1
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
2
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Anany MA, Haack S, Lang I, Dahlhoff J, Vargas JG, Steinfatt T, Päckert L, Weisenberger D, Zaitseva O, Medler J, Kucka K, Zhang T, Van Belle T, van Rompaey L, Beilhack A, Wajant H. Generic design principles for antibody-based tumour necrosis factor (TNF) receptor 2 (TNFR2) agonists with FcγR-independent agonism. Theranostics 2024; 14:496-509. [PMID: 38169605 PMCID: PMC10758050 DOI: 10.7150/thno.84404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.
Collapse
Affiliation(s)
- Mohamed A. Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Dokki, Giza, Egypt
| | - Stefanie Haack
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Julia Dahlhoff
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juan Gamboa Vargas
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Lea Päckert
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tengyu Zhang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Andreas Beilhack
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Siegmund D, Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 2023; 19:576-591. [PMID: 37542139 DOI: 10.1038/s41584-023-01002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Inoue M, Tsuji Y, Ueno R, Miyamoto D, Tanaka K, Moriyasu Y, Shibata S, Okuda M, Ando D, Abe Y, Kamada H, Tsunoda SI. Bivalent structure of a TNFR2-selective and agonistic TNF-α mutein Fc-fusion protein enhances the expansion activity of regulatory T cells. Sci Rep 2023; 13:13762. [PMID: 37612373 PMCID: PMC10447426 DOI: 10.1038/s41598-023-40925-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Recently, TNF receptor type 2 (TNFR2) signaling was found to be involved in the proliferation and activation of regulatory T cells (Tregs), a subpopulation of lymphocytes that suppress immune responses. Tregs mediate peripheral immune tolerance, and the disruption of their functions causes autoimmune diseases or allergy. Therefore, cell expanders or regulators of Tregs that control immunosuppressive activity can be used to treat these diseases. We focused on TNFR2, which is preferentially expressed on Tregs, and created tumor necrosis factor-α (TNF-α) muteins that selectively activate TNFR2 signaling in mice and humans, termed R2agoTNF and R2-7, respectively. In this study, we attempted to optimize the structure of muteins to enhance their TNFR2 agonistic activity and stability in vivo by IgG-Fc fusion following single-chain homo-trimerization. The fusion protein, scR2agoTNF-Fc, enhanced the expansion of CD4+CD25+ Tregs and CD4+Foxp3+ Tregs and contributed to their immunosuppressive activity ex vivo and in vivo in mice. The prophylactic administration of scR2agoTNF-Fc suppressed inflammation in contact hypersensitivity and arthritis mouse models. Furthermore, scR2-7-Fc preferentially expanded Tregs in human peripheral blood mononuclear cells via TNFR2. These TNFR2 agonist-Fc fusion proteins, which have bivalent structures, are novel Treg expanders.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Reira Ueno
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Daisuke Miyamoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Keisuke Tanaka
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Yuka Moriyasu
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Saya Shibata
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Mei Okuda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Daisuke Ando
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
8
|
Venken K, Jarlborg M, Decruy T, Mortier C, Vlieghe C, Gilis E, De Craemer AS, Coudenys J, Cambré I, Fleury D, Klimowicz A, Van den Bosch F, Hoorens A, Lobaton T, de Roock S, Sparwasser T, Nabozny G, Jacques P, Elewaut D. Distinct immune modulatory roles of regulatory T cells in gut versus joint inflammation in TNF-driven spondyloarthritis. Ann Rheum Dis 2023; 82:1076-1090. [PMID: 37197892 DOI: 10.1136/ard-2022-223757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Gut and joint inflammation commonly co-occur in spondyloarthritis (SpA) which strongly restricts therapeutic modalities. The immunobiology underlying differences between gut and joint immune regulation, however, is poorly understood. We therefore assessed the immunoregulatory role of CD4+FOXP3+ regulatory T (Treg) cells in a model of Crohn's-like ileitis and concomitant arthritis. METHODS RNA-sequencing and flow cytometry was performed on inflamed gut and joint samples and tissue-derived Tregs from tumour necrosis factor (TNF)∆ARE mice. In situ hybridisation of TNF and its receptors (TNFR) was applied to human SpA gut biopsies. Soluble TNFR (sTNFR) levels were measured in serum of mice and patients with SpA and controls. Treg function was explored by in vitro cocultures and in vivo by conditional Treg depletion. RESULTS Chronic TNF exposure induced several TNF superfamily (TNFSF) members (4-1BBL, TWEAK and TRAIL) in synovium and ileum in a site-specific manner. Elevated TNFR2 messenger RNA levels were noted in TNF∆ARE/+ mice leading to increased sTNFR2 release. Likewise, sTNFR2 levels were higher in patients with SpA with gut inflammation and distinct from inflammatory and healthy controls. Tregs accumulated at both gut and joints of TNF∆ARE mice, yet their TNFR2 expression and suppressive function was significantly lower in synovium versus ileum. In line herewith, synovial and intestinal Tregs displayed a distinct transcriptional profile with tissue-restricted TNFSF receptor and p38MAPK gene expression. CONCLUSIONS These data point to profound differences in immune-regulation between Crohn's ileitis and peripheral arthritis. Whereas Tregs control ileitis they fail to dampen joint inflammation. Synovial resident Tregs are particularly maladapted to chronic TNF exposure.
