1
|
Simwela NV, Jaecklein E, Sassetti CM, Russell DG. Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis. eLife 2025; 13:RP102980. [PMID: 40080408 PMCID: PMC11906158 DOI: 10.7554/elife.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host-derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyses demonstrate that macrophages that cannot either import, store, or catabolize fatty acids restrict Mtb growth by both common and divergent antimicrobial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy, and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical SchoolWorcesterUnited States
| | | | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
2
|
Simwela NV, Jaecklein E, Sassetti CM, Russell DG. Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.22.604660. [PMID: 39091727 PMCID: PMC11291043 DOI: 10.1101/2024.07.22.604660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyzes demonstrate that macrophages which cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Simwela NV, Johnston L, Bitar PP, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth. Nat Commun 2024; 15:9322. [PMID: 39472457 PMCID: PMC11522665 DOI: 10.1038/s41467-024-53637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Simwela NV, Johnston L, Pavinski Bitar P, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis- infected macrophages identified the GID/CTLH complex as a determinant of intracellular bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592714. [PMID: 38766174 PMCID: PMC11100626 DOI: 10.1101/2024.05.06.592714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The eukaryotic GID/CTLH complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host antimicrobial defenses has not been described. We exploited Mycobacterium tuberculosis ( Mtb ) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 ( GID8 , YPEL5 , WDR26 , UBE2H , MAEA ) of the 10 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the antimicrobial properties of the GID/CTLH complex knockdown macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to cell death. Meanwhile, Mtb isolated from GID/CTLH knockdown macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host antimicrobial responses against intracellular bacterial infections. Graphical abstract
Collapse
|
5
|
Platt FM. The expanding boundaries of sphingolipid lysosomal storage diseases; insights from Niemann-Pick disease type C. Biochem Soc Trans 2023; 51:1777-1787. [PMID: 37844193 PMCID: PMC10657176 DOI: 10.1042/bst20220711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Lysosomal storage diseases are inborn errors of metabolism that arise due to loss of function mutations in genes encoding lysosomal enzymes, protein co-factors or lysosomal membrane proteins. As a consequence of the genetic defect, lysosomal function is impaired and substrates build up in the lysosome leading to 'storage'. A sub group of these disorders are the sphingolipidoses in which sphingolipids accumulate in the lysosome. In this review, I will discuss how the study of these rare lysosomal disorders reveals unanticipated links to other rare and common human diseases using Niemann-Pick disease type C as an example.
Collapse
Affiliation(s)
- Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
6
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
7
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
8
|
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F. Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa. eLife 2022; 11:e72824. [PMID: 35536643 PMCID: PMC9132575 DOI: 10.7554/elife.72824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.
Collapse
Affiliation(s)
- Florian Bleffert
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Joachim Granzin
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of TalcaTalcaChile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Meike Siebers
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
- Institute for Plant Genetics, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Björn Thiele
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), and Agrosphere (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
| | - Laurence Rahme
- Department of Microbiology, and Immunobiology, Harvard Medical SchoolBostonUnited States
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Peter Dörmann
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
| | - Holger Gohlke
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Renu Batra-Safferling
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbHJülichGermany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
9
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
10
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
11
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
12
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
13
|
Shtratnikova VY, Sсhelkunov MI, Fokina VV, Bragin EY, Shutov AA, Donova MV. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol 2021; 21:7. [PMID: 33441120 PMCID: PMC7807495 DOI: 10.1186/s12896-021-00668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. RESULTS Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N. simplex. Unlike phytosterol, cortisone 21-acetate does not provide induction of the genes with predicted KstR and KstR2 sites. Superior 3-ketosteroid-Δ1-dehydrogenase activity of N. simplex VKM Ac-2033D is due to the kstDs redundancy in the genome, with the highest expression level of the gene KR76_27125 orthologous to kstD2, in response to cortisone 21-acetate. The substrate spectrum of N. simplex 3-ketosteroid-Δ1-dehydrogenase was expanded in this study with progesterone and its 17α-hydroxylated and 11α,17α-dihydroxylated derivatives, that effectively were 1(2)-dehydrogenated in vivo by the whole cells of the N. simplex VKM Ac-2033D. CONCLUSION The results contribute to the knowledge of biocatalytic features and diversity of steroid modification capabilities of actinobacteria, defining targets for further bioengineering manipulations with the purpose of expansion of their biotechnological applications.
