1
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Zhang Q, Sun J, Liu Z, Wang H, Zhou H, Liu W, Jia H, Li N, Li T, Wang F, Sun X. Clinical and Molecular Characterization of AIPL1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:235-247. [PMID: 38880373 DOI: 10.1016/j.ajo.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE This study aimed to characterize the clinical features, genetic findings, and genotype-phenotype correlations of patients with Leber congenital amaurosis (LCA) or early-onset severe retinal dystrophy (EOSRD) harboring biallelic AIPL1 pathogenic variants. DESIGN Retrospective case series. METHODS This study consecutively enrolled 51 patients from 47 families with a clinical diagnosis of LCA/EOSRD harboring disease-causing variants in the AIPL1 gene, from October 2021 to September 2023. Molecular genetic findings, medical history, and ophthalmic evaluation including visual acuity (VA), multimodal retinal imaging, and electrophysiologic assessment were reviewed. RESULTS Of the 51 patients (32 with LCA and 19 with EOSRD), 27 (53%) were females, and age at last review ranged from 0.5 to 58.4 years. We identified 28 disease-causing AIPL1 variants, with 18 being novel. In patients with EOSRD, the mean (range) VA was 1.3 (0.7-2.7) logMAR and 1.3 (0.5-2.3) logMAR for right and left eyes respectively, with an average annual decline of 0.03 logMAR (R2 = 0.7547, P < .01). For patients with LCA, the VA ranged from light perception to counting fingers. Optical coherence tomography imaging demonstrated preservation of foveal ellipsoid zone in the 5 youngest EOSRD patients and 9 LCA children. Electroretinography showed severe cone-rod patterns in 78.6% (11/14) of patients with EOSRD, while classical extinguished pattern was documented in all patients with LCA available for the examination. The most common mutation was the nonsense variants of c.421C>T, with an allele frequency of 53.9%. All patients with EOSRD carried at least one missense mutation, of whom 13 identified with c.152A>G and 5 with c.572T>C. Twenty-six patients with LCA harbored two null AIPL1 variants, while 18 were homozygous for c.421C>T and 6 were heterozygous for c.421C>T with another loss-of-function variant. CONCLUSIONS This study reveals distinct clinical features and variation spectrum between AIPL1-associated LCA and EOSRD. Patients harboring at least one nonnull mutation, especially c.152A>G and c.572T>C, were significantly more likely to have a milder EOSRD phenotype than those with two null mutations. Residual foveal outer retinal structure observed in the youngest proportion of patients suggests an early window for gene augmentation therapy.
Collapse
Affiliation(s)
- Quan Zhang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Junran Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Zishi Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hong Wang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hao Zhou
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Wenjia Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Huixun Jia
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China
| | - Ningdong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Tong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China.
| | - Fenghua Wang
- Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Innostellar Biotherapeutics Co., Ltd (FW), Shanghai, China
| | - Xiaodong Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Shanghai Key Laboratory of Fundus Diseases (XS), Shanghai, China.
| |
Collapse
|
3
|
Sai H, Ollington B, Rezek FO, Chai N, Lane A, Georgiadis T, Bainbridge J, Michaelides M, Sacristan-Reviriego A, Perdigão PR, Leung A, van der Spuy J. Effective AAV-mediated gene replacement therapy in retinal organoids modeling AIPL1-associated LCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102148. [PMID: 38439910 PMCID: PMC10910061 DOI: 10.1016/j.omtn.2024.102148] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.
Collapse
Affiliation(s)
- Hali Sai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Farah O. Rezek
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | | - James Bainbridge
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Michel Michaelides
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- NIHR Moorfields Biomedical Research Centre, London EC1V 2PD, UK
| | - Almudena Sacristan-Reviriego
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Institute of Clinical Trials and Methodology, University College London, London WC1V 6LJ, UK
| | - Pedro R.L. Perdigão
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amy Leung
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jacqueline van der Spuy
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
4
|
Singh S, Srivastava D, Boyd K, Artemyev NO. Reconstitution of the phosphodiesterase 6 maturation process important for photoreceptor cell function. J Biol Chem 2024; 300:105576. [PMID: 38110033 PMCID: PMC10819763 DOI: 10.1016/j.jbc.2023.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
The sixth family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness. Here, to elucidate the roles of HSP90, AIPL1, and Pγ in the maturation process, we developed the heterologous expression system of human cone PDE6C in insect cells allowing characterization of the purified enzyme. We demonstrate that in the absence of Pγ, HSP90, and AIPL1 convert the inactive and aggregating PDE6C species into dimeric PDE6C that is predominantly misassembled. Nonetheless, a small fraction of PDE6C is properly assembled and fully functional. From the analysis of mutant mice that lack both rod Pγ and PDE6C, we conclude that, in contrast to the cone enzyme, no maturation of rod PDE6AB occurs in the absence of Pγ. Co-expression of PDE6C with AIPL1 and Pγ in insect cells leads to a fully mature enzyme that is equivalent to retinal PDE6. Lastly, using immature PDE6C and purified chaperone components, we reconstituted the process of the client maturation in vitro. Based on this analysis we propose a scheme for the PDE6 maturation process.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
Moakedi F, Aljammal R, Poria D, Saravanan T, Rhodes SB, Reid C, Guan T, Kefalov VJ, Ramamurthy V. Prenylation is essential for the enrichment of cone phosphodiesterase-6 (PDE6) in outer segments and efficient cone phototransduction. Hum Mol Genet 2023; 32:2735-2750. [PMID: 37384398 PMCID: PMC10460490 DOI: 10.1093/hmg/ddad108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
Phosphodiesterase-6 (PDE6) is the key phototransduction effector enzyme residing in the outer segment (OS) of photoreceptors. Cone PDE6 is a tetrameric protein consisting of two inhibitory subunits (γ') and two catalytic subunits (α'). The catalytic subunit of cone PDE6 contains a C-terminus prenylation motif. Deletion of PDE6α' C-terminal prenylation motif is linked to achromatopsia (ACHM), a type of color blindness in humans. However, mechanisms behind the disease and roles for lipidation of cone PDE6 in vision are unknown. In this study, we generated two knock-in mouse models expressing mutant variants of cone PDE6α' lacking the prenylation motif (PDE6α'∆C). We find that the C-terminal prenylation motif is the primary determinant for the association of cone PDE6 protein with membranes. Cones from PDE6α'∆C homozygous mice are less sensitive to light, and their response to light is delayed, whereas cone function in heterozygous PDE6α'∆C/+ mice is unaffected. Surprisingly, the expression level and assembly of cone PDE6 protein were unaltered in the absence of prenylation. Unprenylated assembled cone PDE6 in PDE6α'∆C homozygous animals is mislocalized and enriched in the cone inner segment and synaptic terminal. Interestingly, the disk density and the overall length of cone OS in PDE6α'∆C homozygous mutants are altered, highlighting a novel structural role for PDE6 in maintaining cone OS length and morphology. The survival of cones in the ACHM model generated in this study bodes well for gene therapy as a treatment option for restoring vision in patients with similar mutations in the PDE6C gene.