Collapse
Affiliation(s)
- Koen Venken
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Matthias Jarlborg
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tine Decruy
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Céline Mortier
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Carolien Vlieghe
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Elisabeth Gilis
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Ann-Sophie De Craemer
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Julie Coudenys
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Isabelle Cambré
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Devan Fleury
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Alexander Klimowicz
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Filip Van den Bosch
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, University Hospital Ghent, Gent, Belgium
| | - Triana Lobaton
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Gastroenterology unit), Ghent University, Ghent, Belgium
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sytze de Roock
- Department of Pediatric Immunology, Center for Molecular and Cellular Intervention CMCI, Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Sparwasser
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gerald Nabozny
- Immunology and Respiratory Department, Boehringer Ingelheim Corp Pharmaceutical Research and Development Centre Ridgefield, Ridgefield, Connecticut, USA
| | - Peggy Jacques
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Vunnam N, Yang M, Lo CH, Paulson C, Fiers WD, Huber E, Been M, Ferguson DM, Sachs JN. Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS BIO & MED CHEM AU 2023; 3:270-282. [PMID: 37363080 PMCID: PMC10288500 DOI: 10.1021/acsbiomedchemau.2c00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chih Hung Lo
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn Paulson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evan Huber
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - MaryJane Been
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department
of Medicinal Chemistry and Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Fiedler T, Fairless R, Pichi K, Fischer R, Richter F, Kontermann RE, Pfizenmaier K, Diem R, Williams SK. Co-modulation of TNFR1 and TNFR2 in an animal model of multiple sclerosis. J Neuroinflammation 2023; 20:100. [PMID: 37122019 PMCID: PMC10149004 DOI: 10.1186/s12974-023-02784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Timon Fiedler
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kira Pichi
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- BioNtech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
McIntosh K, Khalaf YH, Craig R, West C, McCulloch A, Waghmare A, Lawson C, Chan EYW, Mackay S, Paul A, Plevin R. IL-1β stimulates a novel, IKKα -dependent, NIK -independent activation of non-canonical NFκB signalling. Cell Signal 2023; 107:110684. [PMID: 37080443 DOI: 10.1016/j.cellsig.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1β2 (LTα1β2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1β (IL-1β) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1β and LTα1β2. In contrast, knockdown of IKKβ using siRNA or pharmacological inhibition of IKKβ activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1β induced phosphorylation of p100 however, the response to LTα1β2 was virtually abolished. Surprisingly IL-1β also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1β2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1β.
Collapse
Affiliation(s)
- Kathryn McIntosh
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| | - Yousif H Khalaf
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Rachel Craig
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher West
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ajay Waghmare
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Edmond Y W Chan
- Department of Biomedical and Molecular sciences, Queens University, Botterell Hall, Room 563, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Simon Mackay
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
12
|
Vunnam N, Been M, Huber E, Paulson C, Szymonski S, Hackel BJ, Sachs JN. Discovery of a Non-competitive TNFR1 Antagonist Affibody with Picomolar Monovalent Potency That Does Not Affect TNFR2 Function. Mol Pharm 2023; 20:1884-1897. [PMID: 36897792 PMCID: PMC10849843 DOI: 10.1021/acs.molpharmaceut.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Tumor necrosis factor (TNF) is a key regulator of immune responses and plays a significant role in the initiation and maintenance of inflammation. Upregulation of TNF expression leads to several inflammatory diseases, such as Crohn's, ulcerative colitis, and rheumatoid arthritis. Despite the clinical success of anti-TNF treatments, the use of these therapies is limited because they can induce adverse side effects through inhibition of TNF biological activity, including blockade of TNF-induced immunosuppressive function of TNFR2. Using yeast display, we identified a synthetic affibody ligand (ABYTNFR1-1) with high binding affinity and specificity for TNFR1. Functional assays showed that the lead affibody potently inhibits TNF-induced NF-κB activation (IC50 of 0.23 nM) and, crucially, does not block the TNFR2 function. Additionally, ABYTNFR1-1 acts non-competitively─it does not block TNF binding or inhibit receptor-receptor interactions in pre-ligand-assembled dimers─thereby enhancing inhibitory robustness. The mechanism, monovalent potency, and affibody scaffold give this lead molecule uniquely strong potential as a therapeutic candidate for inflammatory diseases.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - MaryJane Been
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evan Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolyn Paulson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Szymonski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Chédotal H, Narayanan D, Povlsen K, Gotfredsen CH, Brambilla R, Gajhede M, Bach A, Clausen MH. Small-molecule modulators of tumor necrosis factor signaling. Drug Discov Today 2023; 28:103575. [PMID: 37003513 DOI: 10.1016/j.drudis.2023.103575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine with a major role in immune system homeostasis and is involved in many inflammatory and autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, Alzheimer's disease (AD), and multiple sclerosis (MS). Thus, TNF and its receptors, TNFR1 and TNFR2, are relevant pharmacological targets. Biologics have been developed to block TNF-dependent signaling cascades, but they display serious side effects, and their pharmacological effectiveness decreases over time because of their immunogenicity. In this review, we present recent discoveries in small molecules targeting TNF and its receptors and discuss alternative strategies for modulating TNF signaling. Teaser: This review presents several recent and innovative strategies for the modulation of tumor necrosis factor function, with a focus on small molecules.