Collapse
Affiliation(s)
- Victoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, h. 1, b. 40, Moscow, Russian Federation 119991
| | - Mikhail I. Sсhelkunov
- Skolkovo Institute of Science and Technology, Nobelya str., 3, Moscow, Russian Federation 121205
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., h. 19, b. 1, Moscow, Russian Federation 127994
| | - Victoria V. Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Eugeny Y. Bragin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
| | - Andrey A. Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Marina V. Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| |
Collapse
|
14
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
15
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
16
|
Si D, Xiong Y, Yang Z, Zhang J, Ma L, Li J, Wang Y. Whole genome sequencing analysis of a dexamethasone-degrading Burkholderia strain CQ001. Medicine (Baltimore) 2019; 98:e16749. [PMID: 31415371 PMCID: PMC6831421 DOI: 10.1097/md.0000000000016749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study is to analyze the functional genes and metabolic pathways of dexamethasone degradation in Burkholderia through genome sequencing.A new Burkholderia sp. CQQ001 (B. CQ001) with dexamethasone degrading activity was isolated from the hospital wastewater and sequenced using Illumina Hiseq4000 combined with the third-generation sequencing technology. The genomes were assembled, annotated, and genomically mapped. Compared with six Burkholderia strains with typical features and four Burkholderia strains with special metabolic ability, the functional genes and metabolic pathways of dexamethasone degradation were analyzed and confirmed by RT-qPCR.Genome of B. CQ001 was 7,660,596 bp long with 6 ring chromosomes. The genes related to material metabolism accounted for 80.15%. These metabolism related genes could participate in 117 metabolic pathways and cover various microbial metabolic pathways in different environments and decomposition pathways of secondary metabolites, especially the degradation of aromatic compounds. The steroidal metabolic pathway containing 1 ABC transporter and 9 key metabolic enzymes related genes were scattered in the genome. Among them, the ABC transporter, KshA, and KshB increased significantly under the culture conditions of dexamethasone sodium phosphate as carbon source.B. CQ001 is a bacterium with strong metabolic function and rich metabolic pathways. It has the potential to degrade aromatics and other exogenous chemicals and contains genes for steroid metabolism. Our study enriches the genetic information of Burkholderia and provides information for the application of Burkholderia in bioremediation and steroid medicine production.
Collapse
Affiliation(s)
- Dan Si
- The Third People's Hospital of Suining, Suining,
| | - Yuxia Xiong
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Zhibang Yang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Jin Zhang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Lianju Ma
- Pharmaceutical Experimental Teaching Center, Chongqing Medical University,
| | - Jinyang Li
- Class of 2016, Clinical Medicine, Chongqing Medical University,
| | - Yi Wang
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
17
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
18
|
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ 1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 2019; 191:105366. [PMID: 30991094 DOI: 10.1016/j.jsbmb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the introduction of a double bond between the C1 and C2 atoms of the A-ring of 3-ketosteroid substrates. These enzymes are found in a large variety of microorganisms, especially in bacteria belonging to the phylum Actinobacteria. They play a critical role in the early steps of the degradation of the steroid core. 3-Ketosteroid Δ1-dehydrogenases are of particular interest for the etiology of some infectious diseases, for the production of starting materials for the pharmaceutical industry, and for environmental bioremediation applications. Here we summarize and discuss the biochemical and enzymological properties of these enzymes, their microbial sources, and their natural diversity. The three-dimensional structure of a 3-ketosteroid Δ1-dehydrogenase in connection with the enzyme mechanism is highlighted.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Proteomics, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Bauke W Dijkstra
- The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
19
|
Jia Y, Wang J, Ren C, Nahurira R, Khokhar I, Wang J, Fan S, Yan Y. Identification and characterization of a meta-cleavage product hydrolase involved in biphenyl degradation from Arthrobacter sp. YC-RL1. Appl Microbiol Biotechnol 2019; 103:6825-6836. [PMID: 31240368 DOI: 10.1007/s00253-019-09956-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants (POPs) widely existing in the environment. Arthrobacter sp. YC-RL1 is a biphenyl-degrading bacterium that shows metabolic versatility towards aromatic compounds. A 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate (HOPDA) hydrolase (BphD) gene involved in the biodegradation of biphenyl was cloned from strain YC-RL1 and heterologously expressed in Escherichia coli BL21 (DE3). The recombinant BphDYC-RL1 was purified and characterized. BphDYC-RL1 showed the highest activity at 45 °C and pH 7. It was stable under a wide range of temperature (20-50 °C). The enzyme had a Km value of 0.14 mM, Kcat of 11.61 s-1, and Vmax of 0.027 U/mg. Temperature dependence catalysis exhibited a biphasic Arrhenius Plot with a transition at 20 °C. BphDYC-RL1 was inactivated by SDS, Tween 20, Tween 80, Trition X-100, DTT, CHAPS, NBS, PMSF, and DEPC, but insensitive to EDTA. Site-directed mutagenesis of the active-site residues revealed that the catalytic triad residues (Ser115, His275, and Asp247) of BphDYC-RL1 were necessary for its activity. The investigation of BphDYC-RL1 not only provides new potential enzyme resource for the biodegradation of biphenyl but also helps deepen our understanding on the catalytic process and mechanism.