Collapse
Affiliation(s)
- Faezeh Moakedi
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Rawaa Aljammal
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Deepak Poria
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Scott B Rhodes
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Chyanne Reid
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Munezero D, Aliff H, Salido E, Saravanan T, Sanzhaeva U, Guan T, Ramamurthy V. HSP90α is needed for the survival of rod photoreceptors and regulates the expression of rod PDE6 subunits. J Biol Chem 2023; 299:104809. [PMID: 37172722 PMCID: PMC10250166 DOI: 10.1016/j.jbc.2023.104809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90β. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging. In this article, we assessed the role of HSP90α in the retina using a novel HSP90α murine knockout model. Our findings show that HSP90α is essential for rod photoreceptor function but was dispensable in cone photoreceptors. In the absence of HSP90α, photoreceptors developed normally. We observed rod dysfunction in HSP90α knockout at 2 months with the accumulation of vacuolar structures, apoptotic nuclei, and abnormalities in the outer segments. The decline in rod function was accompanied by progressive degeneration of rod photoreceptors that was complete at 6 months. The deterioration in cone function and health was a "bystander effect" that followed the degeneration of rods. Tandem mass tag proteomics showed that HSP90α regulates the expression levels of <1% of the retinal proteome. More importantly, HSP90α was vital in maintaining rod PDE6 and AIPL1 cochaperone levels in rod photoreceptor cells. Interestingly, cone PDE6 levels were unaffected. The robust expression of HSP90β paralog in cones likely compensates for the loss of HSP90α. Overall, our study demonstrated the critical need for HSP90α chaperone in the maintenance of rod photoreceptors and showed potential substrates regulated by HSP90α in the retina.
Collapse
Affiliation(s)
- Daniella Munezero
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter Aliff
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Ezequiel Salido
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Thamaraiselvi Saravanan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Urikhan Sanzhaeva
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Tongju Guan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Visvanathan Ramamurthy
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
7
|
Motipally SI, Myers B, Sechrest ER, Sokolov D, Murphy J, Kolandaivelu S. A Modified Acyl-RAC Method of Isolating Retinal Palmitoyl Proteome for Subsequent Detection through LC-MS/MS. Bio Protoc 2023; 13:e4654. [PMID: 37113337 PMCID: PMC10127047 DOI: 10.21769/bioprotoc.4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 03/01/2023] [Indexed: 04/29/2023] Open
Abstract
Palmitoylation is a unique and reversible posttranslational lipid modification (PTM) that plays a critical role in many cellular events, including protein stability, activity, membrane association, and protein-protein interactions. The dynamic nature of palmitoylation dictates the efficient sorting of various retinal proteins to specific subcellular compartments. However, the underlying mechanism through which palmitoylation supports efficient protein trafficking in the retina remains unclear. Recent studies show that palmitoylation can also function as a signaling PTM, underlying epigenetic regulation and homeostasis in the retina. Efficient isolation of retinal palmitoyl proteome will pave the way to a better understanding of the role(s) for palmitoylation in visual function. The standard methods for detecting palmitoylated proteins employ 3H- or 14C-radiolabeled palmitic acid and have many limitations, including poor sensitivity. Relatively recent studies use thiopropyl Sepharose 6B resin, which offers efficient detection of palmitoylated proteome but is now discontinued from the market. Here, we describe a modified acyl resin-assisted capture (Acyl-RAC) method using agarose S3 high-capacity resin to purify palmitoylated proteins from the retina and other tissues, which is greatly compatible with downstream processing by LC-MS/MS. Unlike other palmitoylation assays, the present protocol is easy to perform and cost-effective. Graphical abstract.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Boyden Myers
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Emily R Sechrest
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - David Sokolov
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, HSC North, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
8
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
9
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
10
|
Leung A, Sacristan-Reviriego A, Perdigão PRL, Sai H, Georgiou M, Kalitzeos A, Carr AJF, Coffey PJ, Michaelides M, Bainbridge J, Cheetham ME, van der Spuy J. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis. Stem Cell Reports 2022; 17:2187-2202. [PMID: 36084639 PMCID: PMC9561542 DOI: 10.1016/j.stemcr.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 10/26/2022] Open
Abstract
Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.
Collapse
Affiliation(s)
- Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | - Hali Sai
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - James Bainbridge
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
11
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
12
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
13
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
14
|
Sacristan-Reviriego A, Le HM, Georgiou M, Meunier I, Bocquet B, Roux AF, Prodromou C, Bainbridge J, Michaelides M, van der Spuy J. Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Sci Rep 2020; 10:17520. [PMID: 33067476 PMCID: PMC7567831 DOI: 10.1038/s41598-020-74516-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Disease-causing sequence variants in the highly polymorphic AIPL1 gene are associated with a broad spectrum of inherited retinal diseases ranging from severe autosomal recessive Leber congenital amaurosis to later onset retinitis pigmentosa. AIPL1 is a photoreceptor-specific co-chaperone that interacts with HSP90 to facilitate the stable assembly of retinal cGMP phosphodiesterase, PDE6. In this report, we establish unequivocal correlations between patient clinical phenotypes and in vitro functional assays of uncharacterized AIPL1 variants. We confirm that missense and nonsense variants in the FKBP-like and tetratricopeptide repeat domains of AIPL1 lead to the loss of both HSP90 interaction and PDE6 activity, confirming these variants cause LCA. In contrast, we report the association of p.G122R with milder forms of retinal degeneration, and show that while p.G122R had no effect on HSP90 binding, the modulation of PDE6 cGMP levels was impaired. The clinical history of these patients together with our functional assays suggest that the p.G122R variant is a rare hypomorphic allele with a later disease onset, amenable to therapeutic intervention. Finally, we report the primate-specific proline-rich domain to be dispensable for both HSP90 interaction and PDE6 activity. We conclude that variants investigated in this domain do not cause disease, with the exception of p.A352_P355del associated with autosomal dominant cone-rod dystrophy.
Collapse
Affiliation(s)
| | - Hoang Mai Le
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Isabelle Meunier
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Beatrice Bocquet
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | | | - James Bainbridge
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Jacqueline van der Spuy
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
15
|
Boehm AN, Bialas J, Catone N, Sacristan-Reviriego A, van der Spuy J, Groettrup M, Aichem A. The ubiquitin-like modifier FAT10 inhibits retinal PDE6 activity and mediates its proteasomal degradation. J Biol Chem 2020; 295:14402-14418. [PMID: 32817338 DOI: 10.1074/jbc.ra120.013873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
The retina-specific chaperone aryl hydrocarbon interacting protein-like 1 (AIPL1) is essential for the correct assembly of phosphodiesterase 6 (PDE6), which is a pivotal effector enzyme for phototransduction and vision because it hydrolyzes cGMP. AIPL1 interacts with the cytokine-inducible ubiquitin-like modifier FAT10, which gets covalently conjugated to hundreds of proteins and targets its conjugation substrates for proteasomal degradation, but whether FAT10 affects PDE6 function or turnover is unknown. Here, we show that FAT10 mRNA is expressed in human retina and identify rod PDE6 as a retina-specific substrate of FAT10 conjugation. We found that AIPL1 stabilizes the FAT10 monomer and the PDE6-FAT10 conjugate. Additionally, we elucidated the functional consequences of PDE6 FAT10ylation. On the one hand, we demonstrate that FAT10 targets PDE6 for proteasomal degradation by formation of a covalent isopeptide linkage. On the other hand, FAT10 inhibits PDE6 cGMP hydrolyzing activity by noncovalently interacting with the PDE6 GAFa and catalytic domains. Therefore, FAT10 may contribute to loss of PDE6 and, as a consequence, degeneration of retinal cells in eye diseases linked to inflammation and inherited blindness-causing mutations in AIPL1.