Collapse
Affiliation(s)
- Henri Chédotal
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Katrine Povlsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Charlotte H Gotfredsen
- Technical University of Denmark, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE - Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mads H Clausen
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
15
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
16
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
18
|
Guan X, Zhang B, Sun L. TNFR2 is a regulatory target of pol-miR-194a and promotes the antibacterial immunity of Japanese flounder Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104477. [PMID: 35752347 DOI: 10.1016/j.dci.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNAs that modulate target gene expression after transcription. Pol-miR-194a had been reported to be a miRNA of Japanese flounder (Paralichthys olivaceus) involved in Edwardsiella tarda infection. Here, we identified tumor necrosis factor receptor 2 (TNFR2) as a target gene of pol-miR-194a. Pol-miR-194a markedly repressed the protein expression of flounder TNFR2 (PoTNFR2) via specific interaction with the 3'UTR of PoTNFR2. PoTNFR2 responded to E. tarda infection in a manner that was opposite to that of pol-miR-194a and inhibited E. tarda invasion by activating the NF-κB pathway. Consistently, dysregulation of PoTNFR2 had a significant impact on E. tarda dissemination in flounder tissues. Together, these results add new insights into the regulation mechanism and immune function of fish TNFR2 and pol-miR-194a.
Collapse
Affiliation(s)
- Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Trossmann VT, Heltmann-Meyer S, Amouei H, Wajant H, Horch RE, Steiner D, Scheibel T. Recombinant Spider Silk Bioinks for Continuous Protein Release by Encapsulated Producer Cells. Biomacromolecules 2022; 23:4427-4437. [PMID: 36067476 DOI: 10.1021/acs.biomac.2c00971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted therapies using biopharmaceuticals are of growing clinical importance in disease treatment. Currently, there are several limitations of protein-based therapeutics (biologicals), including suboptimal biodistribution, lack of stability, and systemic side effects. A promising approach to overcoming these limitations could be a therapeutic cell-loaded 3D construct consisting of a suitable matrix component that harbors producer cells continuously secreting the biological of interest. Here, the recombinant spider silk proteins eADF4(C16), eADF4(C16)-RGD, and eADF4(C16)-RGE have been processed together with HEK293 producer cells stably secreting the highly traceable reporter biological TNFR2-Fc-GpL, a fusion protein consisting of the extracellular domain of TNFR2, the Fc domain of human IgG1, and the luciferase of Gaussia princeps as a reporter domain. eADF4(C16) and eADF4(C16)-RGD hydrogels provide structural and mechanical support, promote HEK293 cell growth, and allow fusion protein production by the latter. Bioink-captured HEK293 producer cells continuously release functional TNFR2-Fc-GpL over 14 days. Thus, the combination of biocompatible, printable spider silk bioinks with drug-producing cells is promising for generating implantable 3D constructs for continuous targeted therapy.
Collapse
Affiliation(s)
- Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurswissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Krankenhaus-Str. 12, Erlangen 91054, Germany
| | - Hanna Amouei
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Grombühl-Str. 12, Würzburg 97080, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Grombühl-Str. 12, Würzburg 97080, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Krankenhaus-Str. 12, Erlangen 91054, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Krankenhaus-Str. 12, Erlangen 91054, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurswissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitäts-Str. 30, Bayreuth 95447, Germany
| |
Collapse
|
20
|
Vargas JG, Wagner J, Shaikh H, Lang I, Medler J, Anany M, Steinfatt T, Mosca JP, Haack S, Dahlhoff J, Büttner-Herold M, Graf C, Viera EA, Einsele H, Wajant H, Beilhack A. A TNFR2-Specific TNF Fusion Protein With Improved In Vivo Activity. Front Immunol 2022; 13:888274. [PMID: 35769484 PMCID: PMC9234581 DOI: 10.3389/fimmu.2022.888274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.