Collapse
Affiliation(s)
- Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ren
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruth Nahurira
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ibatsam Khokhar
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayi Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghu Fan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
20
|
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 2019; 19:39. [PMID: 31238923 PMCID: PMC6593523 DOI: 10.1186/s12896-019-0533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Aerobic side chain degradation of phytosterols by actinobacteria is the basis for the industrial production of androstane steroids which are the starting materials for the synthesis of steroid hormones. A native strain of Mycobacterium sp. VKM Ac-1817D effectively produces 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) from phytosterol, but also is capable of slow steroid core degradation. However, the set of the genes with products that are involved in phytosterol oxidation, their organisation and regulation remain poorly understood. Results High-throughput sequencing of the global transcriptomes of the Mycobacterium sp. VKM Ac-1817D cultures grown with or without phytosterol was carried out. In the presence of phytosterol, the expression of 260 genes including those related to steroid catabolism pathways significantly increased. Two of the five genes encoding the oxygenase unit of 3-ketosteroid-9α-hydroxylase (kshA) were highly up-regulated in response to phytosterol (55- and 25-fold, respectively) as well as one of the two genes encoding its reductase subunit (kshB) (40-fold). Only one of the five putative genes encoding 3-ketosteroid-∆1-dehydrogenase (KstD_1) was up-regulated in the presence of phytosterol (61-fold), but several substitutions in the conservative positions of its product were revealed. Among the genes over-expressed in the presence of phytosterol, several dozen genes did not possess binding sites for the known regulatory factors of steroid catabolism. In the promoter regions of these genes, a regularly occurring palindromic motif was revealed. The orthologue of TetR-family transcription regulator gene Rv0767c of M. tuberculosis was identified in Mycobacterium sp. VKM Ac-1817D as G155_05115. Conclusions High expression levels of the genes related to the sterol side chain degradation and steroid 9α-hydroxylation in combination with possible defects in KstD_1 may contribute to effective 9α-hydroxyandrost-4-ene-3,17-dione accumulation from phytosterol provided by this biotechnologically relevant strain. The TetR-family transcription regulator gene G155_05115 presumably associated with the regulation of steroid catabolism. The results are of significance for the improvement of biocatalytic features of the microbial strains for the steroid industry. Electronic supplementary material The online version of this article (10.1186/s12896-019-0533-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugeny Y Bragin
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290. .,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290.
| | - Victoria Y Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, 1, building 40, Moscow, Russian Federation, 119992
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow, Russian Federation, 121205.,Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny, 19, build. 1, Moscow, Russian Federation, 127051
| | - Dmitry V Dovbnya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| |
Collapse
|
21
|
van Wyk R, van Wyk M, Mashele SS, Nelson DR, Syed K. Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species. Int J Mol Sci 2019; 20:ijms20051032. [PMID: 30818787 PMCID: PMC6429209 DOI: 10.3390/ijms20051032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In dealing with Mycobacterium tuberculosis, the causative agent of the deadliest human disease—tuberculosis (TB)—utilization of cholesterol as a carbon source indicates the possibility of using cholesterol catabolic genes/proteins as novel drug targets. However, studies on cholesterol catabolism in mycobacterial species are scarce, and the number of mycobacterial species utilizing cholesterol as a carbon source is unknown. The availability of a large number of mycobacterial species’ genomic data affords an opportunity to explore and predict mycobacterial species’ ability to utilize cholesterol employing in silico methods. In this study, comprehensive comparative analysis of cholesterol catabolic genes/proteins in 93 mycobacterial species was achieved by deducing a comprehensive cholesterol catabolic pathway, developing a software tool for extracting homologous protein data and using protein structure and functional data. Based on the presence of cholesterol catabolic homologous proteins proven or predicted to be either essential or specifically required for the growth of M. tuberculosis H37Rv on cholesterol, we predict that among 93 mycobacterial species, 51 species will be able to utilize cholesterol as a carbon source. This study’s predictions need further experimental validation and the results should be taken as a source of information on cholesterol catabolism and genes/proteins involved in this process among mycobacterial species.