Collapse
Affiliation(s)
- Annika N Boehm
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany .,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
16
|
Slenter IJM, Djajadiningrat-Laanen SC, de Vries I, Dijkman MA. Intoxication with Ornithogalum arabicum is a potential cause of visual impairment and irreversible blindness in dogs. Toxicon X 2020; 4:100014. [PMID: 32550571 PMCID: PMC7286106 DOI: 10.1016/j.toxcx.2019.100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 01/04/2023] Open
Abstract
We describe two dogs with persistent visual impairment after initially mild intoxication signs following ingestion of Ornithogalum arabicum plant material. Additionally, a 12-year analysis of the Dutch Poisons Information Centre database additionally reveals that ingestion of Ornithogalum plant material can be potentially life-threatening to companion animals. Further studies are necessary to confirm the involvement of cardiac glycoside-like toxins present in Ornithogalum arabicum and the toxicity of these substances to the retina. Intoxication with Ornithogalum arabicum leads to visual impairment and irreversible blindness in dogs. Intoxication with Ornithogalum arabicum may be life-threatening in companion animals. Ornithogalum arabicum and other species are suspected to contain heart glycosides.
Collapse
Affiliation(s)
- Inge J M Slenter
- Ophthalmology Section, Department of Clinical Sciences of Companion Animals, Utrecht University, the Netherlands
| | | | - Irma de Vries
- Dutch Poisons Information Centre (DPIC), University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Marieke A Dijkman
- Dutch Poisons Information Centre (DPIC), University Medical Centre Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
17
|
Retinal Organoids derived from hiPSCs of an AIPL1-LCA Patient Maintain Cytoarchitecture despite Reduced levels of Mutant AIPL1. Sci Rep 2020; 10:5426. [PMID: 32214115 PMCID: PMC7096529 DOI: 10.1038/s41598-020-62047-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor-specific chaperone that stabilizes the effector enzyme of phototransduction, cGMP phosphodiesterase 6 (PDE6). Mutations in the AIPL1 gene cause a severe inherited retinal dystrophy, Leber congenital amaurosis type 4 (LCA4), that manifests as the loss of vision during the first year of life. In this study, we generated three-dimensional (3D) retinal organoids (ROs) from human induced pluripotent stem cells (hiPSCs) derived from an LCA4 patient carrying a Cys89Arg mutation in AIPL1. This study aimed to (i) explore whether the patient hiPSC-derived ROs recapitulate LCA4 disease phenotype, and (ii) generate a clinically relevant resource to investigate the molecular mechanism of disease and safely test novel therapies for LCA4 in vitro. We demonstrate reduced levels of the mutant AIPL1 and PDE6 proteins in patient organoids, corroborating the findings in animal models; however, patient-derived organoids maintained retinal cell cytoarchitecture despite significantly reduced levels of AIPL1.
Collapse
|
18
|
Sundar JC, Munezero D, Bryan-Haring C, Saravanan T, Jacques A, Ramamurthy V. Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism. Hum Mol Genet 2020; 29:394-406. [PMID: 31925423 PMCID: PMC7015845 DOI: 10.1093/hmg/ddz299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is a debilitating blinding disease affecting over 1.5 million people worldwide, but the mechanisms underlying this disease are not well understood. One of the common models used to study RP is the retinal degeneration-10 (rd10) mouse, which has a mutation in Phosphodiesterase-6b (Pde6b) that causes a phenotype mimicking the human disease. In rd10 mice, photoreceptor cell death occurs with exposure to normal light conditions, but as demonstrated in this study, rearing these mice in dark preserves their retinal function. We found that inactivating rhodopsin signaling protected photoreceptors from degeneration suggesting that the pathway activated by this G-protein-coupled receptor is causing light-induced photoreceptor cell death in rd10 mice. However, inhibition of transducin signaling did not prevent the loss of photoreceptors in rd10 mice reared under normal light conditions implying that the degeneration caused by rhodopsin signaling is not mediated through its canonical G-protein transducin. Inexplicably, loss of transducin in rd10 mice also led to photoreceptor cell death in darkness. Furthermore, we found that the rd10 mutation in Pde6b led to a reduction in the assembled PDE6αβγ2 complex, which was corroborated by our data showing mislocalization of the γ subunit. Based on our findings and previous studies, we propose a model where light activates a non-canonical pathway mediated by rhodopsin but independent of transducin that sensitizes cyclic nucleotide gated channels to cGMP and causes photoreceptor cell death. These results generate exciting possibilities for treatment of RP patients without affecting their vision or the canonical phototransduction cascade.
Collapse
Affiliation(s)
- Jesse C Sundar
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Daniella Munezero
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Caitlyn Bryan-Haring
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Thamaraiselvi Saravanan
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Angelica Jacques
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Visvanathan Ramamurthy
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
- Departments of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
19
|
The Leber Congenital Amaurosis-Linked Protein AIPL1 and Its Critical Role in Photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:381-386. [PMID: 29721967 DOI: 10.1007/978-3-319-75402-4_47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mutations in the photoreceptor/pineal-expressed gene, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), are mainly associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy that occurs in early childhood. AIPL1 functions as a photoreceptor-specific molecular co-chaperone that interacts specifically with the molecular chaperones HSP90 and HSP70 to facilitate the correct folding and assembly of the retinal cGMP phosphodiesterase (PDE6) holoenzyme. The absence of AIPL1 leads to a dramatic degeneration of rod and cone cells and a complete loss of any light-dependent electrical response. Here we review the important role of AIPL1 in photoreceptor functionality.
Collapse
|
20
|
Du J, An J, Linton JD, Wang Y, Hurley JB. How Excessive cGMP Impacts Metabolic Proteins in Retinas at the Onset of Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:289-295. [PMID: 29721955 DOI: 10.1007/978-3-319-75402-4_35] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aryl-hydrocarbon receptor interacting protein-like 1 (AIPL1) is essential to stabilize cGMP phosphodiesterase 6 (PDE6) in rod photoreceptors. Mutation of AIPL1 leads to loss of PDE6, accumulation of intracellular cGMP, and rapid degeneration of rods. To understand the metabolic basis for the photoreceptor degeneration caused by excessive cGMP, we performed proteomics and phosphoproteomics analyses on retinas from AIPL1-/- mice at the onset of rod cell death. AIPL1-/- retinas have about 18 times less than normal PDE6a and no detectable PDE6b. We identified twelve other proteins and thirty-nine phosphorylated proteins related to cell metabolism that are significantly altered preceding the massive degeneration of rods. They include transporters, kinases, phosphatases, transferases, and proteins involved in mitochondrial bioenergetics and metabolism of glucose, lipids, amino acids, nucleotides, and RNA. In AIPLI-/- retinas mTOR and proteins involved in mitochondrial energy production and lipid synthesis are more dephosphorylated, but glycolysis proteins and proteins involved in leucine catabolism are more phosphorylated than in normal retinas. Our findings indicate that elevating cGMP rewires cellular metabolism prior to photoreceptor degeneration and that targeting metabolism may be a productive strategy to prevent or slow retinal degeneration.