Collapse
Affiliation(s)
- Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Jennifer Wagner
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, Giza, Egypt
| | - Tim Steinfatt
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Stephanie Haack
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Julia Dahlhoff
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Graf
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
21
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
22
|
Li M, Zhang X, Bai X, Liang T. Targeting TNFR2: A Novel Breakthrough in the Treatment of Cancer. Front Oncol 2022; 12:862154. [PMID: 35494080 PMCID: PMC9048045 DOI: 10.3389/fonc.2022.862154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor type II (TNFR2) is expressed in various tumor cells and some immune cells, such as regulatory T cells and myeloid-derived suppressing cells. TNFR2 contributes a lot to the tumor microenvironment. For example, it directly promotes the occurrence and growth of some tumor cells, activates immunosuppressive cells, and supports immune escape. Existing studies have proved the importance of TNFR2 in cancer treatment. Here, we reviewed the activation mechanism of TNFR2 and its role in signal transduction in the tumor microenvironment. We summarized the expression and function of TNFR2 within different immune cells and the potential opportunities and challenges of targeting TNFR2 in immunotherapy. Finally, the advantages and limitations of TNFR2 to treat tumor-related diseases are discussed, and the problems that may be encountered in the clinical development and application of targeted anti-TNFR2 agonists and inhibitors are analyzed.
Collapse
Affiliation(s)
- Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| |
Collapse
|
23
|
Lousa I, Reis F, Santos-Silva A, Belo L. The Signaling Pathway of TNF Receptors: Linking Animal Models of Renal Disease to Human CKD. Int J Mol Sci 2022; 23:3284. [PMID: 35328704 PMCID: PMC8950598 DOI: 10.3390/ijms23063284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a global public health problem. Despite the current advances in medicine, CKD-associated morbidity and mortality remain unacceptably high. Several studies have highlighted the contribution of inflammation and inflammatory mediators to the development and/or progression of CKD, such as tumor necrosis factor (TNF)-related biomarkers. The inflammation pathway driven by TNF-α, through TNF receptors 1 (TNFR1) and 2 (TNFR2), involves important mediators in the pathogenesis of CKD. Circulating levels of TNFRs were associated with changes in other biomarkers of kidney function and injury, and were described as predictors of disease progression, cardiovascular morbidity, and mortality in several cohorts of patients. Experimental studies describe the possible downstream signaling pathways induced upon TNFR activation and the resulting biological responses. This review will focus on the available data on TNFR1 and TNFR2, and illustrates their contributions to the pathophysiology of kidney diseases, their cellular and molecular roles, as well as their potential as CKD biomarkers. The emerging evidence shows that TNF receptors could act as biomarkers of renal damage and as mediators of the disease. Furthermore, it has been suggested that these biomarkers could significantly improve the discrimination of clinical CKD prognostic models.
Collapse
Affiliation(s)
- Irina Lousa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Alice Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
24
|
Bai J, Ding B, Li H. Targeting TNFR2 in Cancer: All Roads Lead to Rome. Front Immunol 2022; 13:844931. [PMID: 35251045 PMCID: PMC8891135 DOI: 10.3389/fimmu.2022.844931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints that might be targeted, mainly because of its vital role in tumor microenvironments (TMEs). Overexpression of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment; however, there is evidence showing that activating TNFR2 can also inhibit tumor progression in vivo. In this review, we will discuss drugs that block and activate TNFR2 under clinical trials or preclinical developments up till now. Meanwhile, we summarize and explore the possible mechanisms related to them.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bowen Ding
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
25
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
26
|
Maguire AD, Bethea JR, Kerr BJ. TNFα in MS and Its Animal Models: Implications for Chronic Pain in the Disease. Front Neurol 2021; 12:780876. [PMID: 34938263 PMCID: PMC8686517 DOI: 10.3389/fneur.2021.780876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.