Collapse
Affiliation(s)
- Rochelle van Wyk
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - Mari van Wyk
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
22
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
23
|
Metabolites Involved in Aerobic Degradation of the A and B Rings of Estrogen. Appl Environ Microbiol 2019; 85:AEM.02223-18. [PMID: 30446556 DOI: 10.1128/aem.02223-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Various bacteria, mainly actinobacteria and proteobacteria, are capable of aerobic estrogen degradation. In a previous study, we used the obligate aerobic alphaproteobacterium Sphingomonas sp. strain KC8 as a model microorganism to identify the initial metabolites involved in the oxygenolytic cleavage of the estrogen A ring: 4-hydroxyestrone, a meta-cleavage product, and a dead-end product pyridinestrone acid. In this study, we identified the downstream metabolites of this aerobic degradation pathway using ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). 4-Norestrogen-5(10)-en-3-oyl-coenzyme A and its closely related deconjugated (non-coenzyme A [non-CoA]) structure, 4-norestrogenic acid, were detected in the estrone-grown strain KC8 cultures. The structure of 4-norestrogenic acid was elucidated using nuclear magnetic resonance (NMR) spectroscopy. The extracellular distribution and the accumulation of 4-norestrogenic acid in the bacterial cultures indicate that the estrogen-degrading bacteria cannot degrade this deconjugated product. We also observed temporal accumulation and subsequent consumption of a common steroid metabolite, 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), in the bacterial cultures. The metabolite profile and genomic analyses shed light on the biochemical mechanisms involved in the degradation of the A and B rings of natural estrogens. In this proposed aerobic pathway, C-4 of the meta-cleavage product is removed by a 2-oxoacid oxidoreductase through oxidative decarboxylation to produce the 4-norestrogen-5(10)-en-3-oyl-CoA. Subsequently, the B ring is cleaved by hydrolysis. The resulting A/B-ring-cleaved product is transformed into a common steroid metabolite HIP through β-oxidation reactions. Accordingly, the A and B rings of different steroids are degraded through at least three peripheral pathways, which converge at HIP, and HIP is then degraded through a common central pathway.IMPORTANCE Estrogens, often detected in surface waters worldwide, have been classified as endocrine disrupting chemicals and carcinogens. Bacterial degradation is crucial for removing natural estrogens from natural and engineered ecosystems; however, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in estrogen biodegradation is very limited. Our estrogen metabolite profile and genomic analyses on estrone-degrading bacteria enabled us to characterize the aerobic estrogen degradation pathway. The results greatly expand our understanding of microbial steroid degradation. In addition, the characteristic metabolites, dead-end products, and degradation genes can be used as biomarkers to investigate the fate and biodegradation potential of estrogens in the environment.
Collapse
|
24
|
Liu S, Du MZ, Wen QF, Kang J, Dong C, Xiong L, Huang J, Guo FB. Comprehensive exploration of the enzymes catalysing oxygen-involved reactions and COGs relevant to bacterial oxygen utilization. Environ Microbiol 2018; 20:3836-3850. [PMID: 30187624 DOI: 10.1111/1462-2920.14399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
To better understand the mechanisms of bacterial adaptation in oxygen environments, we explored the aerobic living-associated genes in bacteria by comparing Clusters of Orthologous Groups of proteins' (COGs) frequencies and gene expression analyses and 38 COGs were detected at significantly higher frequencies (p-value less than 1e-6) in aerobes than in anaerobes. Differential expression analyses between two conditions further narrowed the prediction to 27 aerobe-specific COGs. Then, we annotated the enzymes associated with these COGs. Literature review revealed that 14 COGs contained enzymes catalysing oxygen-involved reactions or products involved in aerobic pathways, suggesting their important roles for survival in aerobic environments. Additionally, protein-protein interaction analyses and step length comparisons of metabolic networks suggested that the other 13 COGs may function relevantly with the 14 enzymes-corresponding COGs, indicating that these genes may be highly associated with oxygen utilization. Phylogenetic and evolutionary analyses showed that the 27 COGs did not have similar trees, and all suffered purifying selection pressures. The divergent times of species containing or lacking aerobic COGs validated that the appearing time of oxygen-utilizing gene was approximately 2.80 Gyr ago. In addition to help better understand oxygen adaption, our method may be extended to identify genes relevant to other living environments.
Collapse
Affiliation(s)
- Shuo Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qing-Feng Wen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Juanjuan Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lifeng Xiong
- Department of Microbiology, University of Hong Kong, Special Administrative Region, Hong Kong, 999077, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
25
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
26
|
Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018; 20:1815-1827. [PMID: 29611894 DOI: 10.1111/1462-2920.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
In this work, we have characterized the C-19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C-19 steroids in certain M. smegmatis mutants mapped in the PadR-like regulator (MSMEG_2868), that constitutively express the C-19+ gene cluster. By using gene complementation assays, resting-cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C-19+ pathway for the mineralization of C-19 steroids in M. smegmatis. Our data suggest that the deletion of the C-19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C-19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α-hydroxylation and/or Δ1-dehydrogenation of 3-ketosteroids.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
27
|
Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4931720. [PMID: 29718271 PMCID: PMC6251666 DOI: 10.1093/femspd/fty021] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis is a distinctive disease in which the causative agent, Mycobacterium tuberculosis, can persist in humans for decades by avoiding clearance from host immunity. During infection, M. tuberculosis maintains viability by extracting and utilizing essential nutrients from the host, and this is a prerequisite for all of the pathogenic activities that are deployed by the bacterium. In particular, M. tuberculosis preferentially acquires and metabolizes host-derived lipids (fatty acids and cholesterol), and the bacterium utilizes these substrates to cause and maintain disease. In this review, we discuss our current understanding of lipid utilization by M. tuberculosis, and we describe how these pathways promote pathogenesis to fuel metabolic processes in the bacillus. Finally, we highlight weaknesses in these pathways that potentially can be targeted for drug discovery.