Collapse
Affiliation(s)
- Jianhai Du
- Departments of Ophthalmology, and Biochemistry, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan D Linton
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Yekai Wang
- Departments of Ophthalmology, and Biochemistry, West Virginia University, Morgantown, WV, USA
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Perdigao PRL, van der Spuy J. Gene and Cell Therapy for AIPL1-Associated Leber Congenital Amaurosis: Challenges and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:97-101. [PMID: 31884595 DOI: 10.1007/978-3-030-27378-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leber congenital amaurosis (LCA) caused by AIPL1 mutations is one of the most severe forms of inherited retinal degeneration (IRD). The rapid and extensive photoreceptor degeneration challenges the development of potential treatments. Nevertheless, preclinical studies show that both gene augmentation and photoreceptor transplantation can regenerate and restore retinal function in animal models of AIPL1-associated LCA. However, questions regarding long-term benefit and safety still remain as these therapies advance towards clinical application. Ground-breaking advances in stem cell technology and genome editing are examples of alternative therapeutic approaches and address some of the limitations associated with previous methods. The continuous development of these cutting-edge biotechnologies paves the way towards a bright future not only for AIPL1-associated LCA patients but also other forms of IRD.
Collapse
|
22
|
Deng WT, Kolandaivelu S, Dinculescu A, Li J, Zhu P, Chiodo VA, Ramamurthy V, Hauswirth WW. Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits. Front Mol Neurosci 2018; 11:233. [PMID: 30038560 PMCID: PMC6046437 DOI: 10.3389/fnmol.2018.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Rod and cone phosphodiesterase 6 (PDE6) are key effector enzymes of the vertebrate phototransduction pathway. Rod PDE6 consists of two catalytic subunits PDE6α and PDE6β and two identical inhibitory PDE6γ subunits, while cone PDE6 is composed of two identical PDE6α’ catalytic subunits and two identical cone-specific PDE6γ’ inhibitory subunits. Despite their prominent function in regulating cGMP levels and therefore rod and cone light response properties, it is not known how each subunit contributes to the functional differences between rods and cones. In this study, we generated an rd10/cpfl1 mouse model lacking rod PDE6β and cone PDE6α’ subunits. Both rod and cone photoreceptor cells are degenerated with age and all PDE6 subunits degrade in rd10/cpfl1 mice. We expressed cone PDE6α’ in both rods and cones of rd10/cpfl1 mice by adeno-associated virus (AAV)-mediated delivery driven by the ubiquitous, constitutive small chicken β-actin promoter. We show that expression of PDE6α’ rescues rod function in rd10/cpfl1 mice, and the restoration of rod light sensitivity is attained through restoration of endogenous rod PDE6γ and formation of a functional PDE6α’γ complex. However, improved photopic cone responses were achieved only after supplementation of both cone PDE6α’ and PDE6γ’ subunits but not by PDE6α’ treatment alone. We observed a two fold increase of PDE6α’ levels in the eyes injected with both PDE6α’ plus PDE6γ’ relative to eyes receiving PDE6α’ alone. Despite the presence of both PDE6γ’ and PDE6γ, the majority of PDE6α’ formed functional complexes with PDE6γ’, suggesting that PDE6α’ has a higher association affinity for PDE6γ’ than for PDE6γ. These results suggest that the presence of PDE6γ’ augments cone PDE6 assembly and enhances its stability. Our finding has important implication for gene therapy of PDE6α’-associated achromatopsia.
Collapse
Affiliation(s)
- Wen-Tao Deng
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Jie Li
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Sacristan-Reviriego A, Bellingham J, Prodromou C, Boehm AN, Aichem A, Kumaran N, Bainbridge J, Michaelides M, van der Spuy J. The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6. Hum Mol Genet 2018; 26:4465-4480. [PMID: 28973376 PMCID: PMC5886190 DOI: 10.1093/hmg/ddx334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of alternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetratricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 significantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6α subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6α subunit in the cytosol. In summary, we have successfully validated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients.
Collapse
Affiliation(s)
| | | | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Yadav RP, Artemyev NO. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal 2017; 40:183-189. [PMID: 28939106 PMCID: PMC6022367 DOI: 10.1016/j.cellsig.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Molecular chaperones play pivotal roles in protein folding, quality control, assembly of multimeric protein complexes, protein trafficking, stress responses, and other essential cellular processes. Retinal photoreceptor rod and cone cells have an unusually high demand for production, quality control, and trafficking of key phototransduction components, and thus, require a robust and specialized chaperone machinery to ensure the fidelity of sensing and transmission of visual signals. Misfolding and/or mistrafficking of photoreceptor proteins are known causes for debilitating blinding diseases. Phosphodiesterase 6, the effector enzyme of the phototransduction cascade, relies on a unique chaperone aryl hydrocarbon receptor (AhR)-interacting protein-like 1 (AIPL1) for its stability and function. The structure of AIPL1 and its relationship with the client remained obscure until recently. This review summarizes important recent advances in understanding the mechanisms underlying normal function of AIPL1 and the protein perturbations caused by pathogenic mutations.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
25
|
Iribarne M, Masai I. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 2017; 31:88-101. [PMID: 28812418 DOI: 10.1080/01677063.2017.1358268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.
Collapse
Affiliation(s)
- Maria Iribarne
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| | - Ichiro Masai
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| |
Collapse
|
26
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Iribarne M, Nishiwaki Y, Nakamura S, Araragi M, Oguri E, Masai I. Aipl1 is required for cone photoreceptor function and survival through the stability of Pde6c and Gc3 in zebrafish. Sci Rep 2017; 7:45962. [PMID: 28378769 PMCID: PMC5381001 DOI: 10.1038/srep45962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Genetic mutations in aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) cause photoreceptor degeneration associated with Leber congenital amaurosis 4 (LCA4) in human patients. Here we report retinal phenotypes of a zebrafish aipl1 mutant, gold rush (gosh). In zebrafish, there are two aipl1 genes, aipl1a and aipl1b, which are expressed mainly in rods and cones, respectively. The gosh mutant gene encodes cone-specific aipl1, aipl1b. Cone photoreceptors undergo progressive degeneration in the gosh mutant, indicating that aipl1b is required for cone survival. Furthermore, the cone-specific subunit of cGMP phosphodiesterase 6 (Pde6c) is markedly decreased in the gosh mutant, and the gosh mutation genetically interacts with zebrafish pde6c mutation eclipse (els). These data suggest that Aipl1 is required for Pde6c stability and function. In addition to Pde6c, we found that zebrafish cone-specific guanylate cyclase, zGc3, is also decreased in the gosh and els mutants. Furthermore, zGc3 knockdown embryos showed a marked reduction in Pde6c. These observations illustrate the interdependence of cGMP metabolism regulators between Aipl1, Pde6c, and Gc3 in photoreceptors.
