected. In the nucleus, light and clock components work together to generate transcriptional rhythms, leading to a general control of the timing of plant physiological processes.
Collapse
Affiliation(s)
- Eva Herrero
- Max Planck Institute for Plant Breeding Research, Carl-von-Linnéweg 10, 50829 Cologne, Germany
| | | |
Collapse
|
22
|
Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. THE PLANT CELL 2012; 24:428-43. [PMID: 22327739 PMCID: PMC3315225 DOI: 10.1105/tpc.111.093807] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 11/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
The plant circadian clock is proposed to be a network of several interconnected feedback loops, and loss of any component leads to changes in oscillator speed. We previously reported that Arabidopsis thaliana EARLY FLOWERING4 (ELF4) is required to sustain this oscillator and that the elf4 mutant is arrhythmic. This phenotype is shared with both elf3 and lux. Here, we show that overexpression of either ELF3 or LUX ARRHYTHMO (LUX) complements the elf4 mutant phenotype. Furthermore, ELF4 causes ELF3 to form foci in the nucleus. We used expression data to direct a mathematical position of ELF3 in the clock network. This revealed direct effects on the morning clock gene PRR9, and we determined association of ELF3 to a conserved region of the PRR9 promoter. A cis-element in this region was suggestive of ELF3 recruitment by the transcription factor LUX, consistent with both ELF3 and LUX acting genetically downstream of ELF4. Taken together, using integrated approaches, we identified ELF4/ELF3 together with LUX to be pivotal for sustenance of plant circadian rhythms.
Collapse
Affiliation(s)
- Eva Herrero
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Elsebeth Kolmos
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Nora Bujdoso
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Ye Yuan
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Mengmeng Wang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Markus C. Berns
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Heike Uhlworm
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Reena Saini
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznan, Poland
| | - Alex Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jorge Gonçalves
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Seth J. Davis
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| |
Collapse
|
23
|
The E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila. EMBO Rep 2011; 12:549-57. [PMID: 21525955 DOI: 10.1038/embor.2011.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 11/08/2022] Open
Abstract
In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.
Collapse
|
24
|
Weber F, Zorn D, Rademacher C, Hung HC. Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett 2011; 585:1443-9. [PMID: 21486567 DOI: 10.1016/j.febslet.2011.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
Circadian clocks allow a temporal coordination and segregation of physiological, metabolic, and behavioural processes as well as their synchronization with the environmental cycles of day and night. Circadian regulation thereby provides a vital advantage, improving an organisms' adaptation to its environment. The molecular clock can be synchronized with environmental cycles of day and night, but is able to maintain a self-sustained molecular oscillation also in the absence of environmental stimuli. Interlocked transcriptional-translational feedback loops were shown to form the basis of circadian clock function in all phyla from bacteria, fungi, plants, insects to humans. More recently post-translational regulation was identified to be equally important, if not sufficient for molecular clock function and accurate timing of circadian transcription. Here we review recent insights into post-translational timing mechanisms that control the circadian clock, with a particular focus on Drosophila. Analogous to transcriptional feedback regulation, circadian clock function in Drosophila appears to rely on inter-connected post-translational timers. Post-translational regulation of clock proteins illustrates mechanisms that allow a precise temporal control of transcription factors in general and of circadian transcription in particular.
Collapse
Affiliation(s)
- Frank Weber
- University of Heidelberg Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
25
|
Of switches and hourglasses: regulation of subcellular traffic in circadian clocks by phosphorylation. EMBO Rep 2010; 11:927-35. [PMID: 21052092 DOI: 10.1038/embor.2010.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/21/2010] [Indexed: 01/26/2023] Open
Abstract
Investigation of the phosphorylation of circadian clock proteins has shown that this modification contributes to circadian timing in all model organisms. Phosphorylation alters the stability, transcriptional activity and subcellular localization of clock proteins during the course of a day, such that time-of-day-specific phosphorylation encodes information for measuring time and is crucial for the establishment of an approximately 24-h period. One main feature of molecular timekeeping is the daytime-specific nuclear accumulation of clock proteins, which can be regulated by phosphorylation. Here, we discuss increasing knowledge of how subcellular shuttling is regulated in circadian clocks, on the basis of recent observations in Neurospora crassa showing that clock proteins undergo maturation through sequential phosphorylation. In this model organism, clock proteins are regulated by the phosphorylation-dependent modulation of rapid shuttling cycles that alter their subcellular localization in a time-of-day-specific manner.
Collapse
|
26
|
Spengler ML, Kuropatwinski KK, Schumer M, Antoch MP. A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle 2009; 8:4138-46. [PMID: 19946213 PMCID: PMC4073639 DOI: 10.4161/cc.8.24.10273] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The circadian clock regulates biological processes from gene expression to organism behavior in a precise, sustained rhythm that is generated at the unicellular level by coordinated function of interlocked transcriptional feedback loops and post-translational modifications of core clock proteins. CLOCK phosphorylation regulates transcriptional activity, cellular localization and stability; however little is known about the specific residues and enzymes involved. We have identified a conserved cluster of serines that include, Ser431, which is a prerequisite phosphorylation site for the generation of BMAL dependent phospho-primed CLOCK and for the potential GSK-3 phosphorylation at Ser427. Mutational analysis and protein stability assays indicate that this serine cluster functions as a phospho-degron. Through the use of GSK-3 activators/inhibitors and kinase assays, we demonstrate that GSK-3beta regulates the degron site by increasing CLOCK phosphorylation/degradation, which correlates with an increase in the expression of CLOCK responsive promoters. Stabilization of phospho-deficient CLOCK delays the phase of oscillation in synchronized fibroblasts. This investigation begins the characterization of a complex phospho-regulatory site that controls the activity and degradation of CLOCK, a core transcription factor that is essential for circadian behavior.
Collapse
Affiliation(s)
- Mary L. Spengler
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute; Buffalo, NY 14263, USA
| | - Karen K. Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute; Buffalo, NY 14263, USA
| | - Molly Schumer
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute; Buffalo, NY 14263, USA
| | - Marina P. Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute; Buffalo, NY 14263, USA
| |
Collapse
|
27
|
Diernfellner ACR, Querfurth C, Salazar C, Höfer T, Brunner M. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev 2009; 23:2192-200. [PMID: 19759264 DOI: 10.1101/gad.538209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Neurospora clock protein FREQUENCY (FRQ) is an essential regulator of the circadian transcription factor WHITE COLLAR COMPLEX (WCC). In the course of a circadian period, the subcellular distribution of FRQ shifts from mainly nuclear to mainly cytosolic. This shift is crucial for coordinating the negative and positive limbs of the clock. We show that the subcellular redistribution of FRQ on a circadian time scale is governed by rapid, noncircadian cycles of nuclear import and export. The rate of nuclear import of newly synthesized FRQ is progressively reduced in a phosphorylation-dependent manner, leading to an increase in the steady-state level of cytoplasmic FRQ. The long-period frq(7) mutant displays reduced kinetics of FRQ(7) protein phosphorylation and a prolonged accumulation in the nucleus. We present a mathematical model that describes the cytoplasmic accumulation of wild-type and mutant FRQ on a circadian time scale on the basis of frequency-modulated rapid nucleocytoplasmic shuttling cycles.
Collapse
|