1
|
Cross EM, Marin O, Ariawan D, Aragão D, Cozza G, Di Iorio E, Forwood JK, Alvisi G. Structural determinants of phosphorylation-dependent nuclear transport of HCMV DNA polymerase processivity factor UL44. FEBS Lett 2024; 598:199-209. [PMID: 38158756 DOI: 10.1002/1873-3468.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Human cytomegalovirus DNA polymerase processivity factor UL44 is transported into the nucleus by importin (IMP) α/β through a classical nuclear localization signal (NLS), and this region is susceptible to cdc2-mediated phosphorylation at position T427. Whilst phosphorylation within and close to the UL44 NLS regulates nuclear transport, the details remain elusive, due to the paucity of structural information regarding the role of negatively charged cargo phosphate groups. We addressed this issue by studying the effect of UL44 T427 phosphorylation on interaction with several IMPα isoforms by biochemical and structural approaches. Phosphorylation decreased UL44/IMPα affinity 10-fold, and a comparative structural analysis of UL44 NLS phosphorylated and non-phosphorylated peptides complexed with mouse IMPα2 revealed the structural rearrangements responsible for phosphorylation-dependent inhibition of UL44 nuclear import.
Collapse
Affiliation(s)
- Emily M Cross
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, Australia
- Diamond Light Source, Didcot, UK
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Italy
| | - Daryl Ariawan
- Dementia Research Centre, Macquarie University, Sydney, Australia
| | | | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Italy
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Italy
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | | |
Collapse
|
2
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
3
|
Ghildyal R, Teng MN, Tran KC, Mills J, Casarotto MG, Bardin PG, Jans DA. Nuclear Transport of Respiratory Syncytial Virus Matrix Protein Is Regulated by Dual Phosphorylation Sites. Int J Mol Sci 2022; 23:ijms23147976. [PMID: 35887322 PMCID: PMC9317576 DOI: 10.3390/ijms23147976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory infections in infants and the elderly. Although the RSV matrix (M) protein has key roles in the nucleus early in infection, and in the cytoplasm later, the molecular basis of switching between the nuclear and cytoplasmic compartments is not known. Here, we show that protein kinase CK2 can regulate M nucleocytoplasmic distribution, whereby inhibition of CK2 using the specific inhibitor 4,5,6,7-tetrabromobenzo-triazole (TBB) increases M nuclear accumulation in infected cells as well as when ectopically expressed in transfected cells. We use truncation/mutagenic analysis for the first time to show that serine (S) 95 and threonine (T) 205 are key CK2 sites that regulate M nuclear localization. Dual alanine (A)-substitution to prevent phosphorylation abolished TBB- enhancement of nuclear accumulation, while aspartic acid (D) substitution to mimic phosphorylation at S95 increased nuclear accumulation. D95 also induced cytoplasmic aggregate formation, implying that a negative charge at S95 may modulate M oligomerization. A95/205 substitution in recombinant RSV resulted in reduced virus production compared with wild type, with D95/205 substitution resulting in an even greater level of attenuation. Our data support a model where unphosphorylated M is imported into the nucleus, followed by phosphorylation of T205 and S95 later in infection to facilitate nuclear export and cytoplasmic retention of M, respectively, as well as oligomerization/virus budding. In the absence of widely available, efficacious treatments to protect against RSV, the results raise the possibility of antiviral strategies targeted at CK2.
Collapse
Affiliation(s)
- Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia
- Correspondence: ; Tel.: +612-6201-5755
| | - Michael N. Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (M.N.T.); (K.C.T.)
| | - Kim C. Tran
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (M.N.T.); (K.C.T.)