Collapse
Affiliation(s)
- Maria Iribarne
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Yuko Nishiwaki
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Shohei Nakamura
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Masato Araragi
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Eri Oguri
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Ichiro Masai
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
28
|
Yu L, Yadav RP, Artemyev NO. NMR resonance assignments of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) in complex with a farnesyl ligand. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:111-115. [PMID: 28236226 PMCID: PMC5385707 DOI: 10.1007/s12104-017-9730-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a specialized chaperone of phosphodiesterase 6, a key effector enzyme in the phototransduction cascade. The FKBP domain of AIPL1 is known to bind the farnesyl moiety of PDE6. Mutations in AIPL1, including many missense mutations in the FKBP domain, have been associated with Leber congenital amaurosis, a severe blinding disease. Here, we report the backbone and sidechain assignments of the N-terminal FKBPΔloop (with a loop deletion) of AIPL1 in complex with a farnesyl ligand. We also compare the predicted secondary structures of FKBPΔloop with those of a highly homologous AIP FKBP. These results show that the FKBP domains of AIP and AIPL1 have similar folds, but display subtle differences in structure and dynamics. Therefore, these assignments provide a framework for further elucidation of the mechanism of farnesyl binding and the function of AIPL1 FKBP.
Collapse
Affiliation(s)
- Liping Yu
- Departments of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- NMR Core Facility, Carver College of Medicine, University of Iowa, 285 Newton Road, Iowa City, IA, 52242, USA.
| | - Ravi P Yadav
- Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Nikolai O Artemyev
- Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA.
- Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
29
|
Murphy J, Kolandaivelu S. Palmitoylation of Progressive Rod-Cone Degeneration (PRCD) Regulates Protein Stability and Localization. J Biol Chem 2016; 291:23036-23046. [PMID: 27613864 DOI: 10.1074/jbc.m116.742767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a photoreceptor outer segment (OS) disc-specific protein with unknown function that is associated with retinitis pigmentosa (RP). The most common mutation in PRCD linked with severe RP phenotype is substitution of the only cysteine to tyrosine (C2Y). In this study, we find that PRCD is post-translationally modified by a palmitoyl lipid group at the cysteine residue linked with RP. Disrupting PRCD palmitoylation either chemically or by genetically eliminating the modified cysteine dramatically affects the stability of PRCD. Furthermore, in vivo electroporation of PRCD C2Y mutant in the mouse retina demonstrates that the palmitoylation of PRCD is important for its proper localization in the photoreceptor OS. Mutant PRCD C2Y was found in the inner segment in contrast to normal localization of WT PRCD in the OS. Our results also suggest that zDHHC3, a palmitoyl acyltransferase (PAT), catalyzes the palmitoylation of PRCD in the Golgi compartment. In conclusion, we find that the palmitoylation of PRCD is crucial for its trafficking to the photoreceptor OS and mislocalization of this protein likely leads to RP-related phenotypes.
Collapse
Affiliation(s)
- Joseph Murphy
- From the Department of Ophthalmology, West Virginia University Eye institute, Morgantown, West Virginia 26506
| | - Saravanan Kolandaivelu
- From the Department of Ophthalmology, West Virginia University Eye institute, Morgantown, West Virginia 26506
| |
Collapse
|
30
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Yadav RP, Majumder A, Gakhar L, Artemyev NO. Extended conformation of the proline-rich domain of human aryl hydrocarbon receptor-interacting protein-like 1: implications for retina disease. J Neurochem 2015; 135:165-75. [PMID: 26139345 DOI: 10.1111/jnc.13223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 06/25/2015] [Indexed: 12/18/2022]
Abstract
Mutations in the primate-specific proline-rich domain (PRD) of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are thought to cause Leber congenital amaurosis or dominant cone-rod dystrophy. The role of PRD and the mechanisms of PRD mutations are poorly understood. Here, we have examined properties of hAIPL1 and effects of the PRD mutations on protein structure and function. Solution structures of hAIPL1, hAIPL11-316 with PRD truncation, and the P351Δ12 and P376S mutants were examined by small angle X-ray scattering. Our analysis suggests that PRD assumes an extended conformation and does not interact with the FK506-binding and tetratricopeptide domains. The PRD truncation, but not PRD mutations, reduced the molecule's radius of gyration and maximum dimension. We demonstrate that hAIPL1 is a monomeric protein, and its secondary structure and stability are not affected by the PRD mutations. PRD itself is an extended monomeric random coil. The PRD mutations caused little or no changes in hAIPL1 binding to known partners, phosphodiesterase-6A and HSP90. We also identified the γ-subunit of phosphodiesterase-6 as a novel partner of hAIPL1 and hypothesize that this interaction is altered by P351Δ12. Our results highlight the complexity of mechanisms of PRD mutations in disease and the possibility that certain mutations are benign variants. Mutations in the proline-rich domain (PRD) of human AIPL1 cause severe retinal diseases, yet the role of PRD and the mechanisms of PRD mutations are unknown. Here, we describe a SAXS-derived solution structure of AIPL1 and functional properties of disease-linked AIPL1-PRD mutants. This structure and functional analyses provide a framework for understanding the mechanisms of PRD in disease.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Anurima Majumder
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.,Protein Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
32
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
33
|
Zhang Z, He F, Constantine R, Baker ML, Baehr W, Schmid MF, Wensel TG, Agosto MA. Domain organization and conformational plasticity of the G protein effector, PDE6. J Biol Chem 2015; 290:12833-43. [PMID: 25809480 DOI: 10.1074/jbc.m115.647636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration.