Collapse
Affiliation(s)
- Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Wang Y, Bao M, Hou C, Wang Y, Zheng L, Peng Y. The Role of TNF-α in the Pathogenesis of Temporomandibular Disorders. Biol Pharm Bull 2021; 44:1801-1809. [PMID: 34853262 DOI: 10.1248/bpb.b21-00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temporomandibular disorder (TMD) is an oral dentofacial disease that is related to multiple factors such as disordered dental occlusion, emotional stress, and immune responses. In the past decades, tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, has provided valuable insight into the pathogenesis of TMD, particularly in settings associated with inflammation. It is thought that TNF-α participates in the pathogenesis of TMD by triggering immune responses, deteriorating bone and cartilage, and mediating pain in the temporomandibular joint (TMJ). Initially, TNF-α plays the role of "master regulator" in the complex immune network by increasing or decreasing the production of other inflammatory cytokines. Then, the effects of TNF-α on cells, particularly on chondrocytes and synovial fibroblasts, result in pathologic cartilage degradation in TMD. Additionally, multiple downstream cytokines induced by TNF-α and neuropeptides can regulate central sensitization and inflammatory pain in TMD. Previous studies have also found some therapies target TMD by reducing the production of TNF-α or blocking TNF-α-induced pathways. All this evidence highlights the numerous associations between TNF-α and TMD; however, they are currently not fully understood and further investigations are still required for specific mechanisms and treatments targeting specific pathways. Therefore, in this review, we explored general mechanisms of TNF-α, with a focus on molecules in TNF-α-mediated pathways and their potential roles in TMD treatment. In view of the high clinical prevalence rate of TMD and damage to patients' QOL, this review provides adequate evidence for studying links between inflammation and TMD in further research and investigation.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Chuping Hou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Yiran Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
28
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
29
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
30
|
Prada JP, Wangorsch G, Kucka K, Lang I, Dandekar T, Wajant H. A systems-biology model of the tumor necrosis factor (TNF) interactions with TNF receptor 1 and 2. Bioinformatics 2021; 37:669-676. [PMID: 32991680 DOI: 10.1093/bioinformatics/btaa844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Clustering enables TNF receptors to stimulate intracellular signaling. The differential soluble ligand-induced clustering behavior of TNF receptor 1 (TNFR1) and TNFR2 was modeled. A structured, rule-based model implemented ligand-independent pre-ligand binding assembly domain (PLAD)-mediated homotypic low affinity interactions of unliganded and liganded TNF receptors. RESULTS Soluble TNF initiates TNFR1 signaling but not TNFR2 signaling despite receptor binding unless it is secondarily oligomerized. We consider high affinity binding of TNF to signaling-incompetent pre-assembled dimeric TNFR1 and TNFR2 molecules and secondary clustering of liganded dimers to signaling competent ligand-receptor clusters. Published receptor numbers, affinities and measured different activities of clustered receptors validated model simulations for a large range of receptor and ligand concentrations. Different PLAD-PLAD affinities and different activities of receptor clusters explain the observed differences in the TNF receptor stimulating activities of soluble TNF. AVAILABILITY AND IMPLEMENTATION All scripts and data are in manuscript and supplement at Bioinformatics online. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juan Pablo Prada
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Gaby Wangorsch
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg 97074, Germany.,Department of Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
31
|
Kucka K, Lang I, Zhang T, Siegmund D, Medler J, Wajant H. Membrane lymphotoxin-α 2β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist. Cell Death Dis 2021; 12:360. [PMID: 33824270 PMCID: PMC8024344 DOI: 10.1038/s41419-021-03633-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
In the early 1990s, it has been described that LTα and LTβ form LTα2β and LTαβ2 heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ2–LTβR system has been intensively studied while the LTα2β–TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα2β–TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα2β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα2β (memLTα2β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα2β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.
Collapse
Affiliation(s)
- Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tengyu Zhang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
32
|
Inoue M, Yamashita K, Tsuji Y, Miki M, Amano S, Okumura T, Kuge K, Tone T, Enomoto S, Yoshimine C, Morita Y, Ando D, Kamada H, Mikami N, Tsutsumi Y, Tsunoda SI. Characterization of a TNFR2-Selective Agonistic TNF-α Mutant and Its Derivatives as an Optimal Regulatory T Cell Expander. THE JOURNAL OF IMMUNOLOGY 2021; 206:1740-1751. [PMID: 33782090 DOI: 10.4049/jimmunol.2000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) are a subpopulation of lymphocytes that play a role in suppressing and regulating immune responses. Recently, it was suggested that controlling the functions and activities of Tregs might be applicable to the treatment of human diseases such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease. TNF receptor type 2 (TNFR2) is a target molecule that modulates Treg functions. In this study, we investigated the role of TNFR2 signaling in the differentiation and activation of mouse Tregs. We previously reported the generation of a TNFR2-selective agonist TNF mutant, termed R2agoTNF, by using our unique cytokine modification method based on phage display. R2agoTNF activates cell signaling via mouse TNFR2. In this study, we evaluated the efficacy of R2agoTNF for the proliferation and activation of Tregs in mice. R2agoTNF expanded and activated mouse CD4+CD25+ Tregs ex vivo. The structural optimization of R2agoTNF by internal cross-linking or IgG-Fc fusion selectively and effectively enhanced Treg expansion in vivo. Furthermore, the IgG-Fc fusion protein suppressed skin-contact hypersensitivity reactions in mice. TNFR2 agonists are expected to be new Treg expanders.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan.,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kanako Yamashita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Midori Miki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Amano
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Taichi Okumura
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Koki Kuge
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Takao Tone
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Enomoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Chinatsu Yoshimine
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuki Morita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Daisuke Ando
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,National Institutes of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 65-0871, Japan; and
| | - Yasuo Tsutsumi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan; .,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Metabolic Fingerprinting of Murine L929 Fibroblasts as a Cell-Based Tumour Suppressor Model System for Methionine Restriction. Int J Mol Sci 2021; 22:ijms22063039. [PMID: 33809777 PMCID: PMC8002350 DOI: 10.3390/ijms22063039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.
