1
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Musharaf Hossain M, Alinapon CV, Todd CD, Wei Y, Bonham-Smith PC. The Plasmodiophora brassicae Golgi-localized UPF0016 protein PbGDT1 mediates calcium but not manganese transport in yeast and Nicotiana benthamiana. Fungal Genet Biol 2024; 172:103896. [PMID: 38663635 DOI: 10.1016/j.fgb.2024.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.
Collapse
Affiliation(s)
- Md Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | | | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada.
| |
Collapse
|
4
|
Zhao F, Maren NA, Kosentka PZ, Liao YY, Lu H, Duduit JR, Huang D, Ashrafi H, Zhao T, Huerta AI, Ranney TG, Liu W. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. HORTICULTURE RESEARCH 2021; 8:179. [PMID: 34333545 PMCID: PMC8325682 DOI: 10.1038/s41438-021-00616-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 05/07/2023]
Abstract
Computational tool-assisted primer design for real-time reverse transcription (RT) PCR (qPCR) analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome. It can lead to false confidence in the quality of the designed primers, which sometimes results in skipping the optimization steps for qPCR. However, the optimization of qPCR parameters plays an essential role in the efficiency, specificity, and sensitivity of each gene's primers. Here, we proposed an optimized approach to sequentially optimizing primer sequences, annealing temperatures, primer concentrations, and cDNA concentration range for each reference (and target) gene. Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms (SNPs) present in all the homologous sequences for each of the reference (and target) genes under study. By combining the efficiency calibrated and standard curve methods with the 2-ΔΔCt method, the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene. As a result, an R2 ≥ 0.9999 and the efficiency (E) = 100 ± 5% should be achieved for the best primer pair of each gene, which serve as the prerequisite for using the 2-ΔΔCt method for data analysis. We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae, an ornamental and biomass grass, and validated their utility under varying abiotic stress conditions. We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv. glycines (Xag). Thus, these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Soybean Research Institute, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Nathan A Maren
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, 28759, USA
| | - Pawel Z Kosentka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ying-Yu Liao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hongyan Lu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - James R Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, 210095, Nanjing, China
| | - Alejandra I Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, 28759, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
5
|
Verchot J, Pajerowska-Mukhtar KM. UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Curr Opin Virol 2020; 47:9-17. [PMID: 33360330 DOI: 10.1016/j.coviro.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
In recent years there have been significant advances in our understanding of the ER stress responses in plants that are associated with virus infection, as well as bacterial and fungal diseases. In plants, ER stress induced by virus infection includes several signaling pathways that include the unfolded protein response (UPR) to promote the expression of chaperone proteins for proper protein folding. Understanding how facets of ER stress signaling broadly engage in pathogen responses, as well as those that are specific to virus infection is important to distinguishing features essential for broad cellular defenses and processes that may be specifically linked to viral infectivity and disease.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA..
| | | |
Collapse
|
6
|
Godlewski M, Kobylińska A. Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein - 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Mirosław Godlewski
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Agnieszka Kobylińska
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
7
|
Yan Q, Si J, Cui X, Peng H, Jing M, Chen X, Xing H, Dou D. GmDAD1, a Conserved Defender Against Cell Death 1 ( DAD1) From Soybean, Positively Regulates Plant Resistance Against Phytophthora Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:107. [PMID: 30800138 PMCID: PMC6376896 DOI: 10.3389/fpls.2019.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/23/2019] [Indexed: 05/09/2023]
Abstract
Initially identified as a mammalian apoptosis suppressor, defender against apoptotic death 1 (DAD1) protein has conserved plant orthologs acting as negative regulators of cell death. The potential roles and action mechanisms of plant DADs in resistance against Phytophthora pathogens are still unknown. Here, we cloned GmDAD1 from soybean and performed functional dissection. GmDAD1 expression can be induced by Phytophthora sojae infection in both compatible and incompatible soybean varieties. By manipulating GmDAD1 expression in soybean hairy roots, we showed that GmDAD1 transcript accumulations are positively correlated with plant resistance levels against P. sojae. Heterologous expression of GmDAD1 in Nicotiana benthamiana enhanced its resistance to Phytophthora parasitica. NbDAD1 from N. benthamiana was shown to have similar role in conferring Phytophthora resistance. As an endoplasmic reticulum (ER)-localized protein, GmDAD1 was demonstrated to be involved in ER stress signaling and to affect the expression of multiple defense-related genes. Taken together, our findings reveal that GmDAD1 plays a critical role in defense against Phytophthora pathogens and might participate in the ER stress signaling pathway. The defense-associated characteristic of GmDAD1 makes it a valuable working target for breeding Phytophthora resistant soybean varieties.