| | - John Mills
- Faculty of Medicine, Monash University, Burnet Institute for Medical Research, The Alfred Hospital Department of Infectious Diseases, Melbourne 3004, Australia;
| | - Marco G. Casarotto
- Research School of Biology, Australian National University, Canberra 2601, Australia;
| | - Philip G. Bardin
- Monash Lung & Sleep and Hudson Institute, Monash University, Melbourne 3181, Australia;
| | - David A. Jans
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3181, Australia;
| |
Collapse
|
4
|
Li HM, Ghildyal R, Hu M, Tran KC, Starrs LM, Mills J, Teng MN, Jans DA. Respiratory Syncytial Virus Matrix Protein-Chromatin Association Is Key to Transcriptional Inhibition in Infected Cells. Cells 2021; 10:2786. [PMID: 34685766 PMCID: PMC8534903 DOI: 10.3390/cells10102786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
The morbidity and mortality caused by the globally prevalent human respiratory pathogen respiratory syncytial virus (RSV) approaches that world-wide of influenza. We previously demonstrated that the RSV matrix (M) protein shuttles, in signal-dependent fashion, between host cell nucleus and cytoplasm, and that this trafficking is central to RSV replication and assembly. Here we analyze in detail the nuclear role of M for the first time using a range of novel approaches, including quantitative analysis of de novo cell transcription in situ in the presence or absence of RSV infection or M ectopic expression, as well as in situ DNA binding. We show that M, dependent on amino acids 110-183, inhibits host cell transcription in RSV-infected cells as well as cells transfected to express M, with a clear correlation between nuclear levels of M and the degree of transcriptional inhibition. Analysis of bacterially expressed M protein and derivatives thereof mutated in key residues within M's RNA binding domain indicates that M can bind to DNA as well as RNA in a cell-free system. Parallel results for point-mutated M derivatives implicate arginine 170 and lysine 172, in contrast to other basic residues such as lysine 121 and 130, as critically important residues for inhibition of transcription and DNA binding both in situ and in vitro. Importantly, recombinant RSV carrying arginine 170/lysine 172 mutations shows attenuated infectivity in cultured cells and in an animal model, concomitant with altered inflammatory responses. These findings define an RSV M-chromatin interface critical for host transcriptional inhibition in infection, with important implications for anti-RSV therapeutic development.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, VIC 3800, Australia; (H.-M.L.); (R.G.); (M.H.)
| | - Reena Ghildyal
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, VIC 3800, Australia; (H.-M.L.); (R.G.); (M.H.)
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Mengjie Hu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, VIC 3800, Australia; (H.-M.L.); (R.G.); (M.H.)
| | - Kim C. Tran
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.C.T.); (M.N.T.)
| | - Lora M. Starrs
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - John Mills
- Department of Infectious Diseases, School of Biomedical Sciences, Monash University and the Burnet Institute, Melbourne, VIC 3004, Australia;
| | - Michael N. Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.C.T.); (M.N.T.)
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, VIC 3800, Australia; (H.-M.L.); (R.G.); (M.H.)
| |
Collapse
|
5
|
Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 2018; 14:e1007797. [PMID: 30500810 PMCID: PMC6268010 DOI: 10.1371/journal.pgen.1007797] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress. The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb’s first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.
Collapse
|
6
|
Dyson JM, Conduit SE, Feeney SJ, Hakim S, DiTommaso T, Fulcher AJ, Sriratana A, Ramm G, Horan KA, Gurung R, Wicking C, Smyth I, Mitchell CA. INPP5E regulates phosphoinositide-dependent cilia transition zone function. J Cell Biol 2016; 216:247-263. [PMID: 27998989 PMCID: PMC5223597 DOI: 10.1083/jcb.201511055] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 09/19/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Dyson et al. demonstrate that the inositol polyphosphate 5-phosphatase INPP5E is essential for Hedgehog-dependent embryonic development. By regulating PI(4,5)P2 and PI(3,4,5)P3 signals at cilia, INPP5E contributes to cilia transition zone function and thereby Smoothened accumulation at cilia. Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e−/− embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e−/− ciliopathy phenotypes and “normalizes” Hedgehog signaling. INPP5E’s phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e−/− cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra Hakim
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tia DiTommaso
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Kristy A Horan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Fulcher AJ, Sivakumaran H, Jin H, Rawle DJ, Harrich D, Jans DA. The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:254-62. [PMID: 26611710 DOI: 10.1016/j.bbamcr.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus (HIV)-1 transactivator protein Tat is known to play a key role in HIV infection, integrally related to its role in the host cell nucleus/nucleolus. Here we show for the first time that Tat localisation can be modulated by specific methylation, whereby overexpression of active but not catalytically inactive PRMT6 methyltransferase specifically leads to exclusion of Tat from the nucleolus. An R52/53A mutated Tat derivative does not show this redistribution, implying that R52/53, within Tat's nuclear/nucleolar localisation signal, are the targets of PRMT6 activity. Analysis using fluorescence recovery after photobleaching indicate that Tat nucleolar accumulation is largely through binding to nucleolar components, with methylation of Tat by PRMT6 preventing this. To our knowledge, this is the first report of specific protein methylation inhibiting nucleolar retention.