Collapse
Affiliation(s)
- Zhixian Zhang
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Feng He
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Ryan Constantine
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Matthew L Baker
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Wolfgang Baehr
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Michael F Schmid
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Theodore G Wensel
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Melina A Agosto
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
34
|
Hidalgo-de-Quintana J, Schwarz N, Meschede IP, Stern-Schneider G, Powner MB, Morrison EE, Futter CE, Wolfrum U, Cheetham ME, van der Spuy J. The Leber congenital amaurosis protein AIPL1 and EB proteins co-localize at the photoreceptor cilium. PLoS One 2015; 10:e0121440. [PMID: 25799540 PMCID: PMC4370678 DOI: 10.1371/journal.pone.0121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose The aim of this study was to investigate the interaction and co-localization of novel interacting proteins with the Leber congenital amaurosis (LCA) associated protein aryl hydrocarbon receptor interacting protein-like 1 (AIPL1). Methods The CytoTrapXR yeast two-hybrid system was used to screen a bovine retinal cDNA library. A novel interaction between AIPL1 and members of the family of EB proteins was confirmed by directed yeast two-hybrid analysis and co-immunoprecipitation assays. The localization of AIPL1 and the EB proteins in cultured cells and in retinal cryosections was examined by immunofluorescence microscopy and cryo-immunogold electron microscopy. Results Yeast two-hybrid (Y2H) analysis identified the interaction between AIPL1 and the EB proteins, EB1 and EB3. EB1 and EB3 were specifically co-immunoprecipitated with AIPL1 from SK-N-SH neuroblastoma cells. In directed 1:1 Y2H analysis, the interaction of EB1 with AIPL1 harbouring the LCA-causing mutations A197P, C239R and W278X was severely compromised. Immunofluorescent confocal microscopy revealed that AIPL1 did not co-localize with endogenous EB1 at the tips of microtubules, endogenous EB1 at the microtubule organising centre following disruption of the microtubule network, or with endogenous β-tubulin. Moreover, AIPL1 did not localize to primary cilia in ARPE-19 cells, whereas EB1 co-localized with the centrosomal marker pericentrin at the base of primary cilia. However, both AIPL1 and the EB proteins, EB1 and EB3, co-localized with centrin-3 in the connecting cilium of photoreceptor cells. Cryo-immunogold electron microscopy confirmed the co-localization of AIPL1 and EB1 in the connecting cilia in human retinal photoreceptors. Conclusions AIPL1 and the EB proteins, EB1 and EB3, localize at the connecting cilia of retinal photoreceptor cells, but do not co-localize in the cellular microtubule network or in primary cilia in non-retinal cells. These findings suggest that AIPL1 function in these cells is not related to the role of EB proteins in microtubule dynamics or primary ciliogenesis, but that their association may be related to a specific role in the specialized cilia apparatus of retinal photoreceptors.
Collapse
Affiliation(s)
- Juan Hidalgo-de-Quintana
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Nele Schwarz
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ingrid P. Meschede
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Gabriele Stern-Schneider
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Michael B. Powner
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ewan E. Morrison
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds, United Kingdom
| | - Clare E. Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Michael E. Cheetham
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jacqueline van der Spuy
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Assaf F, Zhang J, Ogilvie JM. Phosphodiesterase 6β Expression In Developing Mouse Retina. IMPULSE (COLUMBIA, S.C.) 2015; 2015:http://impulse.appstate.edu/articles/2015/phosphodiesterase-6%CE%B2-expression-developing-mouse-retina. [PMID: 26877830 PMCID: PMC4748965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rd1 mouse is a well-studied model of retinitis pigmentosa (RP), an inherited retinal degenerative disease affecting approximately 1 in 4000 people. It is characterized by a mutation in the Pde6b gene that codes for Phosphodiesterase 6β (PDE6β), a downstream effector of phototransduction. Pde6b gene expression occurs embryonically in mouse retina, whereas other proteins involved in phototransduction are expressed around postnatal day 5 (P5). The primary aim of this study is to investigate the temporal and spatial expression pattern of PDE6β protein during photoreceptor development. Using Western blots with wild type and rd1 mouse retinas from P2 - P21 we demonstrated that PDE6β protein is expressed in wild type retinas by P2 and is not detected in rd1 retinas. The earliest detection of PDE6β in wild type retinas by immunohistochemistry was at P6, where it was confined to the apical region of the photoreceptor layer. The expression of PDE6β protein prior to differentiation of photoreceptor cells and prior to expression of other phototransduction proteins is consistent with the hypothesis that PDE6β may play a role during photoreceptor development distinct from its role in phototransduction. Our lab previously showed that Prenylated Rab Acceptor 1 (PRA1), a vesicular trafficking protein, is downregulated in the developing rd1 retina, although its function in the retina is unknown. The second aim of this study was to explore the relationship between PRA1 and PDE6β. We used immunohistochemistry to determine whether the two proteins are co-localized during the postnatal differentiation period. However, no co-localization between PDE6β and PRA1 was detected. The function of PRA1 in developing retina remains to be elucidated.
Collapse
Affiliation(s)
- Fadi Assaf
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Ju Zhang
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103
| | | |
Collapse
|
36
|
Christiansen JR, Ramamurthy V. Greasing the protein biosynthesis machinery of photoreceptor neurons: Role for postprenylation processing of proteins. CELLULAR LOGISTICS 2014; 2:15-19. [PMID: 22645706 PMCID: PMC3355970 DOI: 10.4161/cl.19804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Daily phagocytosis of outer segments (OS) places extraordinary demands on protein biosynthesis and trafficking in photoreceptor neurons. While the members and roles of the phototransduction pathway in the OS are well characterized, details about protein trafficking are just beginning to emerge. Phosphodiesterase6 (PDE6), the effector enzyme in phototransduction cascade, serves as an example of the steps multimeric proteins must pass through to achieve their functional state in the OS. Genetic model systems have recently provided snapshots of various steps in the pathway, as experimental difficulties such as an inability to maintain ciliated photoreceptor outer segments or express functional PDE6 holoenzyme in vitro necessitate in vivo studies. We will highlight the significant findings, their implications to blinding diseases, as well as discuss the gaps requiring further investigation.
Collapse
|
37
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Singh RK, Kolandaivelu S, Ramamurthy V. Early alteration of retinal neurons in Aipl1-/- animals. Invest Ophthalmol Vis Sci 2014; 55:3081-92. [PMID: 24736053 DOI: 10.1167/iovs.13-13728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in the photoreceptor cell-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) lead to Leber congenital amaurosis (LCA4), retinitis pigmentosa, and cone-rod dystrophy. Gene therapy appears to be promising in the treatment for AIPL1-mediated vision loss in humans. Prior to initiating these treatments, however, it is crucial to understand how the retinal neurons remodel themselves in response to photoreceptor cell degeneration. In this study, using an animal model for AIPL1-LCA, Aipl1(-/-) mice, we investigate the changes in postreceptoral retinal neurons during the course of photoreceptor cell loss. METHODS Morphology of the Aipl1(-/-) retina from postnatal day 8 to 150 was compared to that of age-matched, wild-type C57Bl6/J retina (WT) by immunocytochemistry using cell-specific markers. RESULTS Expression of postsynaptic proteins in bipolar cells is reduced prior to photoreceptor cell degeneration at postnatal day 8. Bipolar and horizontal cells retract their dendrites. Cell bodies and axons of bipolar and horizontal cells are disorganized during the course of degeneration. Müller cell processes become hypertrophic and form a dense fibrotic layer outside the inner nuclear layer. CONCLUSIONS An early defect in photoreceptor cells in the AIPL1-LCA mouse model affects the expression of postsynaptic markers, suggesting abnormal development of bipolar synapses. Once degeneration of photoreceptor cells is initiated, remodeling of retinal neurons in the Aipl1(-/-) animal is rapid.