Collapse
|
34
|
Martínez de Paz A, Josefowicz SZ. Signaling-to-chromatin pathways in the immune system. Immunol Rev 2021; 300:37-53. [PMID: 33644906 PMCID: PMC8548991 DOI: 10.1111/imr.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven Zvi Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
35
|
Gough P, Myles IA. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front Immunol 2020; 11:585880. [PMID: 33324405 PMCID: PMC7723893 DOI: 10.3389/fimmu.2020.585880] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.
Collapse
Affiliation(s)
- Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Uribe-Herranz M, Kuguel SG, Casós K, Costa C. Characterization of putative regulatory isoforms of porcine tumor necrosis factor receptor 2 in endothelial cells. Xenotransplantation 2020; 27:e12635. [PMID: 32783288 DOI: 10.1111/xen.12635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023]
Abstract
Tumor necrosis factor α (TNFα) and its receptors contribute to rejection of transplanted cells and organs. To elucidate how TNFα affects xenograft rejection, we previously cloned the cDNA of pig TNF-receptor 2 (pTNFR2) and found four isoforms: one comprising the full receptor with four cysteine-rich domains (CRD), a shorter variant (pTNFR2ΔE7-10) encoding for a soluble isoform, another lacking exon 4 (pTNFR2ΔE4) displaying only 3 CRD and poor ligand binding, and the smallest one generated by the two alternative splicings. All isoforms contained the pre-ligand assembly domain (PLAD) responsible for receptor trimerization. We now investigated their roles by structural, expression, and subcellular localization studies. Structural in silico analyses identified four amino acids potentially involved in TNFα binding and lacking in pTNFR2ΔE4. Quantitative RT-PCR determined regulated expression affecting the two pTNFR2 alternative splicings in cytokine-stimulated porcine aortic endothelial cells (PAEC). Particularly, human IL-1α and TNFα produced a strong mRNA upregulation of all isoforms, being the full receptor the predominant one. However, expression of pTNFR2 on PAEC did not correlate with mRNA and decreased after 24-hour exposure to IL-1α or TNFα. Notably, confocal microscopy confirmed the presence of pTNFR2 inside and on the plasma membrane, whereas pTNFR2ΔE4 located only intracellularly. Most interestingly, FRET analyses showed that membrane-bound isoforms pTNFR2 and pTNFR2ΔE4 colocalized intracellularly and associated through the PLAD. Our data show that pTNFR2ΔE4 bind and may retain the full receptor intracellularly. This mechanism has not been described in other species and represents a particularity that may affect the pathophysiology of pig xenografts.
Collapse
Affiliation(s)
- Mireia Uribe-Herranz
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kelly Casós
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
37
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
38
|
Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation. ZYGOTE 2020; 28:270-277. [PMID: 32383419 DOI: 10.1017/s0967199420000222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are cytokines that are involved in the development, proliferation and apoptosis of ovarian follicular cells in domestic mammals. The expression of these cytokines in various follicular compartments, depending on the stage of follicle development, demonstrates their involvement in the control of primordial follicle growth up to the preovulatory stage. The mechanism of action of these factors depends on the presence of their receptors that transduce their biological actions. This review shows the expression sites of TNF-α, IL-1β and their receptors in ovarian follicles, and discusses the mechanism of action of these cytokines during follicle development, oocyte maturation and ovulation in domestic animals.
Collapse
|
39
|
Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020; 130:155066. [PMID: 32208336 DOI: 10.1016/j.cyto.2020.155066] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNF-alpha is involved in many physiologic and pathologic cellular pathways, including cellular proliferation, differentiation, and death, regulation of immunologic reactions to different cells and molecules, local and vascular invasion of neoplasms, and destruction of tumor vasculature. It is obvious that because of integrated functions of TNF-alpha inside different physiologic systems, it cannot be used as a single-agent therapy for neoplasms; however, long-term investigation of its different cellular pathways has led to recognition of a variety of subsequent molecules with more specific interactions, and therefore, might be suitable as prognostic and therapeutic factors for neoplasms. Here, we will review different aspects of the TNF-alpha as a cytokine involved in both physiologic functions of cells and pathologic abnormalities, most importantly, cancers.