Collapse
Affiliation(s)
- Alex J Fulcher
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Haran Sivakumaran
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; The University of Queensland, School of Population Health, Herston, Queensland 4072, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, Queensland, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Biotechnology and Development, Australia.
| |
Collapse
|
8
|
Fatima S, Wagstaff KM, Loveland KL, Jans DA. Interactome of the negative regulator of nuclear import BRCA1-binding protein 2. Sci Rep 2015; 5:9459. [PMID: 25820252 PMCID: PMC4377634 DOI: 10.1038/srep09459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 11/09/2022] Open
Abstract
Although the negative regulator of nuclear import (NRNI) BRCA1 binding protein 2 (BRAP2) is highly expressed in testis, its role is largely unknown. Here we address this question by documenting the BRAP2 interactome from human testis, using the yeast 2-hybrid system to identify BRAP2-interacting proteins with roles in diverse cellular processes, including regulation of the actin cytoskeleton, ubiquitinylation, cell cycle/apoptosis and transcription. Interaction with BRAP2 in adult mouse testis with three of these, PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1), A-Kinase anchor protein (AKAP3) and DNA methyl transferase 1 (DNMT1), was confirmed by coimmunoprecipitation assays. BRAP2's ability to inhibit PHLPP1 and DNMT1 nuclear localisation was also confirmed by quantitative confocal microscopy. Importantly, the physiological relevance thereof was implied by the cytoplasmic localisation of PHLPP1, AKAP3 and DNMT1 in pachytene spermatocytes/round spermatids where BRAP2 is present at high levels, and nuclear localisation of PHLPP1 and DNMT1 in spermatogonia concomitant with lower levels of BRAP2. Interestingly, BRAP2 was also present in murine spermatozoa, in part colocalised with AKAP3. Together the results indicate for the first time that BRAP2 may play an important NRNI role in germ cells of the testis, with an additional, scaffold/structural role in mature spermatozoa.
Collapse
Affiliation(s)
- Shadma Fatima
- Department.of Biochemistry &Molecular Biology Monash University, Clayton, Victoria, Australia
| | - Kylie M Wagstaff
- Department.of Biochemistry &Molecular Biology Monash University, Clayton, Victoria, Australia
| | - Kate L Loveland
- Department.of Biochemistry &Molecular Biology Monash University, Clayton, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Department.of Biochemistry &Molecular Biology Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Abstract
The retinoblastoma protein gene RB-1 is mutated in one-third of human tumors. Its protein product, pRB (retinoblastoma protein), functions as a transcriptional coregulator in many fundamental cellular processes. Here, we report a nonnuclear role for pRB in apoptosis induction via pRB's direct participation in mitochondrial apoptosis. We uncovered this activity by finding that pRB potentiated TNFα-induced apoptosis even when translation was blocked. This proapoptotic function was highly BAX-dependent, suggesting a role in mitochondrial apoptosis, and accordingly, a fraction of endogenous pRB constitutively associated with mitochondria. Remarkably, we found that recombinant pRB was sufficient to trigger the BAX-dependent permeabilization of mitochondria or liposomes in vitro. Moreover, pRB interacted with BAX in vivo and could directly bind and conformationally activate BAX in vitro. Finally, by targeting pRB specifically to mitochondria, we generated a mutant that lacked pRB's classic nuclear roles. This mito-tagged pRB retained the ability to promote apoptosis in response to TNFα and also additional apoptotic stimuli. Most importantly, induced expression of mito-tagged pRB in Rb(-/-);p53(-/-) tumors was sufficient to block further tumor development. Together, these data establish a nontranscriptional role for pRB in direct activation of BAX and mitochondrial apoptosis in response to diverse stimuli, which is profoundly tumor-suppressive.
Collapse
|
10
|
Oksayan S, Wiltzer L, Rowe CL, Blondel D, Jans DA, Moseley GW. A novel nuclear trafficking module regulates the nucleocytoplasmic localization of the rabies virus interferon antagonist, P protein. J Biol Chem 2012; 287:28112-21. [PMID: 22700958 PMCID: PMC3431689 DOI: 10.1074/jbc.m112.374694] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/13/2012] [Indexed: 12/25/2022] Open
Abstract
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1-P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3-P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection.
Collapse
Affiliation(s)
- Sibil Oksayan
- From the Viral Immune Evasion and Pathogenicity Laboratory and
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, 3800 Victoria, Australia and
| | - Linda Wiltzer
- From the Viral Immune Evasion and Pathogenicity Laboratory and
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, 3800 Victoria, Australia and
| | - Caitlin L. Rowe
- From the Viral Immune Evasion and Pathogenicity Laboratory and
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, 3800 Victoria, Australia and
| | - Danielle Blondel
- the Laboratoire de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS 91198 Gif-sur-Yvette, France
| | - David A. Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, 3800 Victoria, Australia and
| | | |
Collapse
|
11
|
Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2176-90. [PMID: 21530593 PMCID: PMC7114211 DOI: 10.1016/j.bbamcr.2011.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/15/2011] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.
Collapse
|