Collapse
Affiliation(s)
- Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
28
|
Blacklock KM, Yang L, Mulligan VK, Khare SD. A computational method for the design of nested proteins by loop-directed domain insertion. Proteins 2018; 86:354-369. [PMID: 29250820 DOI: 10.1002/prot.25445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
The computational design of novel nested proteins-in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)-would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop-Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker-to-parent domain superimposition followed by insert-to-linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid-based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near-native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain-inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross-domain placement tests, native insert-parent domain combinations were ranked as the best-scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi-domain protein complexes with any combination of inserted or tandem domain connections.
Collapse
Affiliation(s)
- Kristin M Blacklock
- Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Lu Yang
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Vikram K Mulligan
- Institute for Protein Design and Department of Biochemistry, University of Washington, Seattle, Washington
| | - Sagar D Khare
- Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
29
|
Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis. Sci Rep 2017; 7:11751. [PMID: 28924204 PMCID: PMC5603573 DOI: 10.1038/s41598-017-11843-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC17 exhibited the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.
Collapse
|
30
|
Abstract
The interaction between Mycobacterium tuberculosis and its host cell is highly complex and extremely intimate. Were it not for the disease, one might regard this interaction at the cellular level as an almost symbiotic one. The metabolic activity and physiology of both cells are shaped by this coexistence. We believe that where this appreciation has greatest significance is in the field of drug discovery. Evolution rewards efficiency, and recent data from many groups discussed in this review indicate that M. tuberculosis has evolved to utilize the environmental cues within its host to control large genetic programs or regulons. But these regulons may represent chinks in the bacterium's armor because they include off-target effects, such as the constraint of the metabolic plasticity of M. tuberculosis. A prime example is how the presence of cholesterol within the host cell appears to limit the ability of M. tuberculosis to fully utilize or assimilate other carbon sources. And that is the reason for the title of this review. We believe firmly that, to understand the physiology of M. tuberculosis and to identify new drug targets, it is imperative that the bacterium be interrogated within the context of its host cell. The constraints induced by the environmental cues present within the host cell need to be preserved and exploited. The M. tuberculosis-infected macrophage truly is the "minimal unit of infection."
Collapse
|
31
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
32
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
33
|
Fineran P, Lloyd-Evans E, Lack NA, Platt N, Davis LC, Morgan AJ, Höglinger D, Tatituri RVV, Clark S, Williams IM, Tynan P, Al Eisa N, Nazarova E, Williams A, Galione A, Ory DS, Besra GS, Russell DG, Brenner MB, Sim E, Platt FM. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Res 2016. [PMID: 28008422 DOI: 10.12688/wellcomeopenres.10036.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Collapse
Affiliation(s)
- Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Oxford, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Nathan A Lack
- Department of Pharmacology, University of Oxford, Oxford, UK.,School of Medicine, Koç University, Istanbul, Turkey
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Doris Höglinger
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - Ian M Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Patricia Tynan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nada Al Eisa
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Evgeniya Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, USA
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Michael B Brenner
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, UK.,Faculty of Science Engineering and Computing, Kingston University, Kingston upon Thames, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Fineran P, Lloyd-Evans E, Lack NA, Platt N, Davis LC, Morgan AJ, Höglinger D, Tatituri RVV, Clark S, Williams IM, Tynan P, Al Eisa N, Nazarova E, Williams A, Galione A, Ory DS, Besra GS, Russell DG, Brenner MB, Sim E, Platt FM. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Res 2016; 1:18. [PMID: 28008422 PMCID: PMC5172425 DOI: 10.12688/wellcomeopenres.10036.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Collapse
Affiliation(s)
- Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Oxford, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Nathan A. Lack
- Department of Pharmacology, University of Oxford, Oxford, UK
- School of Medicine, Koç University, Istanbul, Turkey
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C. Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Doris Höglinger
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - Ian M. Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Patricia Tynan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nada Al Eisa
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Evgeniya Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, USA
| | | | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Michael B. Brenner
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, UK
- Faculty of Science Engineering and Computing, Kingston University, Kingston upon Thames, UK
| | | |
Collapse
|
35
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
36
|
Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site. Sci Rep 2016; 6:25542. [PMID: 27160974 PMCID: PMC4861933 DOI: 10.1038/srep25542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.