Collapse
Affiliation(s)
- Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Hernández-López A, Díaz M, Rodríguez-López J, Guillén G, Sánchez F, Díaz-Camino C. Uncovering Bax inhibitor-1 dual role in the legume-rhizobia symbiosis in common bean roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1049-1061. [PMID: 30462254 PMCID: PMC6363093 DOI: 10.1093/jxb/ery417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Mauricio Díaz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Nagano M, Kakuta C, Fukao Y, Fujiwara M, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 interacts with enzymes related to very-long-chain fatty acid synthesis. JOURNAL OF PLANT RESEARCH 2019; 132:131-143. [PMID: 30604175 DOI: 10.1007/s10265-018-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 05/12/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cell death regulator that confers resistance to environmental stress in plants. Previous studies suggest that Arabidopsis thaliana BI-1 (AtBI-1) modifies sphingolipids by interacting with cytochrome b5 (AtCb5), an electron-transfer protein. To reveal how AtBI-1 regulates sphingolipid synthesis, we screened yeast sphingolipid-deficient mutants and identified yeast ELO2 and ELO3 as novel enzymes that are essential for AtBI-1 function. ELO2 and ELO3 are condensing enzymes that synthesize very-long-chain fatty acids (VLCFAs), major fatty acids in plant sphingolipids. In Arabidopsis, we identified four ELO homologs (AtELO1-AtELO4), localized in the endoplasmic reticulum membrane. Of those AtELOs, AtELO1 and AtELO2 had a characteristic histidine motif and were bound to AtCb5-B. This result suggests that AtBI-1 interacts with AtELO1 and AtELO2 through AtCb5. AtELO2 and AtCb5-B also interact with KCR1, PAS2, and CER10, which are essential for the synthesis of VLCFAs. Therefore, AtELO2 may participate in VLCFA synthesis with AtCb5 in Arabidopsis. In addition, our co-immunoprecipitation/mass spectrometry analysis demonstrated that AtBI-1 forms a complex with AtELO2, KCR1, PAS2, CER10, and AtCb5-D. Furthermore, AtBI-1 contributes to the rapid synthesis of 2-hydroxylated VLCFAs in response to oxidative stress. These results indicate that AtBI-1 regulates VLCFA synthesis by interacting with VLCFA-synthesizing enzymes.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Chikako Kakuta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yoichiro Fukao
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masayuki Fujiwara
- Institute of Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- YANMAR Co., Ltd, Chayamachi 1-32, Kita-ku, Osaka, 530-8311, Japan
| | - Hirofumi Uchimiya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama, 338-8570, Japan
| |
Collapse
|
10
|
Ishikawa T, Fang L, Rennie EA, Sechet J, Yan J, Jing B, Moore W, Cahoon EB, Scheller HV, Kawai-Yamada M, Mortimer JC. GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase. PLANT PHYSIOLOGY 2018; 177:938-952. [PMID: 29760197 PMCID: PMC6053017 DOI: 10.1104/pp.18.00396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/01/2018] [Indexed: 05/05/2023]
Abstract
Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Lin Fang
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Emilie A Rennie
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Plant and Molecular Biology, University of California, Berkeley, California 94720
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Julien Sechet
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jingwei Yan
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Beibei Jing
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William Moore
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Plant and Molecular Biology, University of California, Berkeley, California 94720
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Plant and Molecular Biology, University of California, Berkeley, California 94720
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, California 94608
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
11
|
Nintemann SJ, Vik D, Svozil J, Bak M, Baerenfaller K, Burow M, Halkier BA. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2028. [PMID: 29238354 PMCID: PMC5712850 DOI: 10.3389/fpls.2017.02028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches-split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens-to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.