Collapse
Affiliation(s)
- Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Jabbari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
40
|
Su Z, Wu Y. A Systematic Test of Receptor Binding Kinetics for Ligands in Tumor Necrosis Factor Superfamily by Computational Simulations. Int J Mol Sci 2020; 21:ijms21051778. [PMID: 32150842 PMCID: PMC7084274 DOI: 10.3390/ijms21051778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ligands in the tumor necrosis factor (TNF) superfamily are one major class of cytokines that bind to their corresponding receptors in the tumor necrosis factor receptor (TNFR) superfamily and initiate multiple intracellular signaling pathways during inflammation, tissue homeostasis, and cell differentiation. Mutations in the genes that encode TNF ligands or TNFR receptors result in a large variety of diseases. The development of therapeutic treatment for these diseases can be greatly benefitted from the knowledge on binding properties of these ligand–receptor interactions. In order to complement the limitations in the current experimental methods that measure the binding constants of TNF/TNFR interactions, we developed a new simulation strategy to computationally estimate the association and dissociation between a ligand and its receptor. We systematically tested this strategy to a comprehensive dataset that contained structures of diverse complexes between TNF ligands and their corresponding receptors in the TNFR superfamily. We demonstrated that the binding stabilities inferred from our simulation results were compatible with existing experimental data. We further compared the binding kinetics of different TNF/TNFR systems, and explored their potential functional implication. We suggest that the transient binding between ligands and cell surface receptors leads into a dynamic nature of cross-membrane signal transduction, whereas the slow but strong binding of these ligands to the soluble decoy receptors is naturally designed to fulfill their functions as inhibitors of signal activation. Therefore, our computational approach serves as a useful addition to current experimental techniques for the quantitatively comparison of interactions across different members in the TNF and TNFR superfamily. It also provides a mechanistic understanding to the functions of TNF-associated cell signaling pathways.
Collapse
|
41
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
42
|
Badenes M, Amin A, González-García I, Félix I, Burbridge E, Cavadas M, Ortega FJ, de Carvalho É, Faísca P, Carobbio S, Seixas E, Pedroso D, Neves-Costa A, Moita LF, Fernández-Real JM, Vidal-Puig A, Domingos A, López M, Adrain C. Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Mol Metab 2019; 31:67-84. [PMID: 31918923 PMCID: PMC6909339 DOI: 10.1016/j.molmet.2019.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. Methods We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. Results Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. Conclusion Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. Deletion of iRhom2 protects mice from metabolic syndrome. In obesity, iRhom2 deletion increases energy expenditure, thermogenesis and white adipose tissue beiging. iRhom2 deletion enhances thermogenesis in naïve brown adipocytes.
Collapse
Affiliation(s)
| | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Inês Félix
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland; Turku Bioscience Centre, University of Turku, Åbo Akademi University, FI-20520 Turku, Finland
| | | | | | | | | | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - António Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Ana Domingos
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Obesity Lab, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.
| |
Collapse
|
43
|
Knop J, Spilgies LM, Rufli S, Reinhart R, Vasilikos L, Yabal M, Owsley E, Jost PJ, Marsh RA, Wajant H, Robinson MD, Kaufmann T, Wong WWL. TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP. Cell Death Dis 2019; 10:700. [PMID: 31541082 PMCID: PMC6754467 DOI: 10.1038/s41419-019-1938-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023]
Abstract
The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.
Collapse
Affiliation(s)
- Janin Knop
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lisanne M Spilgies
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Stefanie Rufli
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Monica Yabal
- III. Medizinische Klink, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Erika Owsley
- UC Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, USA
| | - Philipp J Jost
- III. Medizinische Klink, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rebecca A Marsh
- UC Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, USA
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mark D Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
44
|
Wajant H, Beilhack A. Targeting Regulatory T Cells by Addressing Tumor Necrosis Factor and Its Receptors in Allogeneic Hematopoietic Cell Transplantation and Cancer. Front Immunol 2019; 10:2040. [PMID: 31555271 PMCID: PMC6724557 DOI: 10.3389/fimmu.2019.02040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Else-Kröner-Forschungskolleg Würzburg, Würzburg University Hospital, Würzburg University, Würzburg, Germany
| |
Collapse
|
45
|
The NEDD8-activating enzyme inhibitor MLN4924 sensitizes a TNFR1 + subgroup of multiple myeloma cells for TNF-induced cell death. Cell Death Dis 2019; 10:611. [PMID: 31406107 PMCID: PMC6690881 DOI: 10.1038/s41419-019-1860-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/10/2023]
Abstract
The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase βTrCP. MLN4924 therefore inhibits also the βTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment.