Collapse
|
37
|
Shtratnikova VY, Schelkunov MI, Fokina VV, Pekov YA, Ivashina T, Donova MV. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr Genet 2016; 62:643-56. [PMID: 26832142 DOI: 10.1007/s00294-016-0568-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 01/16/2016] [Indexed: 11/27/2022]
Abstract
Actinobacteria comprise diverse groups of bacteria capable of full degradation, or modification of different steroid compounds. Steroid catabolism has been characterized best for the representatives of suborder Corynebacterineae, such as Mycobacteria, Rhodococcus and Gordonia, with high content of mycolic acids in the cell envelope, while it is poorly understood for other steroid-transforming actinobacteria, such as representatives of Nocardioides genus belonging to suborder Propionibacterineae. Nocardioides simplex VKM Ac-2033D is an important biotechnological strain which is known for its ability to introduce ∆(1)-double bond in various 1(2)-saturated 3-ketosteroids, and perform convertion of 3β-hydroxy-5-ene steroids to 3-oxo-4-ene steroids, hydrolysis of acetylated steroids, reduction of carbonyl groups at C-17 and C-20 of androstanes and pregnanes, respectively. The strain is also capable of utilizing cholesterol and phytosterol as carbon and energy sources. In this study, a comprehensive bioinformatics genome-wide screening was carried out to predict genes related to steroid metabolism in this organism, their clustering and possible regulation. The predicted operon structure and number of candidate gene copies paralogs have been estimated. Binding sites of steroid catabolism regulators KstR and KstR2 specified for N. simplex VKM Ac-2033D have been calculated de novo. Most of the candidate genes grouped within three main clusters, one of the predicted clusters having no analogs in other actinobacteria studied so far. The results offer a base for further functional studies, expand the understanding of steroid catabolism by actinobacteria, and will contribute to modifying of metabolic pathways in order to generate effective biocatalysts capable of producing valuable bioactive steroids.
Collapse
Affiliation(s)
- Victoria Y Shtratnikova
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory, h. 1, b. 73, Moscow, 119991, Russian Federation.
| | - Mikhail I Schelkunov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, b. 1, Moscow, 127051, Russian Federation
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, h. 1, b. 41, Moscow, 119991, Russian Federation
| | - Victoria V Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| | - Yury A Pekov
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory, h. 1, b. 73, Moscow, 119991, Russian Federation
| | - Tanya Ivashina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| |
Collapse
|
38
|
Lovewell RR, Sassetti CM, VanderVen BC. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 2016; 29:30-6. [DOI: 10.1016/j.mib.2015.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
|
39
|
Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog 2015; 11:e1004679. [PMID: 25675247 PMCID: PMC4335503 DOI: 10.1371/journal.ppat.1004679] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol. Human beings are the sole ecological niche for M. tuberculosis (Mtb), and it is estimated that 1.8 billion people are currently infected with Mtb. An important aspect of this infection is Mtb’s ability to maintain infection by replicating within macrophages. Within macrophages, Mtb exploits a specialized set of metabolic pathways to utilize host-derived nutrients, such as fatty acids and/or cholesterol, for energy production. Many details regarding Mtb metabolism during infection remain unknown. Here we took a chemical approach to identify small molecule probes, which target Mtb metabolism during infection in macrophages. We found that many of the small molecule inhibitors that we identified require cholesterol for activity. Here we report a novel chemical rescue approach to identify the metabolic targets of three novel inhibitors, and discovered that cAMP signaling is linked to cholesterol utilization in Mtb. Together, these data demonstrate that cholesterol exerts a dominant effect on Mtb metabolism within macrophages. Additionally, the novel inhibitors identified in this study will facilitate evaluation of cholesterol metabolism as a target for chemotherapeutic intervention.
Collapse
|
40
|
García-Fernández J, Galán B, Medrano FJ, García JL. Characterization of the KstR2 regulator responsible of the lower cholesterol degradative pathway in Mycobacterium smegmatis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:155-163. [PMID: 25511435 DOI: 10.1111/1758-2229.12255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
The interaction of KstR2-dependent promoters of the divergon constituted by the MSMEG_6000-5999 and MSMEG_6001-6004 operons of Mycobacterium smegmatis which encode the genes involved in the lower cholesterol degradative pathway has been characterized. Footprint analyses have demonstrated experimentally for the first time that KstR2 specifically binds to an operator region of 29 nucleotides containing the palindromic sequence AAGCAAGNNCTTGCTT. This region overlaps with the -10 and -35 boxes of the putative P(6000) and P(6001) divergent promoters, suggesting that KstR2 represses their transcription by preventing the binding of the ribonucleic acid polymerase. A three-dimensional model of the KstR2 protein revealed a typical TetR-type regulator folding with two domains, a deoxyribonucleic acid (DNA)-binding N-terminal domain and a regulator-binding C-terminal domain composed by three and six helices respectively. KstR2 is an all alpha protein as confirmed by circular dichroism. We have determined that M. smegmatis is able to grow using sitolactone (HIL) as the only carbon source and that this compound induces the kstR2 regulon in vivo. HIL or its open form 5OH-HIP were unable to release in vitro the KstR2-DNA operator interaction, suggesting that 5OH-HIP-CoA or a further derivative would induce the lower cholesterol catabolic pathway.