Collapse
Affiliation(s)
- Sebastian J. Nintemann
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Vik
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Julia Svozil
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Bak
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | | | - Meike Burow
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara A. Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Becker MG, Walker PL, Pulgar-Vidal NC, Belmonte MF. SeqEnrich: A tool to predict transcription factor networks from co-expressed Arabidopsis and Brassica napus gene sets. PLoS One 2017; 12:e0178256. [PMID: 28575075 PMCID: PMC5456048 DOI: 10.1371/journal.pone.0178256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors and their associated DNA binding sites are key regulatory elements of cellular differentiation, development, and environmental response. New tools that predict transcriptional regulation of biological processes are valuable to researchers studying both model and emerging-model plant systems. SeqEnrich predicts transcription factor networks from co-expressed Arabidopsis or Brassica napus gene sets. The networks produced by SeqEnrich are supported by existing literature and predicted transcription factor–DNA interactions that can be functionally validated at the laboratory bench. The program functions with gene sets of varying sizes and derived from diverse tissues and environmental treatments. SeqEnrich presents as a powerful predictive framework for the analysis of Arabidopsis and Brassica napus co-expression data, and is designed so that researchers at all levels can easily access and interpret predicted transcriptional circuits. The program outperformed its ancestral program ChipEnrich, and produced detailed transcription factor networks from Arabidopsis and Brassica napus gene expression data. The SeqEnrich program is ideal for generating new hypotheses and distilling biological information from large-scale expression data.
Collapse
Affiliation(s)
- Michael G. Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip L. Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
13
|
Xu G, Wang S, Han S, Xie K, Wang Y, Li J, Liu Y. Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 2017; 13:1161-1175. [PMID: 28537463 PMCID: PMC5529081 DOI: 10.1080/15548627.2017.1320633] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process and is involved in the regulation of programmed cell death during the plant immune response. However, mechanisms regulating autophagy and cell death are incompletely understood. Here, we demonstrate that plant Bax inhibitor-1 (BI-1), a highly conserved cell death regulator, interacts with ATG6, a core autophagy-related protein. Silencing of BI-1 reduced the autophagic activity induced by both N gene-mediated resistance to Tobacco mosaic virus (TMV) and methyl viologen (MV), and enhanced N gene-mediated cell death. In contrast, overexpression of plant BI-1 increased autophagic activity and surprisingly caused autophagy-dependent cell death. These results suggest that plant BI-1 has both prosurvival and prodeath effects in different physiological contexts and both depend on autophagic activity.
Collapse
Affiliation(s)
- Guoyong Xu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Biology, Duke University, Durham, NC, USA
| | - Shanshan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaojie Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ke Xie
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,CONTACT Yule Liu School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Abstract
Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell-cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell cycle.