Collapse
|
46
|
Abstract
With the advent of the concept of dominant tolerance and the subsequent discovery of CD4+ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all productive as well as nonproductive immune responses can be compartmentalized to a binary of immune effector T cells and immune regulatory Treg populations. A beneficial immune response warrants the timely regulation by Tregs, whereas a nonproductive immune response indicates insufficient effector functions or an outright failure of tolerance. There are ample reports supporting role of Tregs in suppressing spontaneous auto-immune diseases as well as promoting immune evasion by cancers. To top up their importance, several non-immune functions like tissue homeostasis and regeneration are also being attributed to Tregs. Hence, after being in the center stage of basic and translational immunological research, Tregs are making the next jump towards clinical studies. Therefore, newer small molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to augment or undermine Treg responses in the context of autoimmunity and cancer. In this brief review, we present the strategies to modulate Tregs towards a favorable clinical outcome.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| |
Collapse
|
47
|
Wajant H, Siegmund D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Front Cell Dev Biol 2019; 7:91. [PMID: 31192209 PMCID: PMC6548990 DOI: 10.3389/fcell.2019.00091] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040444. [PMID: 30934872 PMCID: PMC6521207 DOI: 10.3390/cancers11040444] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
(TNF)-related apoptosis-inducing ligand (TRAIL) is able to activate the extrinsic apoptotic pathway upon binding to DR4/TRAIL-R1 and/or DR5/TRAIL-R2 receptors. Structural data indicate that TRAIL functions as a trimer that can engage three receptor molecules simultaneously, resulting in receptor trimerization and leading to conformational changes in TRAIL receptors. However, receptor conformational changes induced by the binding of TRAIL depend on the molecular form of this death ligand, and not always properly trigger the apoptotic cascade. In fact, TRAIL exhibits a much stronger pro-apoptotic activity when is found as a transmembrane protein than when it occurs as a soluble form and this enhanced biological activity is directly linked to its ability to cluster TRAIL receptors in supra-molecular structures. In this regard, cells involved in tumor immunosurveillance, such as activated human T cells, secrete endogenous TRAIL as a transmembrane protein associated with lipid microvesicles called exosomes upon T-cell reactivation. Consequently, it seems clear that a proper oligomerization of TRAIL receptors, which leads to a strong apoptotic signaling, is crucial for inducing apoptosis in cancer cells upon TRAIL treatment. In this review, the current knowledge of oligomerization status of TRAIL receptors is discussed as well as the implications for cancer treatment when using TRAIL-based therapies.
Collapse
|
49
|
Medler J, Wajant H. Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target. Expert Opin Ther Targets 2019; 23:295-307. [PMID: 30856027 DOI: 10.1080/14728222.2019.1586886] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tumor necrosis factor (TNF) receptor 2 (TNFR2) is one of two receptors of the cytokines, TNF and lymphotoxin-α. TNFR1 is a strong inducer of proinflammatory activities. TNFR2 has proinflammatory effects too, but it also elicits strong anti-inflammatory activities and has protective effects on oligodendrocytes, cardiomyocytes, and keratinocytes. The protective and anti-inflammatory effects of TNFR2 may explain why TNF inhibitors failed to be effective in diseases such as heart failure or multiple sclerosis, where TNF has been strongly implicated as a driving force. Stimulatory and inhibitory TNFR2 targeting hence attracts considerable interest for the treatment of autoimmune diseases and cancer. Areas covered: Based on a brief description of the pathophysiological importance of the TNF-TNFR1/2 system, we discuss the potential applications of TNFR2 targeting therapies. We also debate TNFR2 activation as a way forward in the search for TNFR2-specific agents. Expert opinion: The use of TNFR2 to target regulatory T-cells is attractive, but this approach is just one amongst many suitable targets. With respect to its preference for Treg stimulation and protection of non-immune cells, TNFR2 is more unique and thus offers opportunities for translational success.
Collapse
Affiliation(s)
- Juliane Medler
- a Division for Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- a Division for Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
50
|
Medler J, Nelke J, Weisenberger D, Steinfatt T, Rothaug M, Berr S, Hünig T, Beilhack A, Wajant H. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis 2019; 10:224. [PMID: 30833543 PMCID: PMC6399339 DOI: 10.1038/s41419-019-1456-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed.
Collapse
Affiliation(s)
- Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Johannes Nelke
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, University Hospital of Würzburg, Zinklesweg 10, 97078, Würzburg, Germany
| | - Moritz Rothaug
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany
| | - Susanne Berr
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital of Würzburg, Zinklesweg 10, 97078, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.
| |
Collapse
|