Collapse
Affiliation(s)
- Julia García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Mdluli K, Kaneko T, Upton A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 2015; 5:a021154. [PMID: 25635061 PMCID: PMC4448709 DOI: 10.1101/cshperspect.a021154] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal.
Collapse
Affiliation(s)
- Khisimuzi Mdluli
- Global Alliance for TB Drug Development, New York, New York 10005
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, New York 10005
| | - Anna Upton
- Global Alliance for TB Drug Development, New York, New York 10005
| |
Collapse
|
42
|
Evangelopoulos D, Gupta A, Lack NA, Maitra A, ten Bokum AM, Kendall S, Sim E, Bhakta S. Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:664-71. [PMID: 25443504 PMCID: PMC4266540 DOI: 10.1016/j.tube.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
MSMEG_0307 is annotated as a transcriptional regulator belonging to the AraC protein family and is located adjacent to the arylamine N-acetyltransferase (nat) gene in Mycobacterium smegmatis, in a gene cluster, conserved in most environmental mycobacterial species. In order to elucidate the function of the AraC protein from the nat operon in M. smegmatis, two conserved palindromic DNA motifs were identified using bioinformatics and tested for protein binding using electrophoretic mobility shift assays with a recombinant form of the AraC protein. We identified the formation of a DNA:AraC protein complex with one of the motifs as well as the presence of this motif in 20 loci across the whole genome of M. smegmatis, supporting the existence of an AraC controlled regulon. To characterise the effects of AraC in the regulation of the nat operon genes, as well as to gain further insight into its function, we generated a ΔaraC mutant strain where the araC gene was replaced by a hygromycin resistance marker. The level of expression of the nat and MSMEG_0308 genes was down-regulated in the ΔaraC strain when compared to the wild type strain indicating an activator effect of the AraC protein on the expression of the nat operon genes.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antima Gupta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Nathan A. Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Annemieke M.C. ten Bokum
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Sharon Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Corresponding author. Tel.: +44 (0)20 7631 6355 (office), +44 (0)20 7079 0799 (lab); fax: +44 (0)20 7631 6246.
| |
Collapse
|
43
|
Maitra A, Bhakta S. TB Summit 2014: prevention, diagnosis, and treatment of tuberculosis-a meeting report of a Euroscicon conference. Virulence 2014; 5:638-44. [PMID: 25003368 PMCID: PMC4105315 DOI: 10.4161/viru.29803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
World TB Day commemorates Dr Robert Koch’s first announcement on March 24, 1882, that the bacterium Mycobacterium tuberculosis is the causative agent of tuberculosis. Currently, the event comprises of several conferences, meetings and activities held all over the world with the singular intention of raising public awareness about the global health emergency.
In spite of having discovered the etiological agent of tuberculosis more than a century ago, a sizeable population still contract the disease every year and fall prey to it. In 2012, an estimated 8.6 million people developed the disease with 1.3 million succumbing to it. The number of TB deaths in children is unacceptably large, given that most are preventable. However, the challenge appears to be shifting toward attempts to control the rise and spread of the drug resistant variants of the microbe. To achieve this, a concerted effort from academia, clinical practice, and industry has been put forth.
The TB Summit 2014 attempted to raise awareness as well as bring together experts involved in different aspects of tuberculosis research to help establish a more collective approach to battle this age-old disease.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; University of London; London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory; Institute of Structural and Molecular Biology; University of London; London, UK
| |
Collapse
|
44
|
Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:269-93. [PMID: 24611808 PMCID: PMC4255906 DOI: 10.3109/10409238.2014.895700] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism.