Collapse
|
15
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
16
|
Kørner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM. Endoplasmic Reticulum Stress Signaling in Plant Immunity--At the Crossroad of Life and Death. Int J Mol Sci 2015; 16:26582-98. [PMID: 26556351 PMCID: PMC4661823 DOI: 10.3390/ijms161125964] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rapid and complex immune responses are induced in plants upon pathogen recognition. One form of plant defense response is a programmed burst in transcription and translation of pathogenesis-related proteins, of which many rely on ER processing. Interestingly, several ER stress marker genes are up-regulated during early stages of immune responses, suggesting that enhanced ER capacity is needed for immunity. Eukaryotic cells respond to ER stress through conserved signaling networks initiated by specific ER stress sensors tethered to the ER membrane. Depending on the nature of ER stress the cell prioritizes either survival or initiates programmed cell death (PCD). At present two plant ER stress sensors, bZIP28 and IRE1, have been described. Both sensor proteins are involved in ER stress-induced signaling, but only IRE1 has been additionally linked to immunity. A second branch of immune responses relies on PCD. In mammals, ER stress sensors are involved in activation of PCD, but it is unclear if plant ER stress sensors play a role in PCD. Nevertheless, some ER resident proteins have been linked to pathogen-induced cell death in plants. In this review, we will discuss the current understanding of plant ER stress signaling and its cross-talk with immune signaling.
Collapse
Affiliation(s)
- Camilla J Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Xinran Du
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Marie E Vollmer
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | | |
Collapse
|
17
|
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress. PLANT PHYSIOLOGY 2015; 169:1333-43. [PMID: 26297139 PMCID: PMC4587443 DOI: 10.1104/pp.15.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 05/22/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiko Aki
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Uchimiya
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Fu XL, Gao DS. Endoplasmic reticulum proteins quality control and the unfolded protein response: the regulative mechanism of organisms against stress injuries. Biofactors 2014; 40:569-85. [PMID: 25530003 DOI: 10.1002/biof.1194] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum is the cellular compartment in which secretory proteins are synthesized and folded. Perturbations of endoplasmic reticulum homeostasis lead to the accumulation of unfolded proteins. The activation of the unfolded protein response during endoplasmic reticulum stress transmits information about the status of protein folding to the cytosol and nucleus. The unfolded protein response leads to the upregulation of genes encoding endoplasmic reticulum chaperones, attenuation of translation, and initiation of the endoplasmic reticulum quality control system to restore endoplasmic reticulum homeostasis. When the unfolded protein response is insufficient to rebuild the steady state in endoplasmic reticulum, the programmed cell death or apoptosis would be initiated, by triggering cell injuries, even to cell death through apoptosis signals. In this review, we briefly outline research on the chaperones and foldases conserved in eukaryotes and plants, and describe the general principles and mechanisms of the endoplasmic reticulum quality control and the unfolded protein response. We describe the current models for the molecular mechanism of the unfolded protein response in plants, and emphasize the role of inositol requiring enzyme-1-dependent network in the unfolded protein response. Finally, we give a general overview of the directions for future research on the unfolded protein response in plants and its role in the response to environmental stresses.
Collapse
Affiliation(s)
- Xi Ling Fu
- Division of National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong, China; Division of State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | | |
Collapse
|
19
|
Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. PLANTA 2014; 240:77-89. [PMID: 24687220 DOI: 10.1007/s00425-014-2065-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/13/2014] [Indexed: 05/04/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cell death suppressor localized in the endoplasmic reticulum membrane. Our previous results revealed that Arabidopsis BI-1 (AtBI-1) interacts with not only Arabidopsis cytochrome b 5 (Cb5), an electron transfer protein, but also a Cb5-like domain (Cb5LD)-containing protein, Saccharomyces cerevisiae fatty acid 2-hydroxylase 1, which 2-hydroxylates sphingolipid fatty acids. We have now found that AtBI-1 binds Arabidopsis sphingolipid Δ8 long-chain base (LCB) desaturases AtSLD1 and AtSLD2, which are Cb5LD-containing proteins. The expression of both AtBI-1 and AtSLD1 was increased by cold exposure. However, different phenotypes were observed in response to cold treatment between an atbi-1 mutant and a sld1sld2 double mutant. To elucidate the reasons behind the difference, we analyzed sphingolipids and found that unsaturated LCBs in atbi-1 were not altered compared to wild type, whereas almost all LCBs in sld1sld2 were saturated, suggesting that AtBI-1 may not be necessary for the desaturation of LCBs. On the other hand, the sphingolipid content in wild type increased in response to low temperature, whereas total sphingolipid levels in atbi-1 were unaltered. In addition, the ceramide-modifying enzymes AtFAH1, sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 (AtADS2) and AtSLD1 were highly expressed under cold stress, and all are likely to be related to AtBI-1 function. These findings suggest that AtBI-1 contributes to synthesis of sphingolipids during cold stress by interacting with AtSLD1, AtFAH1, AtSBH2 and AtADS2.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang CQ, Li X, Wang MQ, Qian J, Zheng K, Bian HW, Han N, Wang JH, Pan JW, Zhu MY. Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic Res 2014; 48:435-44. [PMID: 24437935 DOI: 10.3109/10715762.2014.885116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In mammals, the mitochondrial electron transfer components (ETC) complex III and cytochrome c (cyt c) play essential roles in reactive oxygen species (ROS)-induced apoptosis. However, in yeast, the functions of cyt c and other ETC components remain unclear. In this study, three ETC-defective yeast mutants qcr7Δ, cyc1Δcyc7Δ, and cox12Δ, lacking cyt c oxidoreductase (complex III), cyt c, and cyt c oxidase (complex IV), respectively, were used to test the roles of these proteins in the response of cells to hydrogen peroxide (H₂O₂). Mutants qcr7Δ and cyc1Δcyc7Δ displayed greater H₂O₂ sensitivity than the wild-type or cox12Δ mutant. Consistent with this, qcr7Δ and cyc1Δcyc7Δ produced higher ROS levels, displayed derepressed expression of the proapoptotic genes AIF1, NUC1, and NMA111, but not YCA1, at the mRNA level, and were more vulnerable to H₂O₂-induced apoptosis. Interestingly, mutants lacking these proapoptotic genes displayed enhanced H₂O₂ tolerance, but unaffected ROS accumulation. Furthermore, the overexpression of antiapoptotic genes (Bcl-2, Ced-9, AtBI-1, and PpBI-1) reduced the levels of AIF1, NUC1, and NMA111 mRNAs, and reduced H₂O₂-induced cell death. Our findings identify two ETC components as early-inhibitory members of the ROS-mediated apoptotic pathway, suggesting their essential roles in metabolizing H₂O₂, probably by providing reduced cyt c, allowing cyt c peroxidase to remove H₂O₂ from the cells.
Collapse
Affiliation(s)
- Chao-qun Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kawai-Yamada M, Nagano M, Kakimoto M, Uchimiya H. Plastidic protein Cdf1 is essential in Arabidopsis embryogenesis. PLANTA 2014; 239:39-46. [PMID: 24097264 DOI: 10.1007/s00425-013-1966-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 05/22/2023]
Abstract
Arabidopsis cell growth defect factor-1 (Cdf1 in yeast, At5g23040) was originally isolated as a cell growth suppressor of yeast from genetic screening. To investigate the in vivo role of Cdf1 in plants, a T-DNA insertion line was analyzed. A homozygous T-DNA insertion mutant (cdf1/cdf1) was embryo lethal and showed arrested embryogenesis at the globular stage. The Cdf1 protein, when fused with green fluorescent protein, was localized to the plastid in stomatal guard cells and mesophyll cells. A promoter-β-glucuronidase assay found expression of Cdf1 in the early heart stage of embryogenesis, suggesting that Cdf1 was essential for Arabidopsis embryogenesis during the transition of the embryo from the globular to heart stage.