Collapse
Affiliation(s)
- Ratnesh Kumar Singh
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
39
|
Shukla R, Kannabiran C, Jalali S. Genetics of Leber congenital amaurosis: an update. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Roosing S, Collin RWJ, den Hollander AI, Cremers FPM, Siemiatkowska AM. Prenylation defects in inherited retinal diseases. J Med Genet 2014; 51:143-51. [DOI: 10.1136/jmedgenet-2013-102138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Li D, Jin C, Jiao X, Li L, Bushra T, Naeem MA, Butt NH, Husnain T, Sieving PA, Riazuddin S, Riazuddin SA, Hejtmancik JF. AIPL1 implicated in the pathogenesis of two cases of autosomal recessive retinal degeneration. Mol Vis 2014; 20:1-14. [PMID: 24426771 PMCID: PMC3888496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To localize and identify the gene and mutations causing autosomal recessive retinal dystrophy in two consanguineous Pakistani families. METHODS Consanguineous families from Pakistan were ascertained to be affected with autosomal recessive retinal degeneration. All affected individuals underwent thorough ophthalmologic examinations. Blood samples were collected, and genomic DNA was extracted using a salting out procedure. Genotyping was performed using microsatellite markers spaced at approximately 10 cM intervals. Two-point linkage analysis was performed with the lod score method. Direct DNA sequencing of amplified genomic DNA was performed for mutation screening of candidate genes. RESULTS Genome-wide linkage scans yielded a lod score of 3.05 at θ=0 for D17S1832 and 3.82 at θ=0 for D17S938, localizing the disease gene to a 12.22 cM (6.64 Mb) region flanked by D17S1828 and D17S1852 for family 61032 and family 61227, which contains aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), a gene previously implicated in recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. Sequencing of AIPL1 showed a homozygous c.773G>C (p.Arg258Pro) sequence change in all affected individuals of family 61032 and a homozygous c.465G>T (p.(H93_Q155del)) change in all affected members of family 61227. CONCLUSIONS The results strongly suggest that the c.773G>C (p.R258P) and c.465G>T (p.(H93_Q155del)) mutations in AIPL1 cause autosomal recessive retinal degeneration in these consanguineous Pakistani families.
Collapse
Affiliation(s)
- David Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| | - Chongfei Jin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD,Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| | - Lin Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| | - Tahmina Bushra
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem H. Butt
- Allama Iqbal Medical College, University of Health Sciences, Lahore Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Paul A. Sieving
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore Pakistan
| | - S. Amer Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda MD
| |
Collapse
|
42
|
AIPL1 protein and its indispensable role in cone photoreceptor function and survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:43-8. [PMID: 24664679 DOI: 10.1007/978-1-4614-3209-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in Aryl hydrocarbon receptor interacting protein like-1 (AIPL1) are linked to Leber congenital amaurosis (LCA), a severe blinding disease that occurs in early childhood. The severity of disease is due to requirement for AIPL1 in both rod and cone photoreceptor cell survival and function. Aipl1 is expressed very early during retinal development in both rods and cones. In adult primates, robust expression of Aipl1 is found in rods but not in cones. Mouse models revealed the importance of AIPL1 in stability and function of heteromeric phosphodiesterase 6 (PDE6), an enzyme needed for visual response. However, the need for AIPL1 in cone cell survival and function is not clearly understood. In this chapter, using results obtained from multiple lines of animal models, we discuss the role for AIPL1 in photoreceptors.
Collapse
|
43
|
Kolandaivelu S, Singh RK, Ramamurthy V. AIPL1, A protein linked to blindness, is essential for the stability of enzymes mediating cGMP metabolism in cone photoreceptor cells. Hum Mol Genet 2013; 23:1002-12. [PMID: 24108108 DOI: 10.1093/hmg/ddt496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor interacting protein like-1 (AIPL1) are linked to blinding diseases, including Leber congenital amaurosis (LCA) and cone dystrophy. While it is apparent that AIPL1 is needed for rod and cone function, the role of AIPL1 in cones is not clear. In this study, using an all-cone animal model lacking Aipl1, we show a light-independent degeneration of M- and S-opsin containing cones that proceeds in a ventral-to-dorsal gradient. Aipl1 is needed for stability, assembly and membrane association of cone PDE6, an enzyme crucial for photoreceptor function and survival. Furthermore, RetGC1, a protein linked to LCA that is needed for cGMP synthesis, was dramatically reduced in cones lacking Aipl1. A defect in RetGC1 is supported by our finding that cones lacking Aipl1 exhibited reduced levels of cGMP. These findings are in contrast to the role of Aipl1 in rods, where destabilization of rod PDE6 results in an increase in cGMP levels, which drives rapid rod degeneration. Our results illustrate mechanistic differences behind the death of rods and cones in retinal degenerative disease caused by deficiencies in AIPL1.
Collapse
|
44
|
Cone phosphodiesterase-6α' restores rod function and confers distinct physiological properties in the rod phosphodiesterase-6β-deficient rd10 mouse. J Neurosci 2013; 33:11745-53. [PMID: 23864662 DOI: 10.1523/jneurosci.1536-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphodiesterase-6 (PDE6) is the key effector enzyme of the vertebrate phototransduction pathway in rods and cones. Rod PDE6 catalytic core is composed of two distinct subunits, PDE6α and PDE6β, whereas two identical PDE6α' subunits form the cone PDE6 catalytic core. It is not known whether this difference in PDE6 catalytic subunit identity contributes to the functional differences between rods and cones. To address this question, we expressed cone PDE6α' in the photoreceptor cells of the retinal degeneration 10 (rd10) mouse that carries a mutation in rod PDEβ subunit. We show that adeno-associated virus-mediated subretinal delivery of PDE6α' rescues rod electroretinogram responses and preserves retinal structure, indicating that cone PDE6α' can couple effectively to the rod phototransduction pathway. We also show that restoration of light sensitivity in rd10 rods is attributable to assembly of PDE6α' with rod PDE6γ. Single-cell recordings revealed that, surprisingly, rods expressing cone PDE6α' are twofold more sensitive to light than wild-type rods, most likely because of the slower shutoff of their light responses. Unlike in wild-type rods, the response kinetics in PDE6α'-treated rd10 rods accelerated with increasing flash intensity, indicating a possible direct feedback modulation of cone PDE6α' activity. Together, these results demonstrate that cone PDE6α' can functionally substitute for rod PDEαβ in vivo, conferring treated rods with distinct physiological properties.
Collapse
|
45
|
Majumder A, Gopalakrishna KN, Cheguru P, Gakhar L, Artemyev NO. Interaction of aryl hydrocarbon receptor-interacting protein-like 1 with the farnesyl moiety. J Biol Chem 2013; 288:21320-21328. [PMID: 23737531 DOI: 10.1074/jbc.m113.476242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor specific chaperone of the visual effector enzyme phosphodiesterase-6 (PDE6). AIPL1 has been shown to bind the farnesylated PDE6A subunit. Mutations in AIPL1 are thought to destabilize PDE6 and thereby cause Leber congenital amaurosis type 4 (LCA4), a severe form of childhood blindness. Here, we examined the solution structure of AIPL1 by small angle x-ray scattering. A structural model of AIPL1 with the best fit to the scattering data features two independent FK506-binding protein (FKBP)-like and tetratricopeptide repeat domains. Guided by the model, we tested the hypothesis that AIPL1 directly binds the farnesyl moiety. Our studies revealed high affinity binding of the farnesylated-Cys probe to the FKBP-like domain of AIPL1, thus uncovering a novel function of this domain. Mutational analysis of the potential farnesyl-binding sites on AIPL1 identified two critical residues, Cys-89 and Leu-147, located in close proximity in the structure model. The L147A mutation and the LCA-linked C89R mutation prevented the binding of the farnesyl-Cys probe to AIPL1. Furthermore, Cys-89 and Leu-147 flank the unique insert region of AIPL1, deletion of which also abolished the farnesyl interaction. Our results suggest that the binding of PDE6A farnesyl is essential to normal function of AIPL1 and its disruption is one of the mechanisms underlying LCA.