Collapse
Affiliation(s)
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | | |
Collapse
|
45
|
García-Fernández E, Medrano FJ, Galán B, García JL. Deciphering the transcriptional regulation of cholesterol catabolic pathway in mycobacteria: identification of the inducer of KstR repressor. J Biol Chem 2014; 289:17576-88. [PMID: 24802756 PMCID: PMC4067193 DOI: 10.1074/jbc.m113.545715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Cholesterol degradation plays a prominent role in Mycobacterium tuberculosis infection; therefore, to develop new tools to combat this disease, we need to decipher the components comprising and regulating the corresponding pathway. A TetR-like repressor (KstR) regulates the upper part of this complex catabolic pathway, but the induction mechanism remains unknown. Using a biophysical approach, we have discovered that the inducer molecule of KstR in M. smegmatis mc(2)155 is not cholesterol but 3-oxo-4-cholestenoic acid, one of the first metabolic intermediates. Binding this compound induces dramatic conformational changes in KstR that promote the KstR-DNA interaction to be released from the operator, retaining its dimeric state. Our findings suggest a regulatory model common to all cholesterol degrading bacteria in which the first steps of the pathway are critical to its mineralization and explain the high redundancy of the enzymes involved in these initial steps.
Collapse
Affiliation(s)
| | - Francisco Javier Medrano
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | | | | |
Collapse
|
46
|
Abstract
Current tuberculosis (TB) therapies take too long and the regimens are complex and subject to adverse effects and drug-drug interactions with concomitant medications. The emergence of drug-resistant TB strains exacerbates the situation. Drug discovery for TB has resurged in recent years, generating compounds (hits) with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review proposes strategies for generating improved hits and leads that could help achieve this goal.
Collapse
|
47
|
3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie van Leeuwenhoek 2014; 106:157-72. [PMID: 24846050 PMCID: PMC4064121 DOI: 10.1007/s10482-014-0188-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9α-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It initiates opening of the steroid polycyclic ring structure. The enzyme has industrial relevance in the synthesis of pharmaceutical steroids. Deletion of KSH activity in sterol degrading bacteria results in blockage of steroid ring opening and is used to produce valuable C19-steroids such as 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione. Interestingly, KSH activity is essential for the pathogenicity of Mycobacterium tuberculosis. Detailed information about KSH thus is of medical relevance, and KSH inhibitory compounds may find application in combatting tuberculosis. In recent years, the 3D structure of the KshA protein of M. tuberculosis H37Rv has been elucidated and various studies report biochemical characteristics and possible physiological roles of KSH. The current knowledge is reviewed here and forms a solid basis for further studies on this highly interesting enzyme. Future work may result in the construction of KSH mutants capable of production of specific bioactive steroids. Furthermore, KSH provides an promising target for drugs against the pathogenic agent M. tuberculosis.
Collapse
|
48
|
Borbulevych OY, Plumley JA, Martin RI, Merz KM, Westerhoff LM. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1233-47. [PMID: 24816093 PMCID: PMC4014119 DOI: 10.1107/s1399004714002260] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/30/2014] [Indexed: 01/22/2023]
Abstract
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Collapse
Affiliation(s)
| | - Joshua A. Plumley
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Roger I. Martin
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Kenneth M. Merz
- Quantum Theory Project, University of Florida, Gainesville, Florida USA
| | | |
Collapse
|
49
|
Peng T, Zhou Y, Li J, Li J, Wan W, Jia Y. Detection of Delta-like 1 ligand for the diagnosis of tuberculous meningitis: An effective and rapid diagnostic method. J Int Med Res 2014; 42:728-36. [PMID: 24651996 DOI: 10.1177/0300060513498669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/16/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the diagnostic value of Delta-like 1 ligand (DLL1) in cerebrospinal fluid (CSF) and serum, in tuberculous meningitis (TBM). METHODS Patients with a definite diagnosis of central nervous system infection (TBM, viral meningitis/encephalitis or bacterial meningitis) were prospectively enrolled alongside patients with intracranial metastatic tumour and patients with no diagnosis (who served as controls). DLL1 content in CSF and serum was measured quantitatively by enzyme-linked immunosorbent assay; analyses were blinded. RESULTS A total of 173 patients were enrolled: 62 with TBM; 38 with viral meningitis/encephalitis; 26 with bacterial meningitis; 17 with intracranial metastatic tumour; 30 with no diagnosis. CSF DLL1 content was highest for TBM; there were no differences in CSF DLL1 between the other groups. Serum DLL1 content was highest for the TBM and intracranial metastatic tumour groups, with significant differences between the TBM group and the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups. There were no differences in serum DLL1 between the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups, or between the TBM group and the tumour group. CONCLUSION As a new biomarker, DLL1 may be of great clinical importance in the diagnosis of TBM.
Collapse
Affiliation(s)
- Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghong Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencui Wan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Rozeboom HJ, Godinho LF, Nardini M, Quax WJ, Dijkstra BW. Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:567-75. [PMID: 24418394 DOI: 10.1016/j.bbapap.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/08/2023]
Abstract
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E>200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E>200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75Å and 2.04Å, respectively, showed that both proteins have a canonical α/β hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other α/β hydrolase fold esterases.
Collapse
Affiliation(s)
- Henriëtte J Rozeboom
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Luis F Godinho
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Marco Nardini
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|