Collapse
Affiliation(s)
- Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan,
| | | | | | | |
Collapse
|
22
|
B L, R.K Y, G.S J, H.-R K, H.-J C. The characteristics of Bax inhibitor-1 and its related diseases. Curr Mol Med 2014; 14:603-15. [PMID: 24894176 PMCID: PMC4083451 DOI: 10.2174/1566524014666140603101113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/01/2013] [Accepted: 11/24/2013] [Indexed: 11/28/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily-conserved endoplasmic reticulum protein. The expression of BI-1 in mammalian cells suppresses apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. BI-1 has been shown to be associated with calcium (Ca(2+)) levels, reactive oxygen species (ROS) production, cytosolic acidification, and autophagy as well as endoplasmic reticulum stress signaling pathways. According to both in vitro and clinical studies, BI-1 promotes the characteristics of cancers. In other diseases, BI-1 has also been shown to regulate insulin resistance, adipocyte differentiation, hepatic dysfunction and depression. However, the roles of BI-1 in these disease conditions are not fully consistent among studies. Until now, the molecular mechanisms of BI-1 have not directly explained with regard to how these conditions can be regulated. Therefore, this review investigates the physiological role of BI-1 through molecular mechanism studies and its application in various diseases.
Collapse
Affiliation(s)
- Li B
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Yadav R.K
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Jeong G.S
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kim H.-R
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Chae H.-J
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
23
|
Weis C, Pfeilmeier S, Glawischnig E, Isono E, Pachl F, Hahne H, Kuster B, Eichmann R, Hückelhoven R. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. MOLECULAR PLANT PATHOLOGY 2013; 14:791-802. [PMID: 23782494 PMCID: PMC6638788 DOI: 10.1111/mpp.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thaliana BI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H(+) -ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
Collapse
Affiliation(s)
- Corina Weis
- Lehrstuhl für Phytopathologie, Technische Universität München, 85354 Freising, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4571-84. [PMID: 22696283 DOI: 10.1093/jxb/ers140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BAX inihibitor-1 (BI-1) is proposed to be a cell death suppressor conserved in both animals and plants. The ability of BI-1 genes to inhibit programmed cell death (PCD) has been well studied in animals, but the physiological importance of BI-1 in plant-microbe interactions remains unclear. This study characterized BI-1 from wheat infected by Puccinia striiformis f. sp. tritici (Pst). The deduced TaBI-1 protein contained a Bax inhibitor domain and seven transmembrane regions conserved among members of the BI-1 family. Transcription of TaBI-1 was detected in all wheat tissues tested (culms, roots, leaves, anthers, and spikelets). Furthermore, TaBI-1 exhibited positive transcriptional responses to Pst infection and abiotic stresses. Overexpression of TaBI-1 in tobacco blocked Bax-induced cell death. Silencing TaBI-1 in plants of a resistant wheat genotype converted a resistant reaction to a relatively susceptible reaction when inoculated with an avirulent pathotype of the pathogen, and increased the area per infection site, but the percentage of necrotic cells did not change significantly, indicating that TaBI-1, a negative cell death regulator, contributes to wheat resistance to stripe rust. These results provide a better understanding of the molecular mechanism of wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nagano M, Takahara K, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. PLANT PHYSIOLOGY 2012; 159:1138-48. [PMID: 22635113 PMCID: PMC3387700 DOI: 10.1104/pp.112.199547] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/17/2012] [Indexed: 05/18/2023]
Abstract
2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis (Arabidopsis thaliana) Bax inhibitor-1 (AtBI-1), which is an endoplasmic reticulum membrane-localized cell death suppressor. However, little is known about the function of two Arabidopsis FAH homologs (AtFAH1 and AtFAH2), and it remains unclear whether 2-HFAs participate in cell death regulation. In this study, we found that both AtFAH1 and AtFAH2 had FAH activity, and the interaction with Arabidopsis cytochrome b₅ was needed for the sufficient activity. 2-HFA analysis of AtFAH1 knockdown lines and atfah2 mutant showed that AtFAH1 mainly 2-hydroxylated very-long-chain fatty acid (VLCFA), whereas AtFAH2 selectively 2-hydroxylated palmitic acid in Arabidopsis. In addition, 2-HFAs were related to resistance to oxidative stress, and AtFAH1 or 2-hydroxy VLCFA showed particularly strong responses to oxidative stress. Furthermore, AtFAH1 interacted with AtBI-1 via cytochrome b₅ more preferentially than AtFAH2. Our results suggest that AtFAH1 and AtFAH2 are functionally different FAHs, and that AtFAH1 or 2-hydroxy VLCFA is a key factor in AtBI-1-mediated cell death suppression.