Collapse
Affiliation(s)
| | | | | | - Lokesh Gakhar
- Department of Biochemistry,; Protein Crystallography Facility, and
| | - Nikolai O Artemyev
- From the Department of Molecular Physiology and Biophysics,; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
46
|
Li J, Zoldak G, Kriehuber T, Soroka J, Schmid FX, Richter K, Buchner J. Unique Proline-Rich Domain Regulates the Chaperone Function of AIPL1. Biochemistry 2013; 52:2089-96. [DOI: 10.1021/bi301648q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Li
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Gabriel Zoldak
- Laboratorium für
Biochemie, Universität Bayreuth,
D-95440 Bayreuth, Germany
| | - Thomas Kriehuber
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Joanna Soroka
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Franz X. Schmid
- Laboratorium für
Biochemie, Universität Bayreuth,
D-95440 Bayreuth, Germany
| | - Klaus Richter
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Johannes Buchner
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| |
Collapse
|
47
|
Muthukumaran S, Umashankar V, Valliappan MR. Structural studies on AIPL1 and its functional interactions with NUB1 to identify key interacting residues in LCA4. J Ocul Biol Dis Infor 2012; 5:54-60. [PMID: 24596939 DOI: 10.1007/s12177-013-9102-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022] Open
Abstract
Leber congenital amaurosis (LCA) is an autosomal recessive disorder that causes visual impairment in children due to fifteen different gene mutations. Of these, mutations in Aryl-Hydrocarbon Receptor Interacting Protein-like 1 (AIPL1) cause the most severe form of LCA (LCA4) leading to the degeneration of photoreceptor cells. NEDD8 Ultimate Buster 1 (NUB1), a protein that regulates cell cycle progression, interacts with AIPL1 to prevent the over expression of NUB1. In the case of over expression, cell cycle progression is disrupted and may lead to LCA. The studies on interactions between these two proteins will aid in identifying potential modulators for this condition. Since no three-dimensional structure is currently available for these two proteins, in this study we predicted the structures of these two proteins by molecular modelling methods. Moreover, we also modelled the three proven significant mutant forms of AIPL1 spanning the tetratricopeptide domain. Finally, both the modelled wild and mutant structures of AIPL1 (A197P, C239R and G262S) were computationally docked to NUB1, so as to map the potential molecular interactions. This is the first study on modelling the structure-function relationship of AIPL1-NUB1 interactions which shall aid in discovery of novel therapeutic agents.
Collapse
Affiliation(s)
- S Muthukumaran
- Centre for Bioinformatics, Vision Research Foundation, Sankar Nethralaya, 18, College Road, Chennai, 600 006 India
| | - V Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankar Nethralaya, 18, College Road, Chennai, 600 006 India
| | - Meena Revathi Valliappan
- Centre for Bioinformatics, Vision Research Foundation, Sankar Nethralaya, 18, College Road, Chennai, 600 006 India ; A.C. College of Technology, Anna University, Chennai, 600 025 India
| |
Collapse
|
48
|
Bett JS, Kanuga N, Richet E, Schmidtke G, Groettrup M, Cheetham ME, van der Spuy J. The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway. PLoS One 2012; 7:e30866. [PMID: 22347407 PMCID: PMC3274541 DOI: 10.1371/journal.pone.0030866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/27/2011] [Indexed: 01/28/2023] Open
Abstract
Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA). AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway.
Collapse
Affiliation(s)
- John S. Bett
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Emma Richet
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Constance, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Constance, Konstanz, Germany
| | | | | |
Collapse
|
49
|
Pennesi ME, Stover NB, Stone EM, Chiang PW, Weleber RG. Residual electroretinograms in young Leber congenital amaurosis patients with mutations of AIPL1. Invest Ophthalmol Vis Sci 2011; 52:8166-73. [PMID: 21900377 DOI: 10.1167/iovs.11-8298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To describe in detail the clinical phenotype and electrophysiological features of three patients with Leber congenital amaurosis caused by mutations of AIPL1. METHODS Ophthalmologic examination, color fundus photography, detailed electrophysiological assessment, and screening of AIPL1 were undertaken in three subjects. One patient also underwent visual field testing and spectral domain-optical coherence tomography. RESULTS All three patients, two of whom were siblings, had histories consistent with Leber congenital amaurosis (severely reduced vision, poorly responsive pupils, and nystagmus presenting within the first year of life). However, each patient had recordable and similar electroretinograms (ERGs), which demonstrated absent cone-driven responses and slow insensitive scotopic responses. The first patient was found to have a homozygous Trp278 stop mutation in AIPL1, whereas the siblings were each found to have novel heterozygous mutations in AIPL1 (Leu17Pro and Lys214Asn). CONCLUSIONS Patients with mutations in AIPL1 may present with Leber congenital amaurosis and residual ERGs characterized by slow insensitive scotopic responses. Such responses are likely seen only in very young patients and may not be seen with the typical filter settings recommended by the ISCEV standards because of low-pass filtering. Progressive loss of residual ERG activity in young LCA patients with AIPL1 mutations suggests that gene replacement therapy will likely have to be performed early.
Collapse
Affiliation(s)
- Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
50
|
Baker BY, Palczewski K. Detergents stabilize the conformation of phosphodiesterase 6. Biochemistry 2011; 50:9520-31. [PMID: 21978030 DOI: 10.1021/bi2014695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Membrane-bound phosphodiesterase 6 (PDE6) plays an important role in visual signal transduction by regulating cGMP levels in rod photoreceptor cells. Our understanding of PDE6 catalysis and structure suffers from inadequate characterization of the α and β subunit catalytic core, interactions of the core with two intrinsically disordered, proteolysis-prone inhibitory PDEγ (Pγ) subunits, and binding of two types of isoprenyl-binding protein δ, called PrBP/δ, to the isoprenylated C-termini of the catalytic core. Structural studies of native PDE6 have been also been hampered by the lack of a heterologous expression system for the holoenzyme. In this work, we purified PDE6 in the presence of PrBP/δ and screened for additives and detergents that selectively suppress PDE6 basal activity while sparing that of the trypsin-activated enzyme. Some detergents removed PrBP/δ from the PDE complex, separating it from the holoenzyme after PDE6 purification. Additionally, selected detergents also significantly reduced the level of dissociation of PDE6 subunits, increasing their homogeneity and stabilizing the holoenzyme by substituting for its native membrane environment.
Collapse
Affiliation(s)
- Bo Y Baker
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | |
Collapse
|