Collapse
|
26
|
Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E. Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 2011; 18:1271-8. [PMID: 21597463 DOI: 10.1038/cdd.2011.59] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In spite of fundamental differences between plant and animal cells, it is remarkable that some cell death regulators that were identified to control cell death in metazoans can also function in plants. The fact that most of these proteins do not have structural homologs in plant genomes suggests that they may be targeting a highly conserved 'core' mechanism with conserved functions that is present in all eukaryotes. The ubiquitous Bax inhibitor-1 (BI-1) is a common cell death suppressor in eukaryotes that has provided a potential portal to this cell death core. In this review, we will update the current status of our understanding on the function and activities of this intriguing protein. Genetic, molecular and biochemical studies have so far suggested a consistent view that BI-1 is an endoplasmic reticulum (ER)-resident transmembrane protein that can interact with multiple partners to alter intracellular Ca(2+) flux control and lipid dynamics. Functionally, the level of BI-1 protein has been hypothesized to have the role of a rheostat to regulate the threshold of ER-stress inducible cell death. Further, delineation of the cell death suppression mechanism by BI-1 should shed light on an ancient cell death core-control pathway in eukaryotes, as well as novel ways to improve stress tolerance.
Collapse
Affiliation(s)
- T Ishikawa
- Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
27
|
Liu HC, Liao HT, Charng YY. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:738-51. [PMID: 21241330 DOI: 10.1111/j.1365-3040.2011.02278.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, there are four homologs of class A1 heat shock factor (HSFA1) genes, which likely encode the master regulators of heat shock response (HSR). However, previous studies with double knockout (KO) mutants were unable to confirm this point probably due to functional redundancy. Here, we generated a quadruple KO (QK) and four triple KO mutants to dissect their functions. Our data show that members of the HSFA1 group not only play a pivotal role in HSR but also are involved in growth and development. Alterations in morphology and retardation in growth were observed in the quadruple but not in triple KO mutants. The basal and acquired thermotolerance capacity was dramatically decreased in the QK mutant but varied in triple KO mutants at different developmental stages. The transcriptomics profiles suggested that more than 65% of the heat stress (HS)-up-regulated genes were HSFA1 dependent. HSFA1s were also involved in the expression of several HS genes induced by H(2) O(2) , salt and mannitol, which is consistent with the increased sensitive phenotype of the QK mutant to the stress factors. In conclusion, the Arabidopsis HSFA1s function as the master regulators of HSR and participate as important components in other abiotic stress responses as well.
Collapse
Affiliation(s)
- Hsiang-Chin Liu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | | | | |
Collapse
|
28
|
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. THE PLANT CELL 2010; 22:2930-42. [PMID: 20876830 PMCID: PMC2965551 DOI: 10.1105/tpc.110.078154] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/12/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
- Address correspondence to or
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to or
| |
Collapse
|
29
|
Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1217-27. [PMID: 20687811 DOI: 10.1094/mpmi-23-9-1217] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.
Collapse
Affiliation(s)
- Ruth Eichmann
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Strasse 2, D-85350 Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishikawa T, Takahara K, Hirabayashi T, Matsumura H, Fujisawa S, Terauchi R, Uchimiya H, Kawai-Yamada M. Metabolome Analysis of Response to Oxidative Stress in Rice Suspension Cells Overexpressing Cell Death Suppressor Bax Inhibitor-1. ACTA ACUST UNITED AC 2009; 51:9-20. [DOI: 10.1093/pcp/pcp